Example #1
0
static MagickBooleanType load_tile(Image *image,Image *tile_image,
  XCFDocInfo *inDocInfo,XCFLayerInfo *inLayerInfo,size_t data_length)
{
  ExceptionInfo
    *exception;

  ssize_t
    y;

  register ssize_t
    x;

  register PixelPacket
    *q;

  ssize_t
    count;

  unsigned char
    *graydata;

  XCFPixelPacket
    *xcfdata,
    *xcfodata;

  xcfdata=(XCFPixelPacket *) AcquireQuantumMemory(data_length,sizeof(*xcfdata));
  if (xcfdata == (XCFPixelPacket *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  xcfodata=xcfdata;
  graydata=(unsigned char *) xcfdata;  /* used by gray and indexed */
  count=ReadBlob(image,data_length,(unsigned char *) xcfdata);
  if (count != (ssize_t) data_length)
    ThrowBinaryException(CorruptImageError,"NotEnoughPixelData",
      image->filename);
  exception=(&image->exception);
  for (y=0; y < (ssize_t) tile_image->rows; y++)
  {
    q=QueueAuthenticPixels(tile_image,0,y,tile_image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      break;
    if (inDocInfo->image_type == GIMP_GRAY)
      {
        for (x=0; x < (ssize_t) tile_image->columns; x++)
        {
          SetPixelRed(q,ScaleCharToQuantum(*graydata));
          SetPixelGreen(q,GetPixelRed(q));
          SetPixelBlue(q,GetPixelRed(q));
          SetPixelAlpha(q,ScaleCharToQuantum((unsigned char)
            inLayerInfo->opacity));
          graydata++;
          q++;
        }
      }
    else
      if (inDocInfo->image_type == GIMP_RGB)
        {
          for (x=0; x < (ssize_t) tile_image->columns; x++)
          {
            SetPixelRed(q,ScaleCharToQuantum(xcfdata->red));
            SetPixelGreen(q,ScaleCharToQuantum(xcfdata->green));
            SetPixelBlue(q,ScaleCharToQuantum(xcfdata->blue));
            SetPixelAlpha(q,xcfdata->opacity == 0U ?  OpaqueOpacity :
              ScaleCharToQuantum((unsigned char) inLayerInfo->opacity));
            xcfdata++;
            q++;
          }
        }
     if (SyncAuthenticPixels(tile_image,exception) == MagickFalse)
       break;
  }
  xcfodata=(XCFPixelPacket *) RelinquishMagickMemory(xcfodata);
  return MagickTrue;
}
Example #2
0
static MagickBooleanType load_tile_rle(Image *image,Image *tile_image,
  XCFDocInfo *inDocInfo,XCFLayerInfo *inLayerInfo,size_t data_length)
{
  ExceptionInfo
    *exception;

  MagickOffsetType
    size;

  register PixelPacket
    *q;

  size_t
    length;

  ssize_t
    bytes_per_pixel,
    count,
    i,
    j;

  unsigned char
    data,
    pixel,
    *xcfdata,
    *xcfodata,
    *xcfdatalimit;

  bytes_per_pixel=(ssize_t) inDocInfo->bytes_per_pixel;
  xcfdata=(unsigned char *) AcquireQuantumMemory(data_length,sizeof(*xcfdata));
  if (xcfdata == (unsigned char *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  xcfodata=xcfdata;
  count=ReadBlob(image, (size_t) data_length, xcfdata);
  xcfdatalimit = xcfodata+count-1;
  exception=(&image->exception);
  for (i=0; i < (ssize_t) bytes_per_pixel; i++)
  {
    q=GetAuthenticPixels(tile_image,0,0,tile_image->columns,tile_image->rows,
      exception);
    size=(MagickOffsetType) tile_image->rows*tile_image->columns;
    while (size > 0)
    {
      if (xcfdata > xcfdatalimit)
        goto bogus_rle;
      pixel=(*xcfdata++);
      length=(size_t) pixel;
      if (length >= 128)
        {
          length=255-(length-1);
          if (length == 128)
            {
              if (xcfdata >= xcfdatalimit)
                goto bogus_rle;
              length=(size_t) ((*xcfdata << 8) + xcfdata[1]);
              xcfdata+=2;
            }
            size-=length;
            if (size < 0)
              goto bogus_rle;
            if (&xcfdata[length-1] > xcfdatalimit)
              goto bogus_rle;
            while (length-- > 0)
            {
              data=(*xcfdata++);
              switch (i)
              {
                case 0:
                {
                  SetPixelRed(q,ScaleCharToQuantum(data));
                  if (inDocInfo->image_type != GIMP_GRAY)
                    {
                      SetPixelGreen(q,ScaleCharToQuantum(data));
                      SetPixelBlue(q,ScaleCharToQuantum(data));
                      SetPixelAlpha(q,ScaleCharToQuantum(
                        (unsigned char) inLayerInfo->opacity));
                    }
                  else
                    {
                      SetPixelGreen(q,GetPixelRed(q));
                      SetPixelBlue(q,GetPixelRed(q));
                      SetPixelAlpha(q,ScaleCharToQuantum(
                        (unsigned char) inLayerInfo->opacity));
                    }
                  break;
                }
                case 1:
                {
                  SetPixelGreen(q,ScaleCharToQuantum(data));
                  break;
                }
                case 2:
                {
                  SetPixelBlue(q,ScaleCharToQuantum(data));
                  break;
                }
                case 3:
                {
                  SetPixelAlpha(q,data == 0 ? OpaqueOpacity :
                    ScaleCharToQuantum((unsigned char) inLayerInfo->opacity));
                  break;
                }
              }
              q++;
            }
          }
        else
          {
            length+=1;
            if (length == 128)
              {
                if (xcfdata >= xcfdatalimit)
                  goto bogus_rle;
                length=(size_t) ((*xcfdata << 8) + xcfdata[1]);
                xcfdata+=2;
              }
            size-=length;
            if (size < 0)
              goto bogus_rle;
            if (xcfdata > xcfdatalimit)
              goto bogus_rle;
            pixel=(*xcfdata++);
            for (j= 0; j < (ssize_t) length; j++)
            {
              data=pixel;
              switch (i)
              {
                case 0:
                {
                  SetPixelRed(q,ScaleCharToQuantum(data));
                  if (inDocInfo->image_type != GIMP_GRAY)
                    {
                      SetPixelGreen(q,ScaleCharToQuantum(data));
                      SetPixelBlue(q,ScaleCharToQuantum(data));
                      SetPixelAlpha(q,ScaleCharToQuantum(
                        (unsigned char) inLayerInfo->opacity));
                    }
                  else
                    {
                      SetPixelGreen(q,GetPixelRed(q));
                      SetPixelBlue(q,GetPixelRed(q));
                      SetPixelAlpha(q,ScaleCharToQuantum(
                        (unsigned char) inLayerInfo->opacity));
                    }
                  break;
                }
                case 1:
                {
                  SetPixelGreen(q,ScaleCharToQuantum(data));
                  break;
                }
                case 2:
                {
                  SetPixelBlue(q,ScaleCharToQuantum(data));
                  break;
                }
                case 3:
                {
                  SetPixelAlpha(q,data == 0 ? OpaqueOpacity :
                    ScaleCharToQuantum((unsigned char) inLayerInfo->opacity));
                  break;
                }
              }
              q++;
            }
          }
      }
      if (SyncAuthenticPixels(tile_image,exception) == MagickFalse)
        break;
    }
  xcfodata=(unsigned char *) RelinquishMagickMemory(xcfodata);
  return(MagickTrue);

  bogus_rle:
    if (xcfodata != (unsigned char *) NULL)
      xcfodata=(unsigned char *) RelinquishMagickMemory(xcfodata);
  return(MagickFalse);
}
Example #3
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   W r i t e I m a g e                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  WriteImage() writes an image or an image sequence to a file or filehandle.
%  If writing to a file on disk, the name is defined by the filename member of
%  the image structure.  Write() returns MagickFalse is these is a memory
%  shortage or if the image cannot be written.  Check the exception member of
%  image to determine the cause for any failure.
%
%  The format of the WriteImage method is:
%
%      MagickBooleanType WriteImage(const ImageInfo *image_info,Image *image)
%
%  A description of each parameter follows:
%
%    o image_info: the image info.
%
%    o image: the image.
%
*/
MagickExport MagickBooleanType WriteImage(const ImageInfo *image_info,
  Image *image)
{
  char
    filename[MaxTextExtent];

  const char
    *option;

  const DelegateInfo
    *delegate_info;

  const MagickInfo
    *magick_info;

  ExceptionInfo
    *sans_exception;

  ImageInfo
    *write_info;

  MagickBooleanType
    status,
    temporary;

  MagickStatusType
    thread_support;

  PolicyDomain
    domain;

  PolicyRights
    rights;

  /*
    Determine image type from filename prefix or suffix (e.g. image.jpg).
  */
  assert(image_info != (ImageInfo *) NULL);
  assert(image_info->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
      image_info->filename);
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  sans_exception=AcquireExceptionInfo();
  write_info=CloneImageInfo(image_info);
  (void) CopyMagickString(write_info->filename,image->filename,MaxTextExtent);
  if (*write_info->magick == '\0')
    (void) CopyMagickString(write_info->magick,image->magick,MaxTextExtent);
  (void) SetImageInfo(write_info,1,sans_exception);
  if (LocaleCompare(write_info->magick,"clipmask") == 0)
    {
      if (image->clip_mask == (Image *) NULL)
        {
          (void) ThrowMagickException(&image->exception,GetMagickModule(),
            OptionError,"NoClipPathDefined","`%s'",image->filename);
          return(MagickFalse);
        }
      image=image->clip_mask;
      (void) SetImageInfo(write_info,1,sans_exception);
    }
  (void) CopyMagickString(filename,image->filename,MaxTextExtent);
  (void) CopyMagickString(image->filename,write_info->filename,MaxTextExtent);
  domain=CoderPolicyDomain;
  rights=WritePolicyRights;
  if (IsRightsAuthorized(domain,rights,write_info->magick) == MagickFalse)
    {
      sans_exception=DestroyExceptionInfo(sans_exception);
      errno=EPERM;
      ThrowBinaryException(PolicyError,"NotAuthorized",filename);
    }
  magick_info=GetMagickInfo(write_info->magick,sans_exception);
  sans_exception=DestroyExceptionInfo(sans_exception);
  if (magick_info != (const MagickInfo *) NULL)
    {
      if (GetMagickEndianSupport(magick_info) == MagickFalse)
        image->endian=UndefinedEndian;
      else
        if ((image_info->endian == UndefinedEndian) &&
            (GetMagickRawSupport(magick_info) != MagickFalse))
          {
            size_t
              lsb_first;

            lsb_first=1;
            image->endian=(*(char *) &lsb_first) == 1 ? LSBEndian : MSBEndian;
         }
    }
  (void) SyncImageProfiles(image);
  option=GetImageOption(image_info,"delegate:bimodal");
  if ((option != (const char *) NULL) && 
      (IsMagickTrue(option) != MagickFalse) &&
      (write_info->page == (char *) NULL) &&
      (GetPreviousImageInList(image) == (Image *) NULL) &&
      (GetNextImageInList(image) == (Image *) NULL) &&
      (IsTaintImage(image) == MagickFalse))
    {
      delegate_info=GetDelegateInfo(image->magick,write_info->magick,
        &image->exception);
      if ((delegate_info != (const DelegateInfo *) NULL) &&
          (GetDelegateMode(delegate_info) == 0) &&
          (IsPathAccessible(image->magick_filename) != MagickFalse))
        {
          /*
            Process image with bi-modal delegate.
          */
          (void) CopyMagickString(image->filename,image->magick_filename,
            MaxTextExtent);
          status=InvokeDelegate(write_info,image,image->magick,
            write_info->magick,&image->exception);
          write_info=DestroyImageInfo(write_info);
          (void) CopyMagickString(image->filename,filename,MaxTextExtent);
          return(status);
        }
    }
  status=MagickFalse;
  temporary=MagickFalse;
  if ((magick_info != (const MagickInfo *) NULL) &&
      (GetMagickSeekableStream(magick_info) != MagickFalse))
    {
      char
        filename[MaxTextExtent];

      (void) CopyMagickString(filename,image->filename,MaxTextExtent);
      status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
      (void) CopyMagickString(image->filename,filename,MaxTextExtent);
      if (status != MagickFalse)
        {
          if (IsBlobSeekable(image) == MagickFalse)
            {
              /*
                A seekable stream is required by the encoder.
              */
              write_info->adjoin=MagickTrue;
              (void) CopyMagickString(write_info->filename,image->filename,
                MaxTextExtent);
              (void) AcquireUniqueFilename(image->filename);
              temporary=MagickTrue;
            }
          (void) CloseBlob(image);
        }
    }
  if (constitute_semaphore == (SemaphoreInfo *) NULL)
    AcquireSemaphoreInfo(&constitute_semaphore);
  if ((magick_info != (const MagickInfo *) NULL) &&
      (GetImageEncoder(magick_info) != (EncodeImageHandler *) NULL))
    {
      /*
        Call appropriate image writer based on image type.
      */
      thread_support=GetMagickThreadSupport(magick_info);
      if ((thread_support & EncoderThreadSupport) == 0)
        LockSemaphoreInfo(constitute_semaphore);
      status=GetImageEncoder(magick_info)(write_info,image);
      if ((thread_support & EncoderThreadSupport) == 0)
        UnlockSemaphoreInfo(constitute_semaphore);
    }
  else
    {
      delegate_info=GetDelegateInfo((char *) NULL,write_info->magick,
        &image->exception);
      if (delegate_info != (DelegateInfo *) NULL)
        {
          /*
            Process the image with delegate.
          */
          *write_info->filename='\0';
          if (GetDelegateThreadSupport(delegate_info) == MagickFalse)
            LockSemaphoreInfo(constitute_semaphore);
          status=InvokeDelegate(write_info,image,(char *) NULL,
            write_info->magick,&image->exception);
          if (GetDelegateThreadSupport(delegate_info) == MagickFalse)
            UnlockSemaphoreInfo(constitute_semaphore);
          (void) CopyMagickString(image->filename,filename,MaxTextExtent);
        }
      else
        {
          sans_exception=AcquireExceptionInfo();
          magick_info=GetMagickInfo(write_info->magick,sans_exception);
          sans_exception=DestroyExceptionInfo(sans_exception);
          if ((write_info->affirm == MagickFalse) &&
              (magick_info == (const MagickInfo *) NULL))
            {
              (void) CopyMagickString(write_info->magick,image->magick,
                MaxTextExtent);
              magick_info=GetMagickInfo(write_info->magick,&image->exception);
            }
          if ((magick_info == (const MagickInfo *) NULL) ||
              (GetImageEncoder(magick_info) == (EncodeImageHandler *) NULL))
            {
              magick_info=GetMagickInfo(image->magick,&image->exception);
              (void) CopyMagickString(image->filename,filename,MaxTextExtent);
            }
          if ((magick_info == (const MagickInfo *) NULL) ||
              (GetImageEncoder(magick_info) == (EncodeImageHandler *) NULL))
            (void) ThrowMagickException(&image->exception,GetMagickModule(),
              MissingDelegateError,"NoEncodeDelegateForThisImageFormat","`%s'",
              image->filename);
          else
            {
              /*
                Call appropriate image writer based on image type.
              */
              thread_support=GetMagickThreadSupport(magick_info);
              if ((thread_support & EncoderThreadSupport) == 0)
                LockSemaphoreInfo(constitute_semaphore);
              status=GetImageEncoder(magick_info)(write_info,image);
              if ((thread_support & EncoderThreadSupport) == 0)
                UnlockSemaphoreInfo(constitute_semaphore);
            }
        }
    }
  if (GetBlobError(image) != MagickFalse)
    ThrowFileException(&image->exception,FileOpenError,
      "AnErrorHasOccurredWritingToFile",image->filename);
  if (temporary == MagickTrue)
    {
      /*
        Copy temporary image file to permanent.
      */
      status=OpenBlob(write_info,image,ReadBinaryBlobMode,&image->exception);
      if (status != MagickFalse)
        status=ImageToFile(image,write_info->filename,&image->exception);
      (void) CloseBlob(image);
      (void) RelinquishUniqueFileResource(image->filename);
      (void) CopyMagickString(image->filename,write_info->filename,
        MaxTextExtent);
    }
  if ((LocaleCompare(write_info->magick,"info") != 0) &&
      (write_info->verbose != MagickFalse))
    (void) IdentifyImage(image,stdout,MagickFalse);
  write_info=DestroyImageInfo(write_info);
  return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   R a i s e I m a g e                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  RaiseImage() creates a simulated three-dimensional button-like effect
%  by lightening and darkening the edges of the image.  Members width and
%  height of raise_info define the width of the vertical and horizontal
%  edge of the effect.
%
%  The format of the RaiseImage method is:
%
%      MagickBooleanType RaiseImage(const Image *image,
%        const RectangleInfo *raise_info,const MagickBooleanType raise)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o raise_info: Define the width and height of the raise area.
%
%    o raise: A value other than zero creates a 3-D raise effect,
%      otherwise it has a lowered effect.
%
*/
MagickExport MagickBooleanType RaiseImage(Image *image,
  const RectangleInfo *raise_info,const MagickBooleanType raise)
{
#define AccentuateFactor  ScaleCharToQuantum(135)
#define HighlightFactor  ScaleCharToQuantum(190)
#define ShadowFactor  ScaleCharToQuantum(190)
#define RaiseImageTag  "Raise/Image"
#define TroughFactor  ScaleCharToQuantum(135)

  CacheView
    *image_view;

  ExceptionInfo
    *exception;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  Quantum
    foreground,
    background;

  ssize_t
    y;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(raise_info != (RectangleInfo *) NULL);
  if ((image->columns <= (raise_info->width << 1)) ||
      (image->rows <= (raise_info->height << 1)))
    ThrowBinaryException(OptionError,"ImageSizeMustExceedBevelWidth",
      image->filename);
  foreground=QuantumRange;
  background=(Quantum) 0;
  if (raise == MagickFalse)
    {
      foreground=(Quantum) 0;
      background=QuantumRange;
    }
  if (SetImageStorageClass(image,DirectClass) == MagickFalse)
    return(MagickFalse);
  /*
    Raise image.
  */
  status=MagickTrue;
  progress=0;
  exception=(&image->exception);
  image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,1,1)
#endif
  for (y=0; y < (ssize_t) raise_info->height; y++)
  {
    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    if (status == MagickFalse)
      continue;
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < y; x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      q++;
    }
    for ( ; x < (ssize_t) (image->columns-y); x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*AccentuateFactor+(MagickRealType) foreground*
        (QuantumRange-AccentuateFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*AccentuateFactor+(MagickRealType) foreground*
        (QuantumRange-AccentuateFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*AccentuateFactor+(MagickRealType) foreground*
        (QuantumRange-AccentuateFactor))));
      q++;
    }
    for ( ; x < (ssize_t) image->columns; x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_RaiseImage)
#endif
        proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,1,1)
#endif
  for (y=(ssize_t) raise_info->height; y < (ssize_t) (image->rows-raise_info->height); y++)
  {
    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    if (status == MagickFalse)
      continue;
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) raise_info->width; x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      q++;
    }
    for ( ; x < (ssize_t) (image->columns-raise_info->width); x++)
      q++;
    for ( ; x < (ssize_t) image->columns; x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_RaiseImage)
#endif
        proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,1,1)
#endif
  for (y=(ssize_t) (image->rows-raise_info->height); y < (ssize_t) image->rows; y++)
  {
    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    if (status == MagickFalse)
      continue;
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) (image->rows-y); x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*HighlightFactor+(MagickRealType) foreground*
        (QuantumRange-HighlightFactor))));
      q++;
    }
    for ( ; x < (ssize_t) (image->columns-(image->rows-y)); x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*TroughFactor+(MagickRealType) background*
        (QuantumRange-TroughFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*TroughFactor+(MagickRealType) background*
        (QuantumRange-TroughFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*TroughFactor+(MagickRealType) background*
        (QuantumRange-TroughFactor))));
      q++;
    }
    for ( ; x < (ssize_t) image->columns; x++)
    {
      SetPixelRed(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelRed(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelGreen(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelGreen(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      SetPixelBlue(q,ClampToQuantum(QuantumScale*((MagickRealType)
        GetPixelBlue(q)*ShadowFactor+(MagickRealType) background*
        (QuantumRange-ShadowFactor))));
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_RaiseImage)
#endif
        proceed=SetImageProgress(image,RaiseImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  image_view=DestroyCacheView(image_view);
  return(status);
}
Example #5
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F l o o d f i l l P a i n t I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FloodfillPaintImage() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.  However,
%  in many cases two colors may differ by a small amount.  The fuzz member of
%  image defines how much tolerance is acceptable to consider two colors as
%  the same.  For example, set fuzz to 10 and the color red at intensities of
%  100 and 102 respectively are now interpreted as the same color for the
%  purposes of the floodfill.
%
%  The format of the FloodfillPaintImage method is:
%
%      MagickBooleanType FloodfillPaintImage(Image *image,
%        const DrawInfo *draw_info,const PixelInfo target,
%        const ssize_t x_offset,const ssize_t y_offset,
%        const MagickBooleanType invert,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o draw_info: the draw info.
%
%    o target: the RGB value of the target color.
%
%    o x_offset,y_offset: the starting location of the operation.
%
%    o invert: paint any pixel that does not match the target color.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType FloodfillPaintImage(Image *image,
  const DrawInfo *draw_info,const PixelInfo *target,const ssize_t x_offset,
  const ssize_t y_offset,const MagickBooleanType invert,
  ExceptionInfo *exception)
{
#define MaxStacksize  131072UL
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  CacheView
    *floodplane_view,
    *image_view;

  Image
    *floodplane_image;

  MagickBooleanType
    skip,
    status;

  MemoryInfo
    *segment_info;

  PixelInfo
    fill_color,
    pixel;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  ssize_t
    offset,
    start,
    x,
    x1,
    x2,
    y;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickSignature);
  if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
    return(MagickFalse);
  if (IsGrayColorspace(image->colorspace) != MagickFalse)
    (void) SetImageColorspace(image,sRGBColorspace,exception);
  if ((image->alpha_trait != BlendPixelTrait) &&
      (draw_info->fill.alpha_trait == BlendPixelTrait))
    (void) SetImageAlpha(image,OpaqueAlpha,exception);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  floodplane_image->alpha_trait=UndefinedPixelTrait;
  floodplane_image->colorspace=GRAYColorspace;
  (void) QueryColorCompliance("#000",AllCompliance,
    &floodplane_image->background_color,exception);
  (void) SetImageBackgroundColor(floodplane_image,exception);
  segment_info=AcquireVirtualMemory(MaxStacksize,sizeof(*segment_stack));
  if (segment_info == (MemoryInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  segment_stack=(SegmentInfo *) GetVirtualMemoryBlob(segment_info);
  /*
    Push initial segment on stack.
  */
  status=MagickTrue;
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetPixelInfo(image,&pixel);
  image_view=AcquireVirtualCacheView(image,exception);
  floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception);
  while (s > segment_stack)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Pop segment off stack.
    */
    s--;
    x1=(ssize_t) s->x1;
    x2=(ssize_t) s->x2;
    offset=(ssize_t) s->y2;
    y=(ssize_t) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception);
    q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      break;
    p+=x1*GetPixelChannels(image);
    q+=x1*GetPixelChannels(floodplane_image);
    for (x=x1; x >= 0; x--)
    {
      if (GetPixelGray(floodplane_image,q) != 0)
        break;
      GetPixelInfoPixel(image,p,&pixel);
      if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
        break;
      SetPixelGray(floodplane_image,QuantumRange,q);
      p-=GetPixelChannels(image);
      q-=GetPixelChannels(floodplane_image);
    }
    if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (ssize_t) image->columns)
            {
              p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1,
                exception);
              q=GetCacheViewAuthenticPixels(floodplane_view,x,y,image->columns-
                x,1,exception);
              if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
                break;
              for ( ; x < (ssize_t) image->columns; x++)
              {
                if (GetPixelGray(floodplane_image,q) != 0)
                  break;
                GetPixelInfoPixel(image,p,&pixel);
                if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
                  break;
                SetPixelGray(floodplane_image,QuantumRange,q);
                p+=GetPixelChannels(image);
                q+=GetPixelChannels(floodplane_image);
              }
              status=SyncCacheViewAuthenticPixels(floodplane_view,exception);
              if (status == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1,
            exception);
          q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1,
            exception);
          if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
            break;
          for ( ; x <= x2; x++)
          {
            if (GetPixelGray(floodplane_image,q) != 0)
              break;
            GetPixelInfoPixel(image,p,&pixel);
            if (IsFuzzyEquivalencePixelInfo(&pixel,target) != invert)
              break;
            p+=GetPixelChannels(image);
            q+=GetPixelChannels(floodplane_image);
          }
        }
      start=x;
    } while (x <= x2);
  }
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Tile fill color onto floodplane.
    */
    p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,exception);
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelGray(floodplane_image,p) != 0)
        {
          (void) GetFillColor(draw_info,x,y,&fill_color,exception);
          SetPixelInfoPixel(image,&fill_color,q);
        }
      p+=GetPixelChannels(floodplane_image);
      q+=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      break;
  }
  floodplane_view=DestroyCacheView(floodplane_view);
  image_view=DestroyCacheView(image_view);
  segment_info=RelinquishVirtualMemory(segment_info);
  floodplane_image=DestroyImage(floodplane_image);
  return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse);
}
Example #6
0
MagickExport MagickBooleanType GradientImage(Image *image,
  const GradientType type,const SpreadMethod method,
  const PixelInfo *start_color,const PixelInfo *stop_color,
  ExceptionInfo *exception)
{
  DrawInfo
    *draw_info;

  GradientInfo
    *gradient;

  MagickBooleanType
    status;

  register ssize_t
    i;

  /*
    Set gradient start-stop end points.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(start_color != (const PixelInfo *) NULL);
  assert(stop_color != (const PixelInfo *) NULL);
  draw_info=AcquireDrawInfo();
  gradient=(&draw_info->gradient);
  gradient->type=type;
  gradient->bounding_box.width=image->columns;
  gradient->bounding_box.height=image->rows;
  gradient->gradient_vector.x2=(double) image->columns-1.0;
  gradient->gradient_vector.y2=(double) image->rows-1.0;
  if ((type == LinearGradient) && (gradient->gradient_vector.y2 != 0.0))
    gradient->gradient_vector.x2=0.0;
  gradient->center.x=(double) gradient->gradient_vector.x2/2.0;
  gradient->center.y=(double) gradient->gradient_vector.y2/2.0;
  gradient->radius=MagickMax(gradient->center.x,gradient->center.y);
  gradient->spread=method;
  /*
    Define the gradient to fill between the stops.
  */
  gradient->number_stops=2;
  gradient->stops=(StopInfo *) AcquireQuantumMemory(gradient->number_stops,
    sizeof(*gradient->stops));
  if (gradient->stops == (StopInfo *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  (void) ResetMagickMemory(gradient->stops,0,gradient->number_stops*
    sizeof(*gradient->stops));
  for (i=0; i < (ssize_t) gradient->number_stops; i++)
    GetPixelInfo(image,&gradient->stops[i].color);
  gradient->stops[0].color=(*start_color);
  gradient->stops[0].offset=0.0;
  gradient->stops[1].color=(*stop_color);
  gradient->stops[1].offset=1.0;
  /*
    Draw a gradient on the image.
  */
  (void) SetImageColorspace(image,start_color->colorspace,exception);
  status=DrawGradientImage(image,draw_info,exception);
  draw_info=DestroyDrawInfo(draw_info);
  return(status);
}
Example #7
0
MagickExport MagickBooleanType SortColormapByIntensity(Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  MagickBooleanType
    status;

  register ssize_t
    i;

  ssize_t
    y;

  unsigned short
    *pixels;

  assert(image != (Image *) NULL);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
  assert(image->signature == MagickSignature);
  if (image->storage_class != PseudoClass)
    return(MagickTrue);
  /*
    Allocate memory for pixel indexes.
  */
  pixels=(unsigned short *) AcquireQuantumMemory((size_t) image->colors,
    sizeof(*pixels));
  if (pixels == (unsigned short *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  /*
    Assign index values to colormap entries.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,1,1)
#endif
  for (i=0; i < (ssize_t) image->colors; i++)
    image->colormap[i].alpha=(double) i;
  /*
    Sort image colormap by decreasing color popularity.
  */
  qsort((void *) image->colormap,(size_t) image->colors,
    sizeof(*image->colormap),IntensityCompare);
  /*
    Update image colormap indexes to sorted colormap order.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status)
#endif
  for (i=0; i < (ssize_t) image->colors; i++)
    pixels[(ssize_t) image->colormap[i].alpha]=(unsigned short) i;
  status=MagickTrue;
  image_view=AcquireAuthenticCacheView(image,exception);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    Quantum
      index;

    register ssize_t
      x;

    register Quantum
      *restrict q;

    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (Quantum *) NULL)
      {
        status=MagickFalse;
        break;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      index=(Quantum) pixels[(ssize_t) GetPixelIndex(image,q)];
      SetPixelIndex(image,index,q);
      SetPixelInfoPixel(image,image->colormap+(ssize_t) index,q);
      q+=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (status == MagickFalse)
      break;
  }
  image_view=DestroyCacheView(image_view);
  pixels=(unsigned short *) RelinquishMagickMemory(pixels);
  return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   P a i n t F l o o d f i l l I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  PaintFloodfill() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.
%  However, in many cases two colors may differ by a small amount.  The
%  fuzz member of image defines how much tolerance is acceptable to
%  consider two colors as the same.  For example, set fuzz to 10 and the
%  color red at intensities of 100 and 102 respectively are now
%  interpreted as the same color for the purposes of the floodfill.
%
%  The format of the PaintFloodfillImage method is:
%
%      MagickBooleanType PaintFloodfillImage(Image *image,
%        const ChannelType channel,const MagickPixelPacket target,
%        const long x_offset,const long y_offset,const DrawInfo *draw_info,
%        const PaintMethod method)
%
%  A description of each parameter follows:
%
%    o image: The image.
%
%    o channel: The channel(s).
%
%    o target: The RGB value of the target color.
%
%    o x_offset,y_offset: The starting location of the operation.
%
%    o draw_info: The draw info.
%
%    o method: Choose either FloodfillMethod or FillToBorderMethod.
%
*/
MagickExport MagickBooleanType PaintFloodfillImage(Image *image,
  const ChannelType channel,const MagickPixelPacket *target,
  const long x_offset,const long y_offset,const DrawInfo *draw_info,
  const PaintMethod method)
{
#define MaxStacksize  (1UL << 15)
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (long) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  Image
    *floodplane_image;

  long
    offset,
    start,
    x1,
    x2,
    y;

  MagickBooleanType
    skip;

  MagickPixelPacket
    fill,
    pixel;

  PixelPacket
    fill_color;

  register const PixelPacket
    *p;

  register IndexPacket
    *indexes;

  register long
    x;

  register PixelPacket
    *q;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickSignature);
  if ((x_offset < 0) || (x_offset >= (long) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (long) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass) == MagickFalse)
    return(MagickFalse);
  if (image->matte == MagickFalse)
    (void) SetImageOpacity(image,OpaqueOpacity);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    &image->exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  (void) SetImageOpacity(floodplane_image,OpaqueOpacity);
  segment_stack=(SegmentInfo *) AcquireQuantumMemory(MaxStacksize,
    sizeof(*segment_stack));
  if (segment_stack == (SegmentInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  /*
    Push initial segment on stack.
  */
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetMagickPixelPacket(image,&fill);
  GetMagickPixelPacket(image,&pixel);
  while (s > segment_stack)
  {
    /*
      Pop segment off stack.
    */
    s--;
    x1=(long) s->x1;
    x2=(long) s->x2;
    offset=(long) s->y2;
    y=(long) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=AcquireImagePixels(image,0,y,(unsigned long) (x1+1),1,&image->exception);
    q=GetImagePixels(floodplane_image,0,y,(unsigned long) (x1+1),1);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetIndexes(image);
    p+=x1;
    q+=x1;
    for (x=x1; x >= 0; x--)
    {
      if (q->opacity == (Quantum) TransparentOpacity)
        break;
      SetMagickPixelPacket(image,p,indexes+x,&pixel);
      if (method == FloodfillMethod)
        {
          if (IsMagickColorSimilar(&pixel,target) == MagickFalse)
            break;
        }
      else
        if (IsMagickColorSimilar(&pixel,target) != MagickFalse)
          break;
      q->opacity=(Quantum) TransparentOpacity;
      p--;
      q--;
    }
    if (SyncImagePixels(floodplane_image) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (long) image->columns)
            {
              p=AcquireImagePixels(image,x,y,image->columns-x,1,
                &image->exception);
              q=GetImagePixels(floodplane_image,x,y,image->columns-x,1);
              if ((p == (const PixelPacket *) NULL) ||
                  (q == (PixelPacket *) NULL))
                break;
              indexes=GetIndexes(image);
              for ( ; x < (long) image->columns; x++)
              {
                if (q->opacity == (Quantum) TransparentOpacity)
                  break;
                SetMagickPixelPacket(image,p,indexes+x,&pixel);
                if (method == FloodfillMethod)
                  {
                    if (IsMagickColorSimilar(&pixel,target) == MagickFalse)
                      break;
                  }
                else
                  if (IsMagickColorSimilar(&pixel,target) != MagickFalse)
                    break;
                q->opacity=(Quantum) TransparentOpacity;
                p++;
                q++;
              }
              if (SyncImagePixels(floodplane_image) == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=AcquireImagePixels(image,x,y,(unsigned long) (x2-x+1),1,
            &image->exception);
          q=GetImagePixels(floodplane_image,x,y,(unsigned long) (x2-x+1),1);
          if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
            break;
          indexes=GetIndexes(image);
          for ( ; x <= x2; x++)
          {
            if (q->opacity == (Quantum) TransparentOpacity)
              break;
            SetMagickPixelPacket(image,p,indexes+x,&pixel);
            if (method == FloodfillMethod)
              {
                if (IsMagickColorSimilar(&pixel,target) != MagickFalse)
                  break;
              }
            else
              if (IsMagickColorSimilar(&pixel,target) == MagickFalse)
                break;
            p++;
            q++;
          }
        }
      start=x;
    } while (x <= x2);
  }
  for (y=0; y < (long) image->rows; y++)
  {
    /*
      Tile fill color onto floodplane.
    */
    p=AcquireImagePixels(floodplane_image,0,y,image->columns,1,
      &image->exception);
    q=GetImagePixels(image,0,y,image->columns,1);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetIndexes(image);
    for (x=0; x < (long) image->columns; x++)
    {
      if (p->opacity != OpaqueOpacity)
        {
          fill_color=GetFillColor(draw_info,x,y);
          SetMagickPixelPacket(image,&fill_color,(IndexPacket *) NULL,&fill);
          if (image->colorspace == CMYKColorspace)
            ConvertRGBToCMYK(&fill);
          if ((channel & RedChannel) != 0)
            q->red=RoundToQuantum(fill.red);
          if ((channel & GreenChannel) != 0)
            q->green=RoundToQuantum(fill.green);
          if ((channel & BlueChannel) != 0)
            q->blue=RoundToQuantum(fill.blue);
          if ((channel & OpacityChannel) != 0)
            q->opacity=RoundToQuantum(fill.opacity);
          if (((channel & IndexChannel) != 0) &&
              (image->colorspace == CMYKColorspace))
            indexes[x]=RoundToQuantum(fill.index);
        }
      p++;
      q++;
    }
    if (SyncImagePixels(image) == MagickFalse)
      break;
  }
  segment_stack=(SegmentInfo *) RelinquishMagickMemory(segment_stack);
  floodplane_image=DestroyImage(floodplane_image);
  return(y == (long) image->rows ? MagickTrue : MagickFalse);
}
Example #9
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   S i g n a t u r e I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SignatureImage() computes a message digest from an image pixel stream with
%  an implementation of the NIST SHA-256 Message Digest algorithm.  This
%  signature uniquely identifies the image and is convenient for determining
%  if an image has been modified or whether two images are identical.
%
%  The format of the SignatureImage method is:
%
%      MagickBooleanType SignatureImage(Image *image)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
*/
MagickExport MagickBooleanType SignatureImage(Image *image)
{
  CacheView
    *image_view;

  char
    *hex_signature;

  ExceptionInfo
    *exception;

  ssize_t
    y;

  QuantumInfo
    *quantum_info;

  QuantumType
    quantum_type;

  register const PixelPacket
    *p;

  SignatureInfo
    *signature_info;

  size_t
    length;

  StringInfo
    *signature;

  unsigned char
    *pixels;

  /*
    Compute image digital signature.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image);
  if (quantum_info == (QuantumInfo *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  quantum_type=RGBQuantum;
  if (image->matte != MagickFalse)
    quantum_type=RGBAQuantum;
  if (image->colorspace == CMYKColorspace)
    {
      quantum_type=CMYKQuantum;
      if (image->matte != MagickFalse)
        quantum_type=CMYKAQuantum;
    }
  signature_info=AcquireSignatureInfo();
  signature=AcquireStringInfo(quantum_info->extent);
  pixels=GetQuantumPixels(quantum_info);
  exception=(&image->exception);
  image_view=AcquireCacheView(image);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const PixelPacket *) NULL)
      break;
    length=ExportQuantumPixels(image,image_view,quantum_info,quantum_type,
      pixels,&image->exception);
    SetStringInfoLength(signature,length);
    SetStringInfoDatum(signature,pixels);
    UpdateSignature(signature_info,signature);
  }
  image_view=DestroyCacheView(image_view);
  quantum_info=DestroyQuantumInfo(quantum_info);
  FinalizeSignature(signature_info);
  hex_signature=StringInfoToHexString(GetSignatureDigest(signature_info));
  (void) DeleteImageProperty(image,"signature");
  (void) SetImageProperty(image,"signature",hex_signature);
  /*
    Free resources.
  */
  hex_signature=DestroyString(hex_signature);
  signature=DestroyStringInfo(signature);
  signature_info=DestroySignatureInfo(signature_info);
  return(MagickTrue);
}
Example #10
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F l o o d f i l l P a i n t I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FloodfillPaintImage() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.
%  However, in many cases two colors may differ by a small amount.  The
%  fuzz member of image defines how much tolerance is acceptable to
%  consider two colors as the same.  For example, set fuzz to 10 and the
%  color red at intensities of 100 and 102 respectively are now
%  interpreted as the same color for the purposes of the floodfill.
%
%  The format of the FloodfillPaintImage method is:
%
%      MagickBooleanType FloodfillPaintImage(Image *image,
%        const ChannelType channel,const DrawInfo *draw_info,
%        const MagickPixelPacket target,const ssize_t x_offset,
%        const ssize_t y_offset,const MagickBooleanType invert)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o channel: the channel(s).
%
%    o draw_info: the draw info.
%
%    o target: the RGB value of the target color.
%
%    o x_offset,y_offset: the starting location of the operation.
%
%    o invert: paint any pixel that does not match the target color.
%
*/
MagickExport MagickBooleanType FloodfillPaintImage(Image *image,
  const ChannelType channel,const DrawInfo *draw_info,
  const MagickPixelPacket *target,const ssize_t x_offset,const ssize_t y_offset,
  const MagickBooleanType invert)
{
#define MaxStacksize  (1UL << 15)
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  CacheView
    *floodplane_view,
    *image_view;

  ExceptionInfo
    *exception;

  Image
    *floodplane_image;

  MagickBooleanType
    skip;

  MagickPixelPacket
    fill,
    pixel;

  PixelPacket
    fill_color;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  ssize_t
    offset,
    start,
    x,
    x1,
    x2,
    y;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickSignature);
  if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass) == MagickFalse)
    return(MagickFalse);
  if (image->matte == MagickFalse)
    (void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,0,0,MagickTrue,&image->exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  (void) SetImageAlphaChannel(floodplane_image,OpaqueAlphaChannel);
  segment_stack=(SegmentInfo *) AcquireQuantumMemory(MaxStacksize,
    sizeof(*segment_stack));
  if (segment_stack == (SegmentInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  /*
    Push initial segment on stack.
  */
  exception=(&image->exception);
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetMagickPixelPacket(image,&fill);
  GetMagickPixelPacket(image,&pixel);
  image_view=AcquireCacheView(image);
  floodplane_view=AcquireCacheView(floodplane_image);
  while (s > segment_stack)
  {
    register const IndexPacket
      *restrict indexes;

    register const PixelPacket
      *restrict p;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    /*
      Pop segment off stack.
    */
    s--;
    x1=(ssize_t) s->x1;
    x2=(ssize_t) s->x2;
    offset=(ssize_t) s->y2;
    y=(ssize_t) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception);
    q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1,
      exception);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetCacheViewVirtualIndexQueue(image_view);
    p+=x1;
    q+=x1;
    for (x=x1; x >= 0; x--)
    {
      if (q->opacity == (Quantum) TransparentOpacity)
        break;
      SetMagickPixelPacket(image,p,indexes+x,&pixel);
      if (IsMagickColorSimilar(&pixel,target) == invert)
        break;
      q->opacity=(Quantum) TransparentOpacity;
      p--;
      q--;
    }
    if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (ssize_t) image->columns)
            {
              p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1,
                exception);
              q=GetCacheViewAuthenticPixels(floodplane_view,x,y,
                image->columns-x,1,exception);
              if ((p == (const PixelPacket *) NULL) ||
                  (q == (PixelPacket *) NULL))
                break;
              indexes=GetCacheViewVirtualIndexQueue(image_view);
              for ( ; x < (ssize_t) image->columns; x++)
              {
                if (q->opacity == (Quantum) TransparentOpacity)
                  break;
                SetMagickPixelPacket(image,p,indexes+x,&pixel);
                if (IsMagickColorSimilar(&pixel,target) == invert)
                  break;
                q->opacity=(Quantum) TransparentOpacity;
                p++;
                q++;
              }
              if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1,
            exception);
          q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1,
            exception);
          if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
            break;
          indexes=GetCacheViewVirtualIndexQueue(image_view);
          for ( ; x <= x2; x++)
          {
            if (q->opacity == (Quantum) TransparentOpacity)
              break;
            SetMagickPixelPacket(image,p,indexes+x,&pixel);
            if (IsMagickColorSimilar(&pixel,target) != invert)
              break;
            p++;
            q++;
          }
        }
      start=x;
    } while (x <= x2);
  }
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const PixelPacket
      *restrict p;

    register IndexPacket
      *restrict indexes;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    /*
      Tile fill color onto floodplane.
    */
    p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,
      exception);
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetCacheViewAuthenticIndexQueue(image_view);
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelOpacity(p) != OpaqueOpacity)
        {
          (void) GetFillColor(draw_info,x,y,&fill_color);
          SetMagickPixelPacket(image,&fill_color,(IndexPacket *) NULL,&fill);
          if (image->colorspace == CMYKColorspace)
            ConvertRGBToCMYK(&fill);
          if ((channel & RedChannel) != 0)
            SetPixelRed(q,ClampToQuantum(fill.red));
          if ((channel & GreenChannel) != 0)
            SetPixelGreen(q,ClampToQuantum(fill.green));
          if ((channel & BlueChannel) != 0)
            SetPixelBlue(q,ClampToQuantum(fill.blue));
          if ((channel & OpacityChannel) != 0)
            SetPixelOpacity(q,ClampToQuantum(fill.opacity));
          if (((channel & IndexChannel) != 0) &&
              (image->colorspace == CMYKColorspace))
            SetPixelIndex(indexes+x,ClampToQuantum(fill.index));
        }
      p++;
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      break;
  }
  floodplane_view=DestroyCacheView(floodplane_view);
  image_view=DestroyCacheView(image_view);
  segment_stack=(SegmentInfo *) RelinquishMagickMemory(segment_stack);
  floodplane_image=DestroyImage(floodplane_image);
  return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse);
}
Example #11
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   H u f f m a n 2 D E n c o d e I m a g e                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Method Huffman2DEncodeImage compresses an image via two-dimensional
%  Huffman-coding.
%
%  The format of the Huffman2DEncodeImage method is:
%
%      unsigned int Huffman2DEncodeImage(const ImageInfo *image_info,
%        Image *image)
%
%  A description of each parameter follows:
%
%    o status:  Method Huffman2DEncodeImage returns True if all the pixels are
%      compressed without error, otherwise False.
%
%    o image_info: The image info..
%
%    o image: The image.
%
*/
static unsigned int Huffman2DEncodeImage(const ImageInfo *image_info,
  Image *image)
{
  char
    filename[MaxTextExtent];

  Image
    *huffman_image;

  ImageInfo
    *clone_info;

  long
    count,
    j;

  register long
    i;

  TIFF
    *tiff;

  uint16
    fillorder;

  unsigned char
    *buffer;

  unsigned int
    status;

  unsigned long
    *byte_count,
    strip_size;

  /*
    Write image as CCITTFax4 TIFF image to a temporary file.
  */
  assert(image_info != (ImageInfo *) NULL);
  assert(image_info->signature == MagickSignature);
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  huffman_image=CloneImage(image,0,0,True,&image->exception);
  if (huffman_image == (Image *) NULL)
    return(False);
  (void) SetImageType(huffman_image,BilevelType);
  if(!AcquireTemporaryFileName(filename))
    {
      DestroyImage(huffman_image);
      ThrowBinaryException(FileOpenError,UnableToCreateTemporaryFile,
        filename);
    }
  FormatString(huffman_image->filename,"tiff:%s",filename);
  clone_info=CloneImageInfo(image_info);
  clone_info->compression=Group4Compression;
  clone_info->type=BilevelType;
  (void) AddDefinitions(clone_info,"tiff:fill-order=msb2lsb",
                        &image->exception);
  status=WriteImage(clone_info,huffman_image);
  DestroyImageInfo(clone_info);
  DestroyImage(huffman_image);
  if (status == False)
    return(False);
  tiff=TIFFOpen(filename,"rb");
  if (tiff == (TIFF *) NULL)
    {
      (void) LiberateTemporaryFile(filename);
      ThrowBinaryException(FileOpenError,UnableToOpenFile,
        image_info->filename)
    }
Example #12
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%  I s I m a g e s E q u a l                                                  %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  IsImagesEqual() measures the difference between colors at each pixel
%  location of two images.  A value other than 0 means the colors match
%  exactly.  Otherwise an error measure is computed by summing over all
%  pixels in an image the distance squared in RGB space between each image
%  pixel and its corresponding pixel in the reconstruct image.  The error
%  measure is assigned to these image members:
%
%    o mean_error_per_pixel:  The mean error for any single pixel in
%      the image.
%
%    o normalized_mean_error:  The normalized mean quantization error for
%      any single pixel in the image.  This distance measure is normalized to
%      a range between 0 and 1.  It is independent of the range of red, green,
%      and blue values in the image.
%
%    o normalized_maximum_error:  The normalized maximum quantization
%      error for any single pixel in the image.  This distance measure is
%      normalized to a range between 0 and 1.  It is independent of the range
%      of red, green, and blue values in your image.
%
%  A small normalized mean square error, accessed as
%  image->normalized_mean_error, suggests the images are very similar in
%  spatial layout and color.
%
%  The format of the IsImagesEqual method is:
%
%      MagickBooleanType IsImagesEqual(Image *image,
%        const Image *reconstruct_image)
%
%  A description of each parameter follows.
%
%    o image: The image.
%
%    o reconstruct_image: The reconstruct image.
%
*/
MagickExport MagickBooleanType IsImagesEqual(Image *image,
  const Image *reconstruct_image)
{
  long
    y;

  MagickBooleanType
    status;

  MagickRealType
    area,
    distance,
    maximum_error,
    mean_error,
    mean_error_per_pixel;

  register const IndexPacket
    *indexes,
    *reconstruct_indexes;

  register const PixelPacket
    *p,
    *q;

  register long
    x;

  ViewInfo
    *image_view,
    *reconstruct_view;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  assert(reconstruct_image != (const Image *) NULL);
  assert(reconstruct_image->signature == MagickSignature);
  if ((reconstruct_image->columns != image->columns) ||
      (reconstruct_image->rows != image->rows))
    ThrowBinaryException(ImageError,"ImageSizeDiffers",image->filename);
  area=0.0;
  maximum_error=0.0;
  mean_error_per_pixel=0.0;
  mean_error=0.0;
  image_view=OpenCacheView(image);
  reconstruct_view=OpenCacheView(reconstruct_image);
  for (y=0; y < (long) image->rows; y++)
  {
    p=AcquireCacheViewPixels(image_view,0,y,image->columns,1,&image->exception);
    q=AcquireCacheViewPixels(reconstruct_view,0,y,reconstruct_image->columns,1,
      &image->exception);
    if ((p == (const PixelPacket *) NULL) || (q == (const PixelPacket *) NULL))
      break;
    indexes=AcquireCacheViewIndexes(image_view);
    reconstruct_indexes=AcquireCacheViewIndexes(reconstruct_view);
    for (x=0; x < (long) image->columns; x++)
    {
      distance=fabs(p->red-(double) q->red);
      mean_error_per_pixel+=distance;
      mean_error+=distance*distance;
      if (distance > maximum_error)
        maximum_error=distance;
      area++;
      distance=fabs(p->green-(double) q->green);
      mean_error_per_pixel+=distance;
      mean_error+=distance*distance;
      if (distance > maximum_error)
        maximum_error=distance;
      area++;
      distance=fabs(p->blue-(double) q->blue);
      mean_error_per_pixel+=distance;
      mean_error+=distance*distance;
      if (distance > maximum_error)
        maximum_error=distance;
      area++;
      distance=fabs(p->opacity-(double) q->opacity);
      mean_error_per_pixel+=distance;
      mean_error+=distance*distance;
      if (distance > maximum_error)
        maximum_error=distance;
      area++;
      if ((image->colorspace == CMYKColorspace) &&
          (reconstruct_image->colorspace == CMYKColorspace))
        {
          distance=fabs(indexes[x]-(double) reconstruct_indexes[x]);
          mean_error_per_pixel+=distance;
          mean_error+=distance*distance;
          if (distance > maximum_error)
            maximum_error=distance;
          area++;
        }
      p++;
      q++;
    }
  }
  reconstruct_view=CloseCacheView(reconstruct_view);
  image_view=CloseCacheView(image_view);
  image->error.mean_error_per_pixel=(double) (mean_error_per_pixel/area);
  image->error.normalized_mean_error=(double) (QuantumScale*QuantumScale*
    mean_error/area);
  image->error.normalized_maximum_error=(double) (QuantumScale*maximum_error);
  status=image->error.mean_error_per_pixel == 0.0 ? MagickTrue : MagickFalse;
  return(status);
}
Example #13
0
MagickExport MagickBooleanType GetImageChannelDistortion(Image *image,
  const Image *reconstruct_image,const ChannelType channel,
  const MetricType metric,double *distortion,ExceptionInfo *exception)
{
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(reconstruct_image != (const Image *) NULL);
  assert(reconstruct_image->signature == MagickSignature);
  assert(distortion != (double *) NULL);
  *distortion=0.0;
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  if ((reconstruct_image->columns != image->columns) ||
      (reconstruct_image->rows != image->rows))
    ThrowBinaryException(ImageError,"ImageSizeDiffers",image->filename);
  /*
    Get image distortion.
  */
  switch (metric)
  {
    case AbsoluteErrorMetric:
    {
      *distortion=(double) GetAbsoluteError(image,reconstruct_image,exception);
      break;
    }
    case MeanAbsoluteErrorMetric:
    {
      *distortion=(double) GetMeanAbsoluteError(image,reconstruct_image,channel,
        exception);
      break;
    }
    case MeanErrorPerPixelMetric:
    {
      *distortion=(double) GetMeanErrorPerPixel(image,reconstruct_image,channel,
        exception);
      break;
    }
    case MeanSquaredErrorMetric:
    {
      *distortion=(double) GetMeanSquaredError(image,reconstruct_image,channel,
        exception);
      break;
    }
    case PeakAbsoluteErrorMetric:
    default:
    {
      *distortion=(double) GetPeakAbsoluteError(image,reconstruct_image,channel,
        exception);
      break;
    }
    case PeakSignalToNoiseRatioMetric:
    {
      *distortion=(double) GetPeakSignalToNoiseRatio(image,reconstruct_image,
        channel,exception);
      break;
    }
    case RootMeanSquaredErrorMetric:
    {
      *distortion=(double) GetRootMeanSquaredError(image,reconstruct_image,
        channel,exception);
      break;
    }
  }
  return(MagickTrue);
}
Example #14
0
static MagickBooleanType load_level(Image *image,XCFDocInfo *inDocInfo,
  XCFLayerInfo *inLayerInfo)
{
  ExceptionInfo
    *exception;

  int
    destLeft = 0,
    destTop = 0;

  Image*
    tile_image;

  MagickBooleanType
    status;

  MagickOffsetType
    saved_pos,
    offset,
    offset2;

  register ssize_t
    i;

  size_t
    width,
    height,
    ntiles,
    ntile_rows,
    ntile_cols,
    tile_image_width,
    tile_image_height;

  /* start reading the data */
  exception=inDocInfo->exception;
  width=ReadBlobMSBLong(image);
  height=ReadBlobMSBLong(image);

  /*
    Read in the first tile offset.  If it is '0', then this tile level is empty
    and we can simply return.
  */
  offset=(MagickOffsetType) ReadBlobMSBLong(image);
  if (offset == 0)
    return(MagickTrue);
  /*
    Initialize the reference for the in-memory tile-compression.
  */
  ntile_rows=(height+TILE_HEIGHT-1)/TILE_HEIGHT;
  ntile_cols=(width+TILE_WIDTH-1)/TILE_WIDTH;
  ntiles=ntile_rows*ntile_cols;
  for (i = 0; i < (ssize_t) ntiles; i++)
  {
    status=MagickFalse;
    if (offset == 0)
      ThrowBinaryException(CorruptImageError,"NotEnoughTiles",image->filename);
    /* save the current position as it is where the
     *  next tile offset is stored.
     */
    saved_pos=TellBlob(image);
    /* read in the offset of the next tile so we can calculate the amount
       of data needed for this tile*/
    offset2=(MagickOffsetType)ReadBlobMSBLong(image);
    /* if the offset is 0 then we need to read in the maximum possible
       allowing for negative compression */
    if (offset2 == 0)
      offset2=(MagickOffsetType) (offset + TILE_WIDTH * TILE_WIDTH * 4* 1.5);
    /* seek to the tile offset */
    offset=SeekBlob(image, offset, SEEK_SET);

      /* allocate the image for the tile
        NOTE: the last tile in a row or column may not be a full tile!
      */
      tile_image_width=(size_t) (destLeft == (int) ntile_cols-1 ?
        (int) width % TILE_WIDTH : TILE_WIDTH);
      if (tile_image_width == 0)
        tile_image_width=TILE_WIDTH;
      tile_image_height = (size_t) (destTop == (int) ntile_rows-1 ?
        (int) height % TILE_HEIGHT : TILE_HEIGHT);
      if (tile_image_height == 0)
        tile_image_height=TILE_HEIGHT;
      tile_image=CloneImage(inLayerInfo->image,tile_image_width,
        tile_image_height,MagickTrue,exception);

      /* read in the tile */
      switch (inDocInfo->compression)
      {
        case COMPRESS_NONE:
          if (load_tile(image,tile_image,inDocInfo,inLayerInfo,(size_t) (offset2-offset)) == 0)
            status=MagickTrue;
          break;
        case COMPRESS_RLE:
          if (load_tile_rle (image,tile_image,inDocInfo,inLayerInfo,
              (int) (offset2-offset)) == 0)
            status=MagickTrue;
          break;
        case COMPRESS_ZLIB:
          ThrowBinaryException(CoderError,"ZipCompressNotSupported",
            image->filename)
        case COMPRESS_FRACTAL:
          ThrowBinaryException(CoderError,"FractalCompressNotSupported",
            image->filename)
      }

      /* composite the tile onto the layer's image, and then destroy it */
      (void) CompositeImage(inLayerInfo->image,CopyCompositeOp,tile_image,
        destLeft * TILE_WIDTH,destTop*TILE_HEIGHT);
      tile_image=DestroyImage(tile_image);

      /* adjust tile position */
      destLeft++;
      if (destLeft >= (int) ntile_cols)
        {
          destLeft = 0;
          destTop++;
        }
      if (status != MagickFalse)
        return(MagickFalse);
      /* restore the saved position so we'll be ready to
       *  read the next offset.
       */
      offset=SeekBlob(image, saved_pos, SEEK_SET);
      /* read in the offset of the next tile */
      offset=(MagickOffsetType) ReadBlobMSBLong(image);
    }
  if (offset != 0)
    ThrowBinaryException(CorruptImageError,"CorruptImage",image->filename)
  return(MagickTrue);
}
Example #15
0
MagickExport MagickBooleanType SortColormapByIntensity(Image *image)
{
  CacheView
    *image_view;

  ExceptionInfo
    *exception;

  MagickBooleanType
    status;

  register ssize_t
    i;

  ssize_t
    y;

  unsigned short
    *pixels;

  assert(image != (Image *) NULL);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
  assert(image->signature == MagickSignature);
  if (image->storage_class != PseudoClass)
    return(MagickTrue);
  /*
    Allocate memory for pixel indexes.
  */
  pixels=(unsigned short *) AcquireQuantumMemory((size_t) image->colors,
    sizeof(*pixels));
  if (pixels == (unsigned short *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  /*
    Assign index values to colormap entries.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
  for (i=0; i < (ssize_t) image->colors; i++)
    image->colormap[i].opacity=(IndexPacket) i;
  /*
    Sort image colormap by decreasing color popularity.
  */
  qsort((void *) image->colormap,(size_t) image->colors,
    sizeof(*image->colormap),IntensityCompare);
  /*
    Update image colormap indexes to sorted colormap order.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(dynamic,4) shared(status)
#endif
  for (i=0; i < (ssize_t) image->colors; i++)
    pixels[(ssize_t) image->colormap[i].opacity]=(unsigned short) i;
  status=MagickTrue;
  exception=(&image->exception);
  image_view=AcquireCacheView(image);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    IndexPacket
      index;

    register ssize_t
      x;

    register IndexPacket
      *restrict indexes;

    register PixelPacket
      *restrict q;

    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    indexes=GetCacheViewAuthenticIndexQueue(image_view);
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      index=(IndexPacket) pixels[(ssize_t) GetIndexPixelComponent(indexes+x)];
      SetIndexPixelComponent(indexes+x,index);
      SetRGBOPixelComponents(q,image->colormap+(ssize_t) index);
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (status == MagickFalse)
      break;
  }
  image_view=DestroyCacheView(image_view);
  pixels=(unsigned short *) RelinquishMagickMemory(pixels);
  return(status);
}
Example #16
0
static MagickBooleanType ReadOneLayer(Image* image,XCFDocInfo* inDocInfo,
  XCFLayerInfo *outLayer, ExceptionInfo *exception )
{
  MagickOffsetType
    offset;

  unsigned int
    foundPropEnd = 0;

  size_t
    hierarchy_offset,
    layer_mask_offset;

  /* clear the block! */
  (void) ResetMagickMemory( outLayer, 0, sizeof( XCFLayerInfo ) );
  /* read in the layer width, height, type and name */
  outLayer->width = ReadBlobMSBLong(image);
  outLayer->height = ReadBlobMSBLong(image);
  outLayer->type = ReadBlobMSBLong(image);
  (void) ReadBlobStringWithLongSize(image, outLayer->name,
    sizeof(outLayer->name),exception);
  /* allocate the image for this layer */
  outLayer->image=CloneImage(image,outLayer->width, outLayer->height,MagickTrue,
     exception);
  if (outLayer->image == (Image *) NULL)
    return MagickFalse;
  /* read the layer properties! */
  foundPropEnd = 0;
  while ( (foundPropEnd == MagickFalse) && (EOFBlob(image) == MagickFalse) ) {
  PropType    prop_type = (PropType) ReadBlobMSBLong(image);
  size_t  prop_size = ReadBlobMSBLong(image);
    switch (prop_type)
    {
    case PROP_END:
      foundPropEnd = 1;
      break;
    case PROP_ACTIVE_LAYER:
      outLayer->active = 1;
      break;
    case PROP_FLOATING_SELECTION:
      outLayer->floating_offset = ReadBlobMSBLong(image);
      break;
    case PROP_OPACITY:
      outLayer->opacity = ReadBlobMSBLong(image);
      break;
    case PROP_VISIBLE:
      outLayer->visible = ReadBlobMSBLong(image);
      break;
    case PROP_LINKED:
      outLayer->linked = ReadBlobMSBLong(image);
      break;
    case PROP_PRESERVE_TRANSPARENCY:
      outLayer->preserve_trans = ReadBlobMSBLong(image);
      break;
    case PROP_APPLY_MASK:
      outLayer->apply_mask = ReadBlobMSBLong(image);
      break;
    case PROP_EDIT_MASK:
      outLayer->edit_mask = ReadBlobMSBLong(image);
      break;
    case PROP_SHOW_MASK:
      outLayer->show_mask = ReadBlobMSBLong(image);
      break;
    case PROP_OFFSETS:
      outLayer->offset_x = (int) ReadBlobMSBLong(image);
      outLayer->offset_y = (int) ReadBlobMSBLong(image);
      break;
    case PROP_MODE:
      outLayer->mode = ReadBlobMSBLong(image);
      break;
    case PROP_TATTOO:
      outLayer->preserve_trans = ReadBlobMSBLong(image);
      break;
     case PROP_PARASITES:
     {
       if (DiscardBlobBytes(image,prop_size) == MagickFalse)
         ThrowFileException(exception,CorruptImageError,
           "UnexpectedEndOfFile",image->filename);

        /*
       ssize_t base = info->cp;
       GimpParasite *p;
       while (info->cp - base < prop_size)
       {
       p = xcf_load_parasite(info);
       gimp_drawable_parasite_attach(GIMP_DRAWABLE(layer), p);
       gimp_parasite_free(p);
       }
       if (info->cp - base != prop_size)
       g_message ("Error detected while loading a layer's parasites");
       */
     }
     break;
    default:
      /* g_message ("unexpected/unknown layer property: %d (skipping)",
         prop_type); */

      {
      int buf[16];
      ssize_t amount;

      /* read over it... */
      while ((prop_size > 0) && (EOFBlob(image) == MagickFalse))
        {
        amount = (ssize_t) MagickMin(16, prop_size);
        amount = ReadBlob(image, (size_t) amount, (unsigned char *) &buf);
        if (!amount)
          ThrowBinaryException(CorruptImageError,"CorruptImage",
            image->filename);
        prop_size -= (size_t) MagickMin(16, (size_t) amount);
        }
      }
      break;
    }
  }

  if (foundPropEnd == MagickFalse)
    return(MagickFalse);
  /* clear the image based on the layer opacity */
  outLayer->image->background_color.opacity=
    ScaleCharToQuantum((unsigned char) (255-outLayer->opacity));    
  (void) SetImageBackgroundColor(outLayer->image);

  /* set the compositing mode */
  outLayer->image->compose = GIMPBlendModeToCompositeOperator( outLayer->mode );
  if ( outLayer->visible == MagickFalse )
    {
      /* BOGUS: should really be separate member var! */
      outLayer->image->compose = NoCompositeOp;
    }

  /* read the hierarchy and layer mask offsets */
  hierarchy_offset = ReadBlobMSBLong(image);
  layer_mask_offset = ReadBlobMSBLong(image);

  /* read in the hierarchy */
  offset=SeekBlob(image, (MagickOffsetType) hierarchy_offset, SEEK_SET);
  if (offset < 0)
    (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError,
      "InvalidImageHeader","`%s'",image->filename);
  if (load_hierarchy (image, inDocInfo, outLayer) == 0)
    return(MagickFalse);

  /* read in the layer mask */
  if (layer_mask_offset != 0)
    {
      offset=SeekBlob(image, (MagickOffsetType) layer_mask_offset, SEEK_SET);

#if 0  /* BOGUS: support layer masks! */
      layer_mask = xcf_load_layer_mask (info, gimage);
      if (layer_mask == 0)
  goto error;

      /* set the offsets of the layer_mask */
      GIMP_DRAWABLE (layer_mask)->offset_x = GIMP_DRAWABLE (layer)->offset_x;
      GIMP_DRAWABLE (layer_mask)->offset_y = GIMP_DRAWABLE (layer)->offset_y;

      gimp_layer_add_mask (layer, layer_mask, MagickFalse);

      layer->mask->apply_mask = apply_mask;
      layer->mask->edit_mask  = edit_mask;
      layer->mask->show_mask  = show_mask;
#endif
  }

  /* attach the floating selection... */
#if 0  /* BOGUS: we may need to read this, even if we don't support it! */
  if (add_floating_sel)
    {
      GimpLayer *floating_sel;

      floating_sel = info->floating_sel;
      floating_sel_attach (floating_sel, GIMP_DRAWABLE (layer));
    }
#endif

  return MagickTrue;
}
Example #17
0
static unsigned int DecodeImage(Image *image,unsigned char *luma,
  unsigned char *chroma1,unsigned char *chroma2)
{
  typedef struct PCDTable
  {
    unsigned int
      length,
      sequence;

    unsigned int
      mask;

    unsigned char
      key;
  } PCDTable;

  long
    count,
    quantum;

  PCDTable
    *pcd_table[3];

  register long
    i,
    j;

  register PCDTable
    *r;

  register unsigned char
    *p,
    *q;

  size_t
    length;

  unsigned char
    *buffer;

  unsigned int
    bits,
    plane,
    pcd_length[3],
    row,
    sum;

  /*
    Initialize Huffman tables.
  */
  assert(image != (const Image *) NULL);
  assert(luma != (unsigned char *) NULL);
  assert(chroma1 != (unsigned char *) NULL);
  assert(chroma2 != (unsigned char *) NULL);
  buffer=MagickAllocateMemory(unsigned char *,0x800);
  if (buffer == (unsigned char *) NULL)
    ThrowBinaryException(ResourceLimitError,MemoryAllocationFailed,
      (char *) NULL);
  sum=0;
  bits=32;
  p=buffer+0x800;
  for (i=0; i < (image->columns > 1536 ? 3 : 1); i++)
  {
    PCDGetBits(8);
    length=(sum & 0xff)+1;
    pcd_table[i]=MagickAllocateMemory(PCDTable *,length*sizeof(PCDTable));
    if (pcd_table[i] == (PCDTable *) NULL)
      {
        MagickFreeMemory(buffer);
        ThrowBinaryException(ResourceLimitError,MemoryAllocationFailed,
          (char *) NULL)
      }
    r=pcd_table[i];
    for (j=0; j < (long) length; j++)
    {
      PCDGetBits(8);
      r->length=(sum & 0xff)+1;
      if (r->length > 16)
        {
          MagickFreeMemory(buffer);
          return(False);
        }
      PCDGetBits(16);
      r->sequence=(sum & 0xffff) << 16;
      PCDGetBits(8);
      r->key=(unsigned char) (sum & 0xff);
      r->mask=(~((((unsigned int) 1) << (32-r->length))-1));
      r++;
    }
    pcd_length[i]=(unsigned int) length;
  }