// Only for debugging...
void print_request_queue(void)
{
    uint8_t i, j;
    bool empty = true;

    for (i = 0; i < REQUEST_BUFFER_SIZE; i++)
    {

        if (request_buffer[i].message_type != MESSAGETYPE_UNUSED)
        {
            UART_PUTF("Request Buffer %u: ", i);
            UART_PUTF4("MessageType %u, PacketCounter %lu, Timeout %u, Retry %u, Data", request_buffer[i].message_type, request_buffer[i].packet_counter, request_buffer[i].timeout, request_buffer[i].retry_count);

            // TODO: only show bytes of real data length
            for (j = 0; j < request_buffer[i].data_bytes; j++)
            {
                UART_PUTF(" %02x", request_buffer[i].data[j]);
            }

            UART_PUTS("\r\n");
        }
    }

    for (i = 0; i < REQUEST_QUEUE_RECEIVERS; i++)
    {
        if (request_queue[i][0] != SLOT_UNUSED)
        {
            empty = false;

            UART_PUTF("Request Queue %u: ", i);
            UART_PUTF("ReceiverID %u, Buffer slots", request_queue[i][0]);

            for (j = 0; j < REQUEST_QUEUE_PACKETS; j++)
            {
                if (request_queue[i][j + 1] == SLOT_UNUSED)
                {
                    UART_PUTS(" -");
                }
                else
                {
                    UART_PUTF(" %u", request_queue[i][j + 1]);
                }
            }

            UART_PUTS("\r\n");
        }
    }

    if (empty)
    {
        UART_PUTS("Request Queue empty");
    }

    UART_PUTS("\r\n");
}
Example #2
0
// Only for debugging...
void print_request_queue(void)
{
	uint8_t i, j;
	bool empty = true;
	
	for (i = 0; i < REQUEST_BUFFER_SIZE; i++)
	{
		
		if (request_buffer[i].command_id != RS_UNUSED)
		{
			UART_PUTF("Request buffer %u: ", i);
			UART_PUTF4("Command ID %u, Packet Counter %lu, Timeout %u, Retry %u, Data", request_buffer[i].command_id, request_buffer[i].packet_counter, request_buffer[i].timeout, request_buffer[i].retry_count);
			
			for (j = 0; j < 5; j++)
			{
				UART_PUTF(" %02x", request_buffer[i].data[j]);
			}
			
			UART_PUTS("\r\n");
		}
	}

	for (i = 0; i < REQUEST_QUEUE_RECEIVERS; i++)
	{
		if (request_queue[i][0] != RS_UNUSED)
		{
			empty = false;
			
			UART_PUTF("Request Queue %u: ", i);
			UART_PUTF("Receiver ID %u, Buffer slots", request_queue[i][0]);
			
			for (j = 0; j < REQUEST_QUEUE_PACKETS; j++)
			{
				if (request_queue[i][j + 1] == RS_UNUSED)
				{
					UART_PUTS(" -");
				}
				else
				{
					UART_PUTF(" %u", request_queue[i][j + 1]);
				}
			}
			
			UART_PUTS("\r\n");
		}
	}

	if (empty)
	{
		UART_PUTS("Request Queue empty");
	}

	UART_PUTS("\r\n");
}
// Prepare message with device info
void prepare_deviceinfo_status(void)
{
	UART_PUTF("Send DeviceInfo: DeviceType %u,", DEVICETYPE_SOILMOISTUREMETER);
	UART_PUTF4(" v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);

	// Set packet content
	pkg_header_init_generic_deviceinfo_status();
	msg_generic_deviceinfo_set_devicetype(DEVICETYPE_SOILMOISTUREMETER);
	msg_generic_deviceinfo_set_versionmajor(VERSION_MAJOR);
	msg_generic_deviceinfo_set_versionminor(VERSION_MINOR);
	msg_generic_deviceinfo_set_versionpatch(VERSION_PATCH);
	msg_generic_deviceinfo_set_versionhash(VERSION_HASH);
}
Example #4
0
void send_version_status(void)
{
	inc_packetcounter();

	UART_PUTF4("Sending Version: v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);
	
	// Set packet content
	pkg_header_init_generic_version_status();
	pkg_header_set_senderid(device_id);
	pkg_header_set_packetcounter(packetcounter);
	msg_generic_version_set_major(VERSION_MAJOR);
	msg_generic_version_set_minor(VERSION_MINOR);
	msg_generic_version_set_patch(VERSION_PATCH);
	msg_generic_version_set_hash(VERSION_HASH);
	pkg_header_calc_crc32();

	rfm12_send_bufx();
}
Example #5
0
int main(void)
{
	uint8_t aes_key_nr;
	uint8_t loop = 0;
	uint8_t loop2 = 0;
	
	// delay 1s to avoid further communication with uart or RFM12 when my programmer resets the MC after 500ms...
	_delay_ms(1000);

	util_init();

	check_eeprom_compatibility(DEVICETYPE_BASESTATION);

	request_queue_init();

	// read packetcounter, increase by cycle and write back
	packetcounter = e2p_generic_get_packetcounter() + PACKET_COUNTER_WRITE_CYCLE;
	e2p_generic_set_packetcounter(packetcounter);

	// read device specific config
	aes_key_count = e2p_basestation_get_aeskeycount();

	device_id = e2p_generic_get_deviceid();

	uart_init();
	UART_PUTS("\r\n");
	UART_PUTF4("smarthomatic Base Station v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);
	UART_PUTS("(c) 2012..2014 Uwe Freese, www.smarthomatic.org\r\n");
	UART_PUTF("Device ID: %u\r\n", device_id);
	UART_PUTF("Packet counter: %lu\r\n", packetcounter);
	UART_PUTF("AES key count: %u\r\n", aes_key_count);
	UART_PUTS("Waiting for incoming data. Press h for help.\r\n\r\n");

	led_blink(500, 500, 3);

	rfm12_init();
	sei();
	
	// ENCODE TEST (Move to unit test some day...)
	/*
	uint8_t testlen = 32;
	uint8_t aes_key_num = 0;
	
	memset(&bufx[0], 0, sizeof(bufx));
	bufx[0] = 0xff;
	bufx[1] = 0xb0;
	bufx[2] = 0xa0;
	bufx[3] = 0x3f;
	bufx[4] = 0x01;
	bufx[5] = 0x70;
	bufx[6] = 0x00;
	bufx[7] = 0x0c;
	bufx[8] = 0xa8;
	bufx[9] = 0x00;
	bufx[10] = 0x20;
	bufx[20] = 0x20;

	eeprom_read_block (aes_key, (uint8_t *)(EEPROM_AESKEYS_BYTE + aes_key_num * 32), 32);
	UART_PUTS("Using AES key ");
	print_bytearray((uint8_t *)aes_key, 32);
	
	UART_PUTS("Before encryption: ");
	print_bytearray(bufx, testlen);
	
	uint8_t aes_byte_count = aes256_encrypt_cbc(bufx, testlen);
	
	UART_PUTF("byte count = %u\r\n", aes_byte_count);
	
	UART_PUTS("After encryption: ");
	print_bytearray(bufx, aes_byte_count);
	
	aes256_decrypt_cbc(bufx, aes_byte_count);
  
	UART_PUTS("After decryption: ");
	print_bytearray(bufx, testlen);
	
	while(1);
	*/

	while (42)
	{
		if (rfm12_rx_status() == STATUS_COMPLETE)
		{
			uint8_t len = rfm12_rx_len();
			
			if ((len == 0) || (len % 16 != 0))
			{
				UART_PUTF("Received garbage (%u bytes not multiple of 16): ", len);
				print_bytearray(bufx, len);
			}
			else // try to decrypt with all keys stored in EEPROM
			{
				bool crcok = false;

				for (aes_key_nr = 0; aes_key_nr < aes_key_count ; aes_key_nr++)
				{
					memcpy(bufx, rfm12_rx_buffer(), len);

					/*if (aes_key_nr == 0)
					{
						UART_PUTS("Before decryption: ");
						print_bytearray(bufx, len);
					}*/
				
					e2p_basestation_get_aeskey(aes_key_nr, aes_key);
					//UART_PUTS("Trying AES key 2 ");
					//print_bytearray((uint8_t *)aes_key, 32);

					aes256_decrypt_cbc(bufx, len);

					//UART_PUTS("Decrypted bytes: ");
					//print_bytearray(bufx, len);
					
					crcok = pkg_header_check_crc32(len);
					
					if (crcok)
					{
						//UART_PUTS("CRC correct, AES key found!\r\n");
						UART_PUTF("Received (AES key %u): ", aes_key_nr);
						print_bytearray(bufx, len);
						
						decode_data(len);
						
						break;
					}
				}
				
				if (!crcok)
				{
					UART_PUTS("Received garbage (CRC wrong after decryption): ");
					memcpy(bufx, rfm12_rx_buffer(), len);
					print_bytearray(bufx, len);
				}
				
				UART_PUTS("\r\n");
			}

			//uart_hexdump((char *)bufcontents, rfm12_rx_len());
			//UART_PUTS("\r\n");

			// tell the implementation that the buffer can be reused for the next data.
			rfm12_rx_clear();
		}

		// send data, if waiting in send buffer
		if (send_data_avail)
		{
			uint8_t i;
			
			// set AES key nr
			aes_key_nr = hex_to_uint8((uint8_t *)cmdbuf, 1);
			//UART_PUTF("AES KEY = %u\r\n", aes_key_nr);

			// init packet buffer
			memset(&bufx[0], 0, sizeof(bufx));

			// set message type
			uint8_t message_type = hex_to_uint8((uint8_t *)cmdbuf, 3);
			pkg_header_set_messagetype(message_type);
			pkg_header_adjust_offset();
			//UART_PUTF("MessageType = %u\r\n", message_type);

			uint8_t string_offset_data = 0;
			
			/*
			UART_PUTS("sKK00RRRRGGMM.............Get\r\n");
			UART_PUTS("sKK01RRRRGGMMDD...........Set\r\n");
			UART_PUTS("sKK02RRRRGGMMDD...........SetGet\r\n");
			UART_PUTS("sKK08GGMMDD...............Status\r\n");
			UART_PUTS("sKK09SSSSPPPPPPEE.........Ack\r\n");
			UART_PUTS("sKK0ASSSSPPPPPPEEGGMMDD...AckStatus\r\n");
			*/
			
			// set header extension fields to the values given as hex string in the user input
			switch (message_type)
			{
				case MESSAGETYPE_GET:
				case MESSAGETYPE_SET:
				case MESSAGETYPE_SETGET:
					pkg_headerext_common_set_receiverid(hex_to_uint16((uint8_t *)cmdbuf, 5));
					pkg_headerext_common_set_messagegroupid(hex_to_uint8((uint8_t *)cmdbuf, 9));
					pkg_headerext_common_set_messageid(hex_to_uint8((uint8_t *)cmdbuf, 11));
					string_offset_data = 12;
					break;
				case MESSAGETYPE_STATUS:
					pkg_headerext_common_set_messagegroupid(hex_to_uint8((uint8_t *)cmdbuf, 5));
					pkg_headerext_common_set_messageid(hex_to_uint8((uint8_t *)cmdbuf, 7));
					string_offset_data = 8;
					break;
				case MESSAGETYPE_ACK:
					pkg_headerext_common_set_acksenderid(hex_to_uint16((uint8_t *)cmdbuf, 5));
					pkg_headerext_common_set_ackpacketcounter(hex_to_uint24((uint8_t *)cmdbuf, 9));
					pkg_headerext_common_set_error(hex_to_uint8((uint8_t *)cmdbuf, 15));
					// fallthrough!
				case MESSAGETYPE_ACKSTATUS:
					pkg_headerext_common_set_messagegroupid(hex_to_uint8((uint8_t *)cmdbuf, 17));
					pkg_headerext_common_set_messageid(hex_to_uint8((uint8_t *)cmdbuf, 19));
					string_offset_data = 20;
					break;
			}

			uint8_t data_len_raw = 0;

			// copy message data, which exists in all packets except in Get and Ack packets
			if ((message_type != MESSAGETYPE_GET) && (message_type != MESSAGETYPE_ACK))
			{
				uint8_t data_len_raw = (strlen(cmdbuf) - 1 - string_offset_data) / 2;
				//UART_PUTF("Data bytes = %u\r\n", data_len_raw);
				
				uint8_t start = __HEADEROFFSETBITS / 8;
				uint8_t shift = __HEADEROFFSETBITS % 8;

				// copy message data, using __HEADEROFFSETBITS value and string_offset_data
				for (i = 0; i < data_len_raw; i++)
				{
					uint8_t val = hex_to_uint8((uint8_t *)cmdbuf, string_offset_data + 2 * i + 1);
					array_write_UIntValue(start + i, shift, 8, val, bufx);
				}
			}
			
			// round packet length to x * 16 bytes
			uint8_t packet_len = ((uint16_t)__HEADEROFFSETBITS + (uint16_t)data_len_raw * 8) / 8;
			packet_len = ((packet_len - 1) / 16 + 1) * 16;

			// send packet which doesn't require an acknowledge immediately
			if ((message_type != MESSAGETYPE_GET) && (message_type != MESSAGETYPE_SET) && (message_type != MESSAGETYPE_SETGET))
			{
				send_packet(aes_key_nr, packet_len);
			}
			else // enqueue request (don't send immediately)
			{
				// header size = 9 bytes!
				if (queue_request(pkg_headerext_common_get_receiverid(), message_type, aes_key_nr, bufx + 9, packet_len - 9))
				{
					UART_PUTF("Request added to queue (%u bytes packet).\r\n", packet_len);
				}
				else
				{
					UART_PUTS("Warning! Request queue full. Packet will not be sent.\r\n");
				}

				print_request_queue();
			}
		
			// clear cmdbuf to receive more input from UART
			send_data_avail = false;

			rfm12_tick();

			led_blink(200, 0, 1);
		}

		// flash LED every second to show the device is alive
		if (loop == 50)
		{
			led_blink(10, 10, 1);
			
			loop = 0;
			
			request_t* request = find_request_to_repeat(packetcounter + 1);

			if (request != 0) // if request to repeat was found in queue
			{
				UART_PUTS("Repeating request.\r\n");					
				send_packet((*request).aes_key, (*request).data_bytes + 9); // header size = 9 bytes!
				print_request_queue();
			}
			
			// Auto-send something for debugging purposes...
			if (loop2 == 50)
			{
				//strcpy(cmdbuf, "s000102828300");
				//send_data_avail = true;
				
				loop2 = 0;
			}
			else
			{
				loop2++;
			}
		}
		else
		{
			_delay_ms(20);
		}

		rfm12_tick();

		loop++;
		
		process_rxbuf();
		
		if (uart_timeout > 0)
		{
			uart_timeout--;
			
			if (uart_timeout == 0)
			{
				UART_PUTS("*** UART user timeout. Input was ignored. ***\r\n");
			}
		}
	}
	
	// never called
	// aes256_done(&aes_ctx);
}
int main(void)
{
	uint8_t i;
	uint16_t wakeup_sec;
	bool send;

	// delay 1s to avoid further communication with uart or RFM12 when my programmer resets the MC after 500ms...
	_delay_ms(1000);

	util_init();
	
	check_eeprom_compatibility(DEVICETYPE_SOILMOISTUREMETER);
	
	// configure power pin for 74HC14D as output
	sbi(TRIGGERPWR_DDR, TRIGGERPWR_PIN);

	// read packetcounter, increase by cycle and write back
	packetcounter = e2p_generic_get_packetcounter() + PACKET_COUNTER_WRITE_CYCLE;
	e2p_generic_set_packetcounter(packetcounter);

	// read device id
	device_id = e2p_generic_get_deviceid();

	dry_thr = e2p_soilmoisturemeter_get_drythreshold();
	if (dry_thr == 0) // set default value if never initialized
	{
		dry_thr = 40000;
	}

	counter_min = e2p_soilmoisturemeter_get_minval();
	if (counter_min == 0) // set default value if never initialized
	{
		counter_min = 30000;
	}

	avgIntInit = e2p_soilmoisturemeter_get_averagingintervalinit();
	avgInt = e2p_soilmoisturemeter_get_averaginginterval();
	smoothing_percentage = e2p_soilmoisturemeter_get_smoothingpercentage();

	osccal_init();

	uart_init();

	UART_PUTS ("\r\n");
	UART_PUTF4("smarthomatic Soil Moisture Meter v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);
	UART_PUTS("(c) 2014..2015 Uwe Freese, www.smarthomatic.org\r\n");
	osccal_info();
	UART_PUTF ("DeviceID: %u\r\n", device_id);
	UART_PUTF ("PacketCounter: %lu\r\n", packetcounter);
	UART_PUTF ("AveragingInterval for initialization: %u\r\n", avgIntInit);
	UART_PUTF ("AveragingInterval for normal operation: %u\r\n", avgInt);
	UART_PUTF ("Dry threshold: %u\r\n", dry_thr);
	UART_PUTF ("Min value: %u\r\n", counter_min);
	UART_PUTF ("Smoothing percentage: %u\r\n", smoothing_percentage);

	adc_init();

	// init AES key
	e2p_generic_get_aeskey(aes_key);

	// set pull-up for BUTTON_DDR
	sbi(BUTTON_PORT, BUTTON_PIN);
	_delay_ms(10);

	// set DIDR for all ADC channels and AINs, switch off digital input buffers to reduce ADC noise and to save power
	DIDR0 = 63;
	DIDR1 = 3;
	
	// If button pressed at start up, go to sleep for idle power consumption test.
	// Don't communicate with RFM12, which may not have been connected yet.
	if (BUTTON)
	{
		led_blink(50, 50, 20);
		power_down(true);
	}

	led_blink(500, 500, 3);

	rfm12_init();
	wakeup_sec = init_wakeup();

	// init interrupt for button (falling edge)
	sbi(EICRA, ISC11);
	sbi(EIMSK, INT1);
	
	sei();

	for (i = 0; i < SEND_STATUS_TIMES_AT_STARTUP; i++)
	{
		prepare_deviceinfo_status();
		send_prepared_message();
		_delay_ms(800);
		prepare_battery_status();
		send_prepared_message();
		_delay_ms(800);
	}

	while (42)
	{
		if (BUTTON)
		{
			led_blink(100, 0, 1);
			UART_PUTS("Button pressed!\r\n");
			
			uint8_t cnt = 0;
			
			while (BUTTON && (cnt < 250))
			{
				_delay_ms(10);
				cnt++;
			}
			
			if (cnt == 250)
			{
				UART_PUTS("Long press -> initiate measure mode!\r\n");
				
				while (BUTTON)
				{
					led_blink(100, 100, 1);
				}

				init_mode = true;
				wupCnt = 0;
				counter_meas = 0;
				init_wakeup(); // to usually shorter value
				
				UART_PUTS("Button released!\r\n");
				_delay_ms(10);
			}
		}
		else
		{
			send = true;

			//UART_PUTF("version_status_cycle = %u\r\n", version_status_cycle);
		
			if (!measure_humidity())
			{
				if (battery_status_cycle > 0)
					battery_status_cycle--;

				if (version_status_cycle > 0)
					version_status_cycle--;

				if (version_status_cycle == 0)
				{
					version_status_cycle = SEND_VERSION_STATUS_CYCLE;
					prepare_deviceinfo_status();
				}
				else if (battery_status_cycle == 0)
				{
					battery_status_cycle = SEND_BATTERY_STATUS_CYCLE;
					prepare_battery_status();
				}
				else
				{
					send = false;
				}
			}

			if (send)
			{
				send_prepared_message();
			}
		}
		
		power_down(true);
	}
	
	// never called
	// aes256_done(&aes_ctx);
}
// Measure humidity, calculate relative value in permill and return it.
// Return true, if humidity was sent.
bool measure_humidity(void)
{
	bool res = false;
	uint16_t cnt;
	
	switch_schmitt_trigger(true);
	_delay_ms(10);

	// make PD5 an input and disable pull-ups
	DDRD &= ~(1 << 5);
	PORTD &= ~(1 << 5);

	// clear counter
	TCNT1 = 0x00;

	// configure counter and use external clock source, rising edge
	TCCR1A = 0x00;
	TCCR1B |= (1 << CS12) | (1 << CS11) | (1 << CS10);

	_delay_ms(100);

	//cnt = (TCNT1H << 8) | TCNT1L;
	cnt = TCNT1;

	TCCR1B = 0x00; // turn counter off
	
	switch_schmitt_trigger(false);
	
	counter_meas += cnt;
	wupCnt++;
	
	UART_PUTF4("Init mode %u, Measurement %u/%u, Counter %u\r\n",
		init_mode, wupCnt, init_mode ? avgIntInit : avgInt , cnt);

	if ((init_mode && (wupCnt == avgIntInit)) || (!init_mode && (wupCnt == avgInt)))
	{
		uint32_t avg = init_mode ? counter_meas / avgIntInit : counter_meas / avgInt;
		
		if (init_mode)
		{
			UART_PUTF("Init: Save avg %u as dry threshold.\r\n", avg);
			dry_thr = avg;
			counter_min = dry_thr - 1;
			init_mode = false;
			init_wakeup(); // to normal value
			e2p_soilmoisturemeter_set_drythreshold(dry_thr);
		}
		else
		{
			int32_t result;
		
			if (avg < counter_min)
			{
				counter_min = avg;
				UART_PUTF("New min: %lu, ", counter_min);
			}
		
			if (avg > dry_thr)
			{
				result = 0;
			}
			else
			{
				result = (dry_thr - avg) * 1000 / (dry_thr - counter_min);
			}
		
			UART_PUTF("Avg: %u, ", avg);
			UART_PUTF("Result: %lu permill\r\n", result);
			
			// Don't change reported value if it changes within a window of
			// some percent.
			if (reported_result == 0)
			{
				reported_result = result;
			}
			else
			{
				if (direction_up)
				{
					if (result > reported_result)
					{
						reported_result = result;
					}
					else if (result < reported_result - smoothing_percentage * 10)
					{
						reported_result = result;
						direction_up = false;
					}
				}
				else // direction down
				{
					if (result < reported_result)
					{
						reported_result = result;
					}
					else if (result > reported_result + smoothing_percentage * 10)
					{
						reported_result = result;
						direction_up = true;
					}
				}
			}
			
			prepare_humidity_status((uint16_t)reported_result);
			//prepare_humidity_status_RAW_DBG((uint16_t)reported_result, (int16_t) MIN((int32_t)avg, 30000)); // for debugging only
			res = true;
		}

		wupCnt = 0;
		counter_meas = 0;
	}
	
	_delay_ms(10);
	return res;
}
Example #8
0
// Process all bytes in the rxbuffer. This function should be called in the main loop.
// It can be interrupted by a UART RX interrupt, so additional bytes can be added into the ringbuffer while this function is running.
void process_rxbuf(void)
{
	while (rxbuf_count > 0)
	{
		char input;
		
		// get one char from the ringbuffer and reduce it's size without interruption through the UART ISR
		cli();
		input = rxbuf[rxbuf_startpos];
		rxbuf_startpos = (rxbuf_startpos + 1) % RXBUF_LENGTH;
		rxbuf_count--;
		sei();
		
		// process character	
		if (uart_timeout == 0)
		{
			bytes_to_read = bytes_pos = 0;
		}
		
		if (bytes_to_read > bytes_pos)
		{
			if (input == 13)
			{
				bytes_to_read = bytes_pos;
			}
			else if (((input >= 48) && (input <= 57)) || ((input >= 65) && (input <= 70)) || ((input >= 97) && (input <= 102)))
			{
				cmdbuf[bytes_pos] = input;
				bytes_pos++;
				UART_PUTF4("*** Received character %c (ASCII %u) = value 0x%x, %u bytes to go. ***\r\n", input, input, hex_to_byte(input), bytes_to_read - bytes_pos);
			}
			else
			{
				UART_PUTS("*** Illegal character. Use only 0..9, a..f, A..F. ***\r\n");
			}
			
			if (bytes_pos == bytes_to_read)
			{
				cmdbuf[bytes_pos] = '\0';
				process_cmd();
			}
		}	
		else if (input == 'h')
		{
			UART_PUTS("*** Help ***\r\n");
			UART_PUTS("h.........this help\r\n");
			UART_PUTS("rAA.......read EEPROM at hex address AA\r\n");
			UART_PUTS("wAAXX.....write EEPROM at hex address AA to hex value XX\r\n");
			UART_PUTS("x.........enable writing to EEPROM\r\n");
			UART_PUTS("z.........disable writing to EEPROM\r\n");
			UART_PUTS("sKKCCXX...Use AES key KK to send a packet with command ID CC and data XX (0..22 bytes).\r\n");
			UART_PUTS("          End data with ENTER. Packet number and CRC are automatically added.\r\n");
		}
		else if (input == 'x')
		{
			enable_write_eeprom = true;
			UART_PUTS("*** Writing to EEPROM is now ENABLED. ***\r\n");
		}
		else if (input == 'z')
		{
			enable_write_eeprom = false;
			UART_PUTS("*** Writing to EEPROM is now DISABLED. ***\r\n");
		}
		else if (input == 'r')
		{
			UART_PUTS("*** Read from EEPROM. Enter address (2 characters). ***\r\n");
			cmdbuf[0] = 'r';
			bytes_to_read = 3;
			bytes_pos = 1;
		}
		else if (input == 'w')
		{
			UART_PUTS("*** Write to EEPROM. Enter address and data (4 characters). ***\r\n");
			cmdbuf[0] = 'w';
			bytes_to_read = 5;
			bytes_pos = 1;
		}
		else if (input == 's')
		{
			UART_PUTS("*** Enter AES key nr, command ID and data in hex format to send, finish with ENTER. ***\r\n");
			cmdbuf[0] = 's';
			bytes_to_read = 49; // 's' + 2 characters for key nr + 2 characters for command ID + 2*22 characters for data
			bytes_pos = 1;
		}
		else
		{
			UART_PUTS("*** Character ignored. Press h for help. ***\r\n");
		}
		
		// enable user timeout if waiting for further input
		uart_timeout = bytes_to_read == bytes_pos ? 0 : 255;
	}
}
Example #9
0
int main(void)
{
	uint16_t send_status_timeout = 25;
	uint32_t pos;
	uint8_t button_state = 0;
	uint8_t manual_dim_direction = 0;

	// delay 1s to avoid further communication with uart or RFM12 when my programmer resets the MC after 500ms...
	_delay_ms(1000);

	util_init();
	
	check_eeprom_compatibility(DEVICETYPE_DIMMER);
	
	// read packetcounter, increase by cycle and write back
	packetcounter = e2p_generic_get_packetcounter() + PACKET_COUNTER_WRITE_CYCLE;
	e2p_generic_set_packetcounter(packetcounter);

	// read device id
	device_id = e2p_generic_get_deviceid();

	// pwm translation table is not used if first byte is 0xFF
	use_pwm_translation = (0xFF != eeprom_read_UIntValue8(EEPROM_BRIGHTNESSTRANSLATIONTABLE_BYTE,
		EEPROM_BRIGHTNESSTRANSLATIONTABLE_BIT, 8, 0, 0xFF));
	
	// TODO: read (saved) dimmer state from before the eventual powerloss
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		uint16_t u16 = eeprom_read_word((uint16_t*)EEPROM_POS_SWITCH_STATE + i * 2);
		switch_state[i] = (uint8_t)(u16 & 0b1);
		switch_timeout[i] = u16 >> 1;
	}*/
	
	// read last received station packetcounter
	station_packetcounter = e2p_dimmer_get_basestationpacketcounter();
	
	led_blink(500, 500, 3);

	osccal_init();

	uart_init();
	UART_PUTS ("\r\n");
	UART_PUTF4("smarthomatic Dimmer v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);
	UART_PUTS("(c) 2013..2014 Uwe Freese, www.smarthomatic.org\r\n");
	osccal_info();
	UART_PUTF ("DeviceID: %u\r\n", device_id);
	UART_PUTF ("PacketCounter: %lu\r\n", packetcounter);
	UART_PUTF ("Use PWM translation table: %u\r\n", use_pwm_translation);
	UART_PUTF ("Last received base station PacketCounter: %u\r\n\r\n", station_packetcounter);

	// init AES key
	eeprom_read_block (aes_key, (uint8_t *)EEPROM_AESKEY_BYTE, 32);

	rfm12_init();
	PWM_init();
	io_init();
	setPWMDutyCyclePercent(0);
	timer0_init();

	// DEMO to measure the voltages of different PWM settings to calculate the pwm_lookup table
	/*while (42)
	{
		uint16_t i;
		
		for (i = 0; i <= 1024; i = i + 100)
		{
			UART_PUTF ("PWM value OCR1A: %u\r\n", i);
			OCR1A = i;
			led_blink(500, 6500, 1);
		}
	}*/
	
	// DEMO 0..100..0%, using the pwm_lookup table and the translation table in EEPROM.
	/*while (42)
	{
		float i;
		
		for (i = 0; i <= 100; i = i + 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
		
		for (i = 99.95; i > 0; i = i - 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
	}*/

	// set initial switch state
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		switchRelais(i, switch_state[i]);
	}*/

	sei();

	// DEMO 30s
	/*animation_length = 30;
	animation_length = (uint32_t)((float)animation_length * 1000 / ANIMATION_CYCLE_MS);
	start_brightness = 0;
	end_brightness = 255;
	animation_position = 0;*/
	
	while (42)
	{
		if (rfm12_rx_status() == STATUS_COMPLETE)
		{
			uint8_t len = rfm12_rx_len();
			
			if ((len == 0) || (len % 16 != 0))
			{
				UART_PUTF("Received garbage (%u bytes not multiple of 16): ", len);
				print_bytearray(bufx, len);
			}
			else // try to decrypt with all keys stored in EEPROM
			{
				memcpy(bufx, rfm12_rx_buffer(), len);
				
				UART_PUTS("Before decryption: ");
				print_bytearray(bufx, len);
					
				aes256_decrypt_cbc(bufx, len);

				UART_PUTS("Decrypted bytes: ");
				print_bytearray(bufx, len);
				
				if (!pkg_header_check_crc32(len))
				{
					UART_PUTS("Received garbage (CRC wrong after decryption).\r\n");
				}
				else
				{
					process_packet(len);
				}		
			}

			// tell the implementation that the buffer can be reused for the next data.
			rfm12_rx_clear();
		}

		_delay_ms(ANIMATION_UPDATE_MS);
		
		// React on button press.
		// - abort animation
		// - switch off, when brightness > 0
		// - switch on otherwise
		if (!(BUTTON_PORT & (1 << BUTTON_PIN))) // button press
		{
			if (button_state == 0)
			{
				UART_PUTS("Button pressed\r\n");
				animation_length = 0;
				animation_position = 0;
			}
			
			if (button_state < 5)
			{
				button_state++;
			}
			else // manual dimming
			{
				if (manual_dim_direction) // UP
				{
					if (current_brightness < 100)
					{
						current_brightness = (uint8_t)current_brightness / 2 * 2 + 2;
						setPWMDutyCyclePercent(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming DOWN\r\n");
						manual_dim_direction = 0;
					}
				}
				else // DOWN
				{
					if (current_brightness > 0)
					{
						current_brightness = (((uint8_t)current_brightness - 1) / 2) * 2;
						setPWMDutyCyclePercent(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming UP\r\n");
						manual_dim_direction = 1;
					}
				}
				
			}
		}
		else if (button_state && (BUTTON_PORT & (1 << BUTTON_PIN))) // button release
		{
			UART_PUTS("Button released\r\n");
			
			if (button_state < 5) // short button press
			{
				if (current_brightness > 0)
				{
					UART_PUTS(" -> 0%\r\n");
					setPWMDutyCyclePercent(0);
				}
				else
				{
					UART_PUTS(" -> 100%\r\n");
					setPWMDutyCyclePercent(100);
				}
			}
			else
			{
				// reverse dim direction
				manual_dim_direction = !manual_dim_direction;
			}
			
			button_state = 0;
		}
				
		// update brightness according animation_position, updated by timer0
		if (animation_length > 0)
		{
			pos = animation_position; // copy value to avoid that it changes in between by timer interrupt
			UART_PUTF2("%lu/%lu, ", pos, animation_length);
			
			if (pos == animation_length)
			{
				UART_PUTF("END Brightness %u%%, ", end_brightness);
				setPWMDutyCyclePercent((float)end_brightness);
				animation_length = 0;
				animation_position = 0;
			}
			else
			{			
				float brightness = (start_brightness + ((float)end_brightness - start_brightness) * pos / animation_length);
				UART_PUTF("Br.%u%%, ", (uint32_t)(brightness));
				setPWMDutyCyclePercent(brightness);
			}
		}			
		
		// send status from time to time
		if (send_status_timeout == 0)
		{
			send_status_timeout = SEND_STATUS_EVERY_SEC * (1000 / ANIMATION_UPDATE_MS);
			send_dimmer_status();
			led_blink(200, 0, 1);
		}
		else if (version_status_cycle >= SEND_VERSION_STATUS_CYCLE)
		{
			version_status_cycle = 0;
			send_version_status();
			led_blink(200, 0, 1);
		}

		rfm12_tick();
		send_status_timeout--;
		checkSwitchOff();
	}
	
	// never called
	// aes256_done(&aes_ctx);
}