void CRUDupElimLogScanner::Fetch()
{
	// Start the cyclic shift ...
	pPrevRec_ = pCurrentRec_;

	if (TRUE == pResultSet_->Next())
	{
		// End the cyclic shift ...
		pCurrentRec_ = inputBuf_[inputBufIndex_];
		// ... and retrieve the new data 
		pCurrentRec_->Build(*pResultSet_, ckStartColumn_);

		// Move the pointer inside the buffer
		inputBufIndex_ = (inputBufIndex_+1) % IB_SIZE;

		if (NULL == pPrevRec_
			||
			pCurrentRec_->GetCKTuple() != pPrevRec_->GetCKTuple())
		{
			// A new distinct CK value has been encountered
			ckTag_++;
		}
		pCurrentRec_->SetCKTag(ckTag_);

		UpdateStatistics();
	}
	else
	{
		// End of input reached !
		isEntireDeltaScanned_ = TRUE;

		pCurrentStmt_->Close();
	}
}
Example #2
0
void CChangedDlg::OnBnClickedShowUnmodified()
{
	UpdateData();
	m_FileListCtrl.Show(UpdateShowFlags());
	m_regAddBeforeCommit = m_bShowUnversioned;
	UpdateStatistics();
}
Example #3
0
  void Game::Run()
  {
    sf::Clock clock;
    sf::Time timeSinceLastUpdate = sf::Time::Zero;
    while (m_window.isOpen())
    {
      sf::Time elapsedTime = clock.restart();
      timeSinceLastUpdate += elapsedTime;
      while (timeSinceLastUpdate > TimePerFrame)
      {
        timeSinceLastUpdate -= TimePerFrame;

        ProcessInput();
        Update(TimePerFrame);

        // Check inside this loop, because stack might be empty before Update() call.
        if (m_stateStack.IsEmpty())
        {
          std::cout << "In Game: Stack empty, closing window.\n";
          m_window.close();
        }
      }

      UpdateStatistics(elapsedTime);
      Render();
    }
  }
Example #4
0
int CBaseParser::ReadAmrData(ONDEMANDPARAM *pOndemand, BYTE *szBuffer, int nRetryState, int nSuccState)
{
    int readLen=0, nError;

    pOndemand->stat.nCount ++;
    pOndemand->stat.nSendCount ++;
    pOndemand->stat.nSend += sizeof(ENDI_AMRREAD_PAYLOAD) + sizeof(CODI_HEADER) + sizeof(EUI64) + sizeof(CODI_TAIL);
    gettimeofday((struct timeval *)&pOndemand->tmSend, NULL);
    nError = endiReadAmr(pOndemand->endi, (BYTE *)szBuffer, &readLen, GetReplyTimeout());
    if (nError != CODIERR_NOERROR)
    {
        pOndemand->stat.nError ++;
        if (pOndemand->nRetry < GetRetryCount())				// 3회 이상 연속 실패시 종료
        {
            pOndemand->nRetry++;
            return nRetryState;
        }else {
            pOndemand->nRetry = 0;
            return STATE_ERROR;   
        }
    }

    pOndemand->nRetry = 0;
    UpdateStatistics(pOndemand, (BYTE *)szBuffer, readLen);
    pOndemand->stat.nCount ++;
    pOndemand->stat.nRecvCount ++;

    return nSuccState;
}
Example #5
0
void Frame::RunQuery(const wxString& query, bool empty_results)
{
  wxStopWatch sw;

  const wxString query_lower = query.Lower();

  // Query functions supported by ODBC
  // $SQLTables, $SQLColumns, etc.
  // $SQLTables $1:'%'
  // allow you to get database schema.
  if (query_lower.StartsWith("select") ||
      query_lower.StartsWith("describe") ||
      query_lower.StartsWith("show") ||
      query_lower.StartsWith("explain") ||
      query_lower.StartsWith("$sql"))
  {
    long rpc;

    if (m_Results->IsShown())
    {
      rpc = m_otl.Query(query, m_Results, m_Stopped, empty_results);
    }
    else
    {
      rpc = m_otl.Query(query, m_Shell, m_Stopped);
    }

    sw.Pause();

    UpdateStatistics(sw.Time(), rpc);
  }
  else
  {
    const auto rpc = m_otl.Query(query);

    sw.Pause();

    UpdateStatistics(sw.Time(), rpc);
  }

  m_Shell->DocumentEnd();
}
Example #6
0
UINT CChangedDlg::ChangedStatusThread()
{
	InterlockedExchange(&m_bBlock, TRUE);

	g_Git.RefreshGitIndex();

	m_bCanceled = false;
	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_CANCEL)));
	DialogEnableWindow(IDC_REFRESH, FALSE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, FALSE);
	DialogEnableWindow(IDC_SHOWUNMODIFIED, FALSE);
	DialogEnableWindow(IDC_SHOWIGNORED, FALSE);
	DialogEnableWindow(IDC_SHOWUSERPROPS, FALSE);
	CString temp;
	m_FileListCtrl.Clear();
	if (!m_FileListCtrl.GetStatus(&m_pathList, m_bRemote, m_bShowIgnored != FALSE, m_bShowUnversioned != FALSE))
	{
		if (!m_FileListCtrl.GetLastErrorMessage().IsEmpty())
			m_FileListCtrl.SetEmptyString(m_FileListCtrl.GetLastErrorMessage());
	}
	unsigned int dwShow = GITSLC_SHOWVERSIONEDBUTNORMALANDEXTERNALS | GITSLC_SHOWLOCKS | GITSLC_SHOWSWITCHED | GITSLC_SHOWINCHANGELIST;
	dwShow |= m_bShowUnversioned ? GITSLC_SHOWUNVERSIONED : 0;
	dwShow |= m_iShowUnmodified ? GITSLC_SHOWNORMAL : 0;
	dwShow |= m_bShowIgnored ? GITSLC_SHOWIGNORED : 0;
	dwShow |= m_bShowExternals ? GITSLC_SHOWEXTERNAL | GITSLC_SHOWINEXTERNALS | GITSLC_SHOWEXTERNALFROMDIFFERENTREPO : 0;
	m_FileListCtrl.Show(dwShow);
	UpdateStatistics();

	bool bIsDirectory = false;

	CTGitPath commonDir = m_FileListCtrl.GetCommonDirectory(false);
	if (m_pathList.GetCount() == 1)
	{
		if (m_pathList[0].IsEmpty())
			CAppUtils::SetWindowTitle(m_hWnd, g_Git.m_CurrentDir, m_sTitle);
		else
			CAppUtils::SetWindowTitle(m_hWnd, (g_Git.m_CurrentDir + _T("\\") + m_pathList[0].GetWinPathString()).TrimRight('\\'), m_sTitle);
		bIsDirectory = m_pathList[0].IsDirectory() || m_pathList[0].IsEmpty(); // if it is empty it is g_Git.m_CurrentDir which is a directory
	}
	else
		CAppUtils::SetWindowTitle(m_hWnd, commonDir.GetWinPathString(), m_sTitle);

	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_OK)));
	DialogEnableWindow(IDC_REFRESH, TRUE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, bIsDirectory);
	//DialogEnableWindow(IDC_SHOWUNMODIFIED, bIsDirectory);
	DialogEnableWindow(IDC_SHOWIGNORED, bIsDirectory);
	DialogEnableWindow(IDC_SHOWUSERPROPS, TRUE);
	InterlockedExchange(&m_bBlock, FALSE);
	// revert the remote flag back to the default
	m_bRemote = !!(DWORD)CRegDWORD(_T("Software\\TortoiseGit\\CheckRepo"), FALSE);
	RefreshCursor();
	return 0;
}
Example #7
0
void CChangedDlg::OnBnClickedShowlocalchangesignored()
{
	UpdateData();
	if (m_FileListCtrl.m_FileLoaded & CGitStatusListCtrl::FILELIST_LOCALCHANGESIGNORED)
		m_FileListCtrl.Show(UpdateShowFlags());
	else if (m_bShowLocalChangesIgnored)
	{
		if (!AfxBeginThread(ChangedStatusThreadEntry, this))
			CMessageBox::Show(GetSafeHwnd(), IDS_ERR_THREADSTARTFAILED, IDS_APPNAME, MB_OK | MB_ICONERROR);
	}
	UpdateStatistics();
}
Example #8
0
void CChangedDlg::OnBnClickedShowignored()
{
	UpdateData();
	if (m_FileListCtrl.m_FileLoaded & CGitStatusListCtrl::FILELIST_IGNORE)
		m_FileListCtrl.Show(UpdateShowFlags());
	else if (m_bShowIgnored)
	{
		if (AfxBeginThread(ChangedStatusThreadEntry, this) == nullptr)
			CMessageBox::Show(NULL, IDS_ERR_THREADSTARTFAILED, IDS_APPNAME, MB_OK | MB_ICONERROR);
	}
	UpdateStatistics();
}
bool StatisticalProfiler::IsDone() const
{
    if (mSamples.size() >= mLastCalculationSize + mSamplesPerCalculation)
        UpdateStatistics();

    if (mSamples.size() >= mMaxSamples)
        return true;

    if (mSamples.size() < mMinSamples)
        return false;

    return mStdDev <= mTargetStdDev * mMean;
}
Example #10
0
UINT CChangedDlg::ChangedStatusThread()
{
	InterlockedExchange(&m_bBlock, TRUE);
	m_bCanceled = false;
	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_CANCEL)));
	DialogEnableWindow(IDC_REFRESH, FALSE);
	DialogEnableWindow(IDC_CHECKREPO, FALSE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, FALSE);
	DialogEnableWindow(IDC_SHOWUNMODIFIED, FALSE);
	DialogEnableWindow(IDC_SHOWIGNORED, FALSE);
    DialogEnableWindow(IDC_SHOWUSERPROPS, FALSE);
	CString temp;
	if (!m_FileListCtrl.GetStatus(&m_pathList, m_bRemote, m_bShowIgnored != FALSE, m_bShowUnversioned,m_bShowUserProps != FALSE))
	{
		if (!m_FileListCtrl.GetLastErrorMessage().IsEmpty())
			m_FileListCtrl.SetEmptyString(m_FileListCtrl.GetLastErrorMessage());
	}
	DWORD dwShow = SVNSLC_SHOWVERSIONEDBUTNORMALANDEXTERNALS | SVNSLC_SHOWLOCKS | SVNSLC_SHOWSWITCHED | SVNSLC_SHOWINCHANGELIST;
	dwShow |= m_bShowUnversioned ? SVNSLC_SHOWUNVERSIONED : 0;
	dwShow |= m_iShowUnmodified ? SVNSLC_SHOWNORMAL : 0;
	dwShow |= m_bShowIgnored ? SVNSLC_SHOWIGNORED : 0;
	dwShow |= m_bShowExternals ? SVNSLC_SHOWEXTERNAL | SVNSLC_SHOWINEXTERNALS | SVNSLC_SHOWEXTERNALFROMDIFFERENTREPO : 0;
	m_FileListCtrl.Show(dwShow);
	UpdateStatistics();


	CTGitPath commonDir = m_FileListCtrl.GetCommonDirectory(false);
	bool bSingleFile = ((m_pathList.GetCount()==1)&&(!m_pathList[0].IsDirectory()));
	if (bSingleFile)
		SetWindowText(m_sTitle + _T(" - ") + m_pathList[0].GetWinPathString());
	else
		SetWindowText(m_sTitle + _T(" - ") + commonDir.GetWinPathString());

	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_OK)));
	DialogEnableWindow(IDC_REFRESH, TRUE);
	DialogEnableWindow(IDC_CHECKREPO, TRUE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, !bSingleFile);
	DialogEnableWindow(IDC_SHOWUNMODIFIED, !bSingleFile);
	DialogEnableWindow(IDC_SHOWIGNORED, !bSingleFile);
    DialogEnableWindow(IDC_SHOWUSERPROPS, TRUE);
	InterlockedExchange(&m_bBlock, FALSE);
	// revert the remote flag back to the default
	m_bRemote = !!(DWORD)CRegDWORD(_T("Software\\TortoiseGit\\CheckRepo"), FALSE);
	RefreshCursor();
	return 0;
}
Example #11
0
UINT CChangedDlg::ChangedStatusThread()
{
	InterlockedExchange(&m_bBlock, TRUE);

	g_Git.RefreshGitIndex();

	m_bCanceled = false;
	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_CANCEL)));
	DialogEnableWindow(IDC_REFRESH, FALSE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, FALSE);
	DialogEnableWindow(IDC_SHOWUNMODIFIED, FALSE);
	DialogEnableWindow(IDC_SHOWIGNORED, FALSE);
	DialogEnableWindow(IDC_SHOWLOCALCHANGESIGNORED, FALSE);
	CString temp;
	m_FileListCtrl.Clear();
	if (!m_FileListCtrl.GetStatus(m_bWholeProject ? nullptr : &m_pathList, m_bRemote, m_bShowIgnored != FALSE, m_bShowUnversioned != FALSE, m_bShowLocalChangesIgnored != FALSE))
	{
		if (!m_FileListCtrl.GetLastErrorMessage().IsEmpty())
			m_FileListCtrl.SetEmptyString(m_FileListCtrl.GetLastErrorMessage());
	}
	unsigned int dwShow = GITSLC_SHOWVERSIONEDBUTNORMALANDEXTERNALS | GITSLC_SHOWLOCKS | GITSLC_SHOWSWITCHED | GITSLC_SHOWINCHANGELIST;
	dwShow |= m_bShowUnversioned ? GITSLC_SHOWUNVERSIONED : 0;
	dwShow |= m_iShowUnmodified ? GITSLC_SHOWNORMAL : 0;
	dwShow |= m_bShowIgnored ? GITSLC_SHOWIGNORED : 0;
	dwShow |= m_bShowLocalChangesIgnored ? GITSLC_SHOWASSUMEVALID | GITSLC_SHOWSKIPWORKTREE : 0;
	m_FileListCtrl.Show(dwShow);
	UpdateStatistics();

	SetDlgTitle();
	bool bIsDirectory = false;
	if (m_pathList.GetCount() == 1)
		bIsDirectory = m_pathList[0].IsDirectory() || m_pathList[0].IsEmpty(); // if it is empty it is g_Git.m_CurrentDir which is a directory

	SetDlgItemText(IDOK, CString(MAKEINTRESOURCE(IDS_MSGBOX_OK)));
	DialogEnableWindow(IDC_REFRESH, TRUE);
	DialogEnableWindow(IDC_SHOWUNVERSIONED, bIsDirectory);
	//DialogEnableWindow(IDC_SHOWUNMODIFIED, bIsDirectory);
	DialogEnableWindow(IDC_SHOWIGNORED, bIsDirectory);
	DialogEnableWindow(IDC_SHOWLOCALCHANGESIGNORED, TRUE);
	InterlockedExchange(&m_bBlock, FALSE);
	// revert the remote flag back to the default
	m_bRemote = !!(DWORD)CRegDWORD(_T("Software\\TortoiseGit\\CheckRepo"), FALSE);
	RefreshCursor();
	return 0;
}
Example #12
0
void CChangedDlg::OnBnClickedShowunversioned()
{
	UpdateData();
	m_regAddBeforeCommit = m_bShowUnversioned;
	if(m_FileListCtrl.m_FileLoaded & CGitStatusListCtrl::FILELIST_UNVER)
	{
		m_FileListCtrl.Show(UpdateShowFlags());
	}
	else
	{
		if(m_bShowUnversioned)
		{
			if (!AfxBeginThread(ChangedStatusThreadEntry, this))
			{
				CMessageBox::Show(GetSafeHwnd(), IDS_ERR_THREADSTARTFAILED, IDS_APPNAME, MB_OK | MB_ICONERROR);
			}
		}
	}
	UpdateStatistics();
}
Example #13
0
		void Game::Run()
		{
			sf::Clock clock;
			sf::Time timeSinceLastUpdate = sf::Time::Zero;

			while (mWindow.isOpen())
			{
				sf::Time elapsedTime = clock.restart();
				timeSinceLastUpdate += elapsedTime;
				while (timeSinceLastUpdate > TimePerFrame)
				{
					timeSinceLastUpdate -= TimePerFrame;

					ProcessEvents();
					Update(TimePerFrame);
				}

				UpdateStatistics(elapsedTime);
				Render();
			}
		}
Example #14
0
int CBaseParser::ReadRomMap(WORD addr, int len, ONDEMANDPARAM *pOndemand, BYTE *szBuffer, 
        int nRetryState, int nSuccState)
{
    int readLen=0, nError;

    pOndemand->stat.nCount ++;
    pOndemand->stat.nSendCount ++;
    pOndemand->stat.nSend += sizeof(ENDI_ROMREAD_PAYLOAD) + sizeof(CODI_HEADER) + sizeof(EUI64) + sizeof(CODI_TAIL);
    gettimeofday((struct timeval *)&pOndemand->tmSend, NULL);
    nError = endiReadRom(pOndemand->endi, addr, len, (BYTE *)szBuffer, &readLen, GetReplyTimeout());
    if (nError != CODIERR_NOERROR)
    {
        pOndemand->stat.nError ++;
        if (pOndemand->nRetry < GetRetryCount())				// 3회 이상 연속 실패시 종료
        {
            pOndemand->nRetry++;
            return nRetryState;
        }else {
            pOndemand->nRetry = 0;
            return STATE_ERROR;   
        }
    }

    if (readLen != len)
    {
        XDEBUG(ANSI_COLOR_RED " ****** PARSER: Invalid ROM DATA Length ******\r\n" ANSI_NORMAL);
        XDEBUG(ANSI_COLOR_RED " Request Size = %d, Read Size = %d\r\n" ANSI_NORMAL, len, readLen);
        pOndemand->nRetry++;
        return nRetryState;
    }

    pOndemand->nRetry = 0;
    UpdateStatistics(pOndemand, (BYTE *)szBuffer, readLen);
    pOndemand->stat.nCount ++;
    pOndemand->stat.nRecvCount ++;

    return nSuccState;
}
double StatisticalProfiler::GetMedian() const
{
    UpdateStatistics();
    return mMedian;
}
double StatisticalProfiler::GetMax() const
{
    UpdateStatistics();
    return mMax;
}
Example #17
0
float32 b2ParticleGroup::GetMass() const
{
	UpdateStatistics();
	return m_mass;
}
int
SolveSubproblem(int CurrentSubproblem, int Subproblems,
                GainType * GlobalBestCost)
{
    Node *FirstNodeSaved = FirstNode, *N, *Next, *Last = 0;
    GainType OptimumSaved = Optimum, Cost, Improvement, GlobalCost;
    double LastTime, Time, ExcessSaved = Excess;
    int NewDimension = 0, OldDimension = 0, Number, i, InitialTourEdges = 0,
        AscentCandidatesSaved = AscentCandidates,
        InitialPeriodSaved = InitialPeriod, MaxTrialsSaved = MaxTrials;

    BestCost = PLUS_INFINITY;
    FirstNode = 0;
    N = FirstNodeSaved;
    do {
        if (N->Subproblem == CurrentSubproblem) {
            if (SubproblemsCompressed &&
                (((N->SubproblemPred == N->SubBestPred ||
                   FixedOrCommon(N, N->SubproblemPred) ||
                   (N->SubBestPred &&
                    (N->FixedTo1Saved == N->SubBestPred ||
                     N->FixedTo2Saved == N->SubBestPred))) &&
                  (N->SubproblemSuc == N->SubBestSuc ||
                   FixedOrCommon(N, N->SubproblemSuc) ||
                   (N->SubBestSuc &&
                    (N->FixedTo1Saved == N->SubBestSuc ||
                     N->FixedTo2Saved == N->SubBestSuc)))) ||
                 ((N->SubproblemPred == N->SubBestSuc ||
                   FixedOrCommon(N, N->SubproblemPred) ||
                   (N->SubBestSuc &&
                    (N->FixedTo1Saved == N->SubBestSuc ||
                     N->FixedTo2Saved == N->SubBestSuc))) &&
                  (N->SubproblemSuc == N->SubBestPred ||
                   FixedOrCommon(N, N->SubproblemSuc) ||
                   (N->SubBestPred &&
                    (N->FixedTo1Saved == N->SubBestPred ||
                     N->FixedTo2Saved == N->SubBestPred))))))
                N->Subproblem = -CurrentSubproblem;
            else {
                if (!FirstNode)
                    FirstNode = N;
                NewDimension++;
            }
            N->Head = N->Tail = 0;
            if (N->SubBestSuc)
                OldDimension++;
        }
        N->SubBestPred = N->SubBestSuc = 0;
        N->FixedTo1Saved = N->FixedTo1;
        N->FixedTo2Saved = N->FixedTo2;
    } while ((N = N->SubproblemSuc) != FirstNodeSaved);
    if ((Number = CurrentSubproblem % Subproblems) == 0)
        Number = Subproblems;
    if (NewDimension <= 3 || NewDimension == OldDimension) {
        if (TraceLevel >= 1 && NewDimension <= 3)
            printff
                ("\nSubproblem %d of %d: Dimension = %d (too small)\n",
                 Number, Subproblems, NewDimension);
        FirstNode = FirstNodeSaved;
        return 0;
    }
    if (AscentCandidates > NewDimension - 1)
        AscentCandidates = NewDimension - 1;
    if (InitialPeriod < 0) {
        InitialPeriod = NewDimension / 2;
        if (InitialPeriod < 100)
            InitialPeriod = 100;
    }
    if (Excess < 0)
        Excess = 1.0 / NewDimension;
    if (MaxTrials == -1)
        MaxTrials = NewDimension;
    N = FirstNode;
    do {
        Next = N->SubproblemSuc;
        if (N->Subproblem == CurrentSubproblem) {
            N->Pred = N->Suc = N;
            if (N != FirstNode)
                Follow(N, Last);
            Last = N;
        } else if (Next->Subproblem == CurrentSubproblem
                   && !Fixed(Last, Next)) {
            if (!Last->FixedTo1
                || Last->FixedTo1->Subproblem != CurrentSubproblem)
                Last->FixedTo1 = Next;
            else
                Last->FixedTo2 = Next;
            if (!Next->FixedTo1
                || Next->FixedTo1->Subproblem != CurrentSubproblem)
                Next->FixedTo1 = Last;
            else
                Next->FixedTo2 = Last;
            if (C == C_EXPLICIT) {
                if (Last->Id > Next->Id)
                    Last->C[Next->Id] = 0;
                else
                    Next->C[Last->Id] = 0;
            }
        }
    }
    while ((N = Next) != FirstNode);

    Dimension = NewDimension;
    AllocateSegments();
    InitializeStatistics();
    if (CacheSig)
        for (i = 0; i <= CacheMask; i++)
            CacheSig[i] = 0;
    OptimumSaved = Optimum;
    Optimum = 0;
    N = FirstNode;
    do {
        if (N->SubproblemSuc == N->InitialSuc ||
            N->SubproblemPred == N->InitialSuc)
            InitialTourEdges++;
        if (!Fixed(N, N->Suc))
            Optimum += Distance(N, N->Suc);
        if (N->FixedTo1 && N->Subproblem != N->FixedTo1->Subproblem)
            eprintf("Illegal fixed edge (%d,%d)", N->Id, N->FixedTo1->Id);
        if (N->FixedTo2 && N->Subproblem != N->FixedTo2->Subproblem)
            eprintf("Illegal fixed edge (%d,%d)", N->Id, N->FixedTo2->Id);
    }
    while ((N = N->Suc) != FirstNode);
    if (TraceLevel >= 1)
        printff
            ("\nSubproblem %d of %d: Dimension = %d, Upper bound = "
             GainFormat "\n", Number, Subproblems, Dimension, Optimum);
    FreeCandidateSets();
    CreateCandidateSet();

    for (Run = 1; Run <= Runs; Run++) {
        LastTime = GetTime();
        Cost = Norm != 0 ? FindTour() : Optimum;
        /* Merge with subproblem tour */
        Last = 0;
        N = FirstNode;
        do {
            if (N->Subproblem == CurrentSubproblem) {
                if (Last)
                    Last->Next = N;
                Last = N;
            }
        }
        while ((N = N->SubproblemSuc) != FirstNode);
        Last->Next = FirstNode;
        Cost = MergeWithTour();
        if (MaxPopulationSize > 1) {
            /* Genetic algorithm */
            for (i = 0; i < PopulationSize; i++)
                Cost = MergeTourWithIndividual(i);
            if (!HasFitness(Cost)) {
                if (PopulationSize < MaxPopulationSize) {
                    AddToPopulation(Cost);
                    if (TraceLevel >= 1)
                        PrintPopulation();
                } else if (Cost < Fitness[PopulationSize - 1]) {
                    ReplaceIndividualWithTour(PopulationSize - 1, Cost);
                    if (TraceLevel >= 1)
                        PrintPopulation();
                }
            }
        }
        if (Cost < BestCost) {
            N = FirstNode;
            do {
                N->SubBestPred = N->Pred;
                N->SubBestSuc = N->Suc;
            } while ((N = N->Suc) != FirstNode);
            BestCost = Cost;
        }
        if (Cost < Optimum || (Cost != Optimum && OutputTourFileName)) {
            Improvement = Optimum - Cost;
            if (Improvement > 0) {
                BestCost = GlobalCost = *GlobalBestCost -= Improvement;
                Optimum = Cost;
            } else
                GlobalCost = *GlobalBestCost - Improvement;
            N = FirstNode;
            do
                N->Mark = 0;
            while ((N = N->SubproblemSuc) != FirstNode);
            do {
                N->Mark = N;
                if (!N->SubproblemSuc->Mark &&
                    (N->Subproblem != CurrentSubproblem ||
                     N->SubproblemSuc->Subproblem != CurrentSubproblem))
                    N->BestSuc = N->SubproblemSuc;
                else if (!N->SubproblemPred->Mark &&
                         (N->Subproblem != CurrentSubproblem ||
                          N->SubproblemPred->Subproblem !=
                          CurrentSubproblem))
                    N->BestSuc = N->SubproblemPred;
                else if (!N->Suc->Mark)
                    N->BestSuc = N->Suc;
                else if (!N->Pred->Mark)
                    N->BestSuc = N->Pred;
                else
                    N->BestSuc = FirstNode;
            }
            while ((N = N->BestSuc) != FirstNode);
            Dimension = DimensionSaved;
            i = 0;
            do {
                if (ProblemType != ATSP)
                    BetterTour[++i] = N->Id;
                else if (N->Id <= Dimension / 2) {
                    i++;
                    if (N->BestSuc->Id != N->Id + Dimension / 2)
                        BetterTour[i] = N->Id;
                    else
                        BetterTour[Dimension / 2 - i + 1] = N->Id;
                }
            }
            while ((N = N->BestSuc) != FirstNode);
            BetterTour[0] =
                BetterTour[ProblemType !=
                           ATSP ? Dimension : Dimension / 2];
            WriteTour(OutputTourFileName, BetterTour, GlobalCost);
            if (Improvement > 0) {
                do
                    if (N->Subproblem != CurrentSubproblem)
                        break;
                while ((N = N->SubproblemPred) != FirstNode);
                if (N->SubproblemSuc == N->BestSuc) {
                    N = FirstNode;
                    do {
                        N->BestSuc->SubproblemPred = N;
                        N = N->SubproblemSuc = N->BestSuc;
                    }
                    while (N != FirstNode);
                } else {
                    N = FirstNode;
                    do
                        (N->SubproblemPred = N->BestSuc)->SubproblemSuc =
                            N;
                    while ((N = N->BestSuc) != FirstNode);
                }
                RecordBestTour();
                WriteTour(TourFileName, BestTour, GlobalCost);
            }
            Dimension = NewDimension;
            if (TraceLevel >= 1) {
                printff("*** %d: Cost = " GainFormat, Number, GlobalCost);
                if (OptimumSaved != MINUS_INFINITY && OptimumSaved != 0)
                    printff(", Gap = %04f%%",
                            100.0 * (GlobalCost -
                                     OptimumSaved) / OptimumSaved);
                printff(", Time = %0.2f sec. %s\n",
                        fabs(GetTime() - LastTime),
                        GlobalCost < OptimumSaved ? "<" : GlobalCost ==
                        OptimumSaved ? "=" : "");
            }
        }

        Time = fabs(GetTime() - LastTime);
        UpdateStatistics(Cost, Time);
        if (TraceLevel >= 1 && Cost != PLUS_INFINITY)
            printff("Run %d: Cost = " GainFormat ", Time = %0.2f sec.\n\n",
                    Run, Cost, Time);
        if (PopulationSize >= 2 &&
            (PopulationSize == MaxPopulationSize
             || Run >= 2 * MaxPopulationSize) && Run < Runs) {
            Node *N;
            int Parent1, Parent2;
            Parent1 = LinearSelection(PopulationSize, 1.25);
            do
                Parent2 = LinearSelection(PopulationSize, 1.25);
            while (Parent1 == Parent2);
            ApplyCrossover(Parent1, Parent2);
            N = FirstNode;
            do {
                int d = C(N, N->Suc);
                AddCandidate(N, N->Suc, d, INT_MAX);
                AddCandidate(N->Suc, N, d, INT_MAX);
                N = N->InitialSuc = N->Suc;
            }
            while (N != FirstNode);
        }
        SRandom(++Seed);
        if (Norm == 0)
            break;
    }

    if (TraceLevel >= 1)
        PrintStatistics();

    if (C == C_EXPLICIT) {
        N = FirstNode;
        do {
            for (i = 1; i < N->Id; i++) {
                N->C[i] -= N->Pi + NodeSet[i].Pi;
                N->C[i] /= Precision;
            }
            if (N->FixedTo1 && N->FixedTo1 != N->FixedTo1Saved) {
                if (N->Id > N->FixedTo1->Id)
                    N->C[N->FixedTo1->Id] = Distance(N, N->FixedTo1);
                else
                    N->FixedTo1->C[N->Id] = Distance(N, N->FixedTo1);
            }
            if (N->FixedTo2 && N->FixedTo2 != N->FixedTo2Saved) {
                if (N->Id > N->FixedTo2->Id)
                    N->C[N->FixedTo2->Id] = Distance(N, N->FixedTo2);
                else
                    N->FixedTo2->C[N->Id] = Distance(N, N->FixedTo2);
            }
        }
        while ((N = N->Suc) != FirstNode);
    }

    FreeSegments();
    FreeCandidateSets();
    FreePopulation();
    if (InitialTourEdges == Dimension) {
        do
            N->InitialSuc = N->SubproblemSuc;
        while ((N = N->SubproblemSuc) != FirstNode);
    } else {
        do
            N->InitialSuc = 0;
        while ((N = N->SubproblemSuc) != FirstNode);
    }
    Dimension = ProblemType != ATSP ? DimensionSaved : 2 * DimensionSaved;
    N = FirstNode = FirstNodeSaved;
    do {
        N->Suc = N->BestSuc = N->SubproblemSuc;
        N->Suc->Pred = N;
        Next = N->FixedTo1;
        N->FixedTo1 = N->FixedTo1Saved;
        N->FixedTo1Saved = Next;
        Next = N->FixedTo2;
        N->FixedTo2 = N->FixedTo2Saved;
        N->FixedTo2Saved = Next;
    }
    while ((N = N->Suc) != FirstNode);
    Optimum = OptimumSaved;
    Excess = ExcessSaved;
    AscentCandidates = AscentCandidatesSaved;
    InitialPeriod = InitialPeriodSaved;
    MaxTrials = MaxTrialsSaved;
    return 1;
}
Example #19
0
float32 b2ParticleGroup::GetInertia() const
{
	UpdateStatistics();
	return m_inertia;
}
Example #20
0
b2Vec2 b2ParticleGroup::GetCenter() const
{
	UpdateStatistics();
	return m_center;
}
QgsMssqlProvider::QgsMssqlProvider( QString uri )
    : QgsVectorDataProvider( uri )
    , mCrs()
    , mWkbType( QGis::WKBUnknown )
{
  QgsDataSourceURI anUri = QgsDataSourceURI( uri );

  if ( !anUri.srid().isEmpty() )
    mSRId = anUri.srid().toInt();
  else
    mSRId = -1;

  mWkbType = anUri.wkbType();

  mValid = true;

  mUseWkb = false;
  mSkipFailures = false;

  mUseEstimatedMetadata = anUri.useEstimatedMetadata();

  mSqlWhereClause = anUri.sql();

  mDatabase = GetDatabase( anUri.service(), anUri.host(), anUri.database(), anUri.username(), anUri.password() );

  if ( !OpenDatabase( mDatabase ) )
  {
    setLastError( mDatabase.lastError( ).text( ) );
    mValid = false;
    return;
  }

  // Create a query for default connection
  mQuery = QSqlQuery( mDatabase );

  // Database successfully opened; we can now issue SQL commands.
  if ( !anUri.schema().isEmpty() )
    mSchemaName = anUri.schema();
  else
    mSchemaName = "dbo";

  if ( !anUri.table().isEmpty() )
  {
    // the layer name has been specified
    mTableName = anUri.table();
    QStringList sl = mTableName.split( '.' );
    if ( sl.length() == 2 )
    {
      mSchemaName = sl[0];
      mTableName = sl[1];
    }
    mTables = QStringList( mTableName );
  }
  else
  {
    // Get a list of table
    mTables = mDatabase.tables( QSql::Tables );
    if ( mTables.count() > 0 )
      mTableName = mTables[0];
    else
      mValid = false;
  }
  if ( mValid )
  {
    if ( !anUri.keyColumn().isEmpty() )
      mFidColName = anUri.keyColumn();

    if ( !anUri.geometryColumn().isEmpty() )
      mGeometryColName = anUri.geometryColumn();

    if ( mSRId < 0 || mWkbType == QGis::WKBUnknown || mGeometryColName.isEmpty() )
      loadMetadata();
    loadFields();
    UpdateStatistics( mUseEstimatedMetadata );

    if ( mGeometryColName.isEmpty() )
    {
      // table contains no geometries
      mWkbType = QGis::WKBNoGeometry;
      mSRId = 0;
    }
  }

  //fill type names into sets
  mNativeTypes
  // integer types
  << QgsVectorDataProvider::NativeType( tr( "8 Bytes integer" ), "bigint", QVariant::Int )
  << QgsVectorDataProvider::NativeType( tr( "4 Bytes integer" ), "int", QVariant::Int )
  << QgsVectorDataProvider::NativeType( tr( "2 Bytes integer" ), "smallint", QVariant::Int )
  << QgsVectorDataProvider::NativeType( tr( "1 Bytes integer" ), "tinyint", QVariant::Int )
  << QgsVectorDataProvider::NativeType( tr( "Decimal number (numeric)" ), "numeric", QVariant::Double, 1, 20, 0, 20 )
  << QgsVectorDataProvider::NativeType( tr( "Decimal number (decimal)" ), "decimal", QVariant::Double, 1, 20, 0, 20 )

  // floating point
  << QgsVectorDataProvider::NativeType( tr( "Decimal number (real)" ), "real", QVariant::Double )
  << QgsVectorDataProvider::NativeType( tr( "Decimal number (double)" ), "float", QVariant::Double )

  // string types
  << QgsVectorDataProvider::NativeType( tr( "Text, fixed length (char)" ), "char", QVariant::String, 1, 255 )
  << QgsVectorDataProvider::NativeType( tr( "Text, limited variable length (varchar)" ), "varchar", QVariant::String, 1, 255 )
  << QgsVectorDataProvider::NativeType( tr( "Text, fixed length unicode (nchar)" ), "nchar", QVariant::String, 1, 255 )
  << QgsVectorDataProvider::NativeType( tr( "Text, limited variable length unicode (nvarchar)" ), "nvarchar", QVariant::String, 1, 255 )
  << QgsVectorDataProvider::NativeType( tr( "Text, unlimited length (text)" ), "text", QVariant::String )
  << QgsVectorDataProvider::NativeType( tr( "Text, unlimited length unicode (ntext)" ), "text", QVariant::String )
  ;
}
Example #22
0
LRESULT CChangedDlg::OnSVNStatusListCtrlItemCountChanged(WPARAM, LPARAM)
{
	UpdateStatistics();
	return 0;
}
Example #23
0
void QmitkImageStatisticsView::IgnoreZerosCheckboxClicked(  )
{
  UpdateStatistics();
}
Example #24
0
b2Vec2 b2ParticleGroup::GetLinearVelocity() const
{
	UpdateStatistics();
	return m_linearVelocity;
}
Example #25
0
float32 b2ParticleGroup::GetAngularVelocity() const
{
	UpdateStatistics();
	return m_angularVelocity;
}
Example #26
0
ReturnFlag LKH::LKHAlg::run_()
{
	GainType Cost, OldOptimum;
    double Time, LastTime = GetTime();

    if (SubproblemSize > 0) {
        if (DelaunayPartitioning)
            SolveDelaunaySubproblems();
        else if (KarpPartitioning)
            SolveKarpSubproblems();
        else if (KCenterPartitioning)
            SolveKCenterSubproblems();
        else if (KMeansPartitioning)
            SolveKMeansSubproblems();
        else if (RohePartitioning)
            SolveRoheSubproblems();
        else if (MoorePartitioning || SierpinskiPartitioning)
            SolveSFCSubproblems();
        else
            SolveTourSegmentSubproblems();
    }
    AllocateStructures();
    CreateCandidateSet();
    InitializeStatistics();

    if (Norm != 0)
        BestCost = PLUS_INFINITY;
    else {
        /* The ascent has solved the problem! */
        Optimum = BestCost = (GainType) LowerBound;
        UpdateStatistics(Optimum, GetTime() - LastTime);
        RecordBetterTour();
        RecordBestTour();
        WriteTour(OutputTourFileName, BestTour, BestCost);
        WriteTour(TourFileName, BestTour, BestCost);
        Runs = 0;
    }

    /* Find a specified number (Runs) of local optima */
    for (Run = 1; Run <= Runs; Run++) {
        LastTime = GetTime();
        Cost = FindTour();      /* using the Lin-Kernighan heuristic */
        if (*MaxPopulationSize > 1) {
            /* Genetic algorithm */
            int i;
            for (i = 0; i < *PopulationSize; i++) {
                GainType OldCost = Cost;
                Cost = MergeTourWithIndividual(i,this);
                if (TraceLevel >= 1 && Cost < OldCost) {
                    printff("  Merged with %d: Cost = " GainFormat, i + 1,
                            Cost);
                    if (Optimum != MINUS_INFINITY && Optimum != 0)
                        printff(", Gap = %0.4f%%",
                                100.0 * (Cost - Optimum) / Optimum);
                    printff("\n");
                }
            }
            if (!HasFitness(Cost)) {
                if (*PopulationSize < *MaxPopulationSize) {
                    AddToPopulation(Cost,this);
                    if (TraceLevel >= 1)
                        PrintPopulation(this);
                } else if (Cost < Fitness.get()[*PopulationSize - 1]) {
                    i = ReplacementIndividual(Cost,this);
                    ReplaceIndividualWithTour(i, Cost,this);
                    if (TraceLevel >= 1)
                        PrintPopulation(this);
                }
            }
        } else if (Run > 1)
            Cost = MergeBetterTourWithBestTour();
        if (Cost < BestCost) {
            BestCost = Cost;
            RecordBetterTour();
            RecordBestTour();
            WriteTour(OutputTourFileName, BestTour, BestCost);
            WriteTour(TourFileName, BestTour, BestCost);
        }
        OldOptimum = Optimum;
        if (Cost < Optimum) {
            if (FirstNode->InputSuc) {
                Node *N = FirstNode;
                while ((N = N->InputSuc = N->Suc) != FirstNode);
            }
            Optimum = Cost;
            printff("*** New optimum = " GainFormat " ***\n\n", Optimum);
        }
        Time = fabs(GetTime() - LastTime);
        UpdateStatistics(Cost, Time);
        if (TraceLevel >= 1 && Cost != PLUS_INFINITY) {
			printff("Run %d: Cost = " GainFormat, Global::msp_global->m_runId, Cost);
            if (Optimum != MINUS_INFINITY && Optimum != 0)
                printff(", Gap = %0.4f%%",
                        100.0 * (Cost - Optimum) / Optimum);
        //    printff(", Time = %0.2f sec. %s\n\n", Time,
         //           Cost < Optimum ? "<" : Cost == Optimum ? "=" : "");
			printff(", Time = %0.2f sec. \n", Time);
        }
        if (StopAtOptimum && Cost == OldOptimum && *MaxPopulationSize >= 1) {
            Runs = Run;
            break;
        }
        if (*PopulationSize >= 2 &&
            (*PopulationSize == *MaxPopulationSize ||
             Run >= 2 * *MaxPopulationSize) && Run < Runs) {
            Node *N;
            int Parent1, Parent2;
            Parent1 = LinearSelection(*PopulationSize, 1.25,this);
            do
                Parent2 = LinearSelection(*PopulationSize, 1.25,this);
            while (Parent2 == Parent1);
            ApplyCrossover(Parent1, Parent2,this);
            N = FirstNode;
            do {
                int d = (this->*C)(N, N->Suc);
                AddCandidate(N, N->Suc, d, INT_MAX);
                AddCandidate(N->Suc, N, d, INT_MAX);
                N = N->InitialSuc = N->Suc;
            }
            while (N != FirstNode);
        }
		mv_cost[Global::msp_global->m_runId]=Cost;
        SRandom(++Seed);
    }
 //   PrintStatistics();
	freeAll();
	FreeStructures();
	return Return_Terminate;
}
double StatisticalProfiler::GetRawMean() const
{
    UpdateStatistics();
    return mRawMean;
}
int main(int argc, char *argv[])
{
    GainType Cost;
    double Time, LastTime = GetTime();

    /* Read the specification of the problem */
    if (argc >= 2)
        ParameterFileName = argv[1];
    ReadParameters();
    MaxMatrixDimension = 10000;
    ReadProblem();

    if (SubproblemSize > 0) {
        if (DelaunayPartitioning)
            SolveDelaunaySubproblems();
        else if (KarpPartitioning)
            SolveKarpSubproblems();
        else if (KCenterPartitioning)
            SolveKCenterSubproblems();
        else if (KMeansPartitioning)
            SolveKMeansSubproblems();
        else if (RohePartitioning)
            SolveRoheSubproblems();
        else if (MoorePartitioning || SierpinskiPartitioning)
            SolveSFCSubproblems();
        else
            SolveTourSegmentSubproblems();
        return EXIT_SUCCESS;
    }
    AllocateStructures();
    CreateCandidateSet();
    InitializeStatistics();

    if (Norm != 0)
        BestCost = PLUS_INFINITY;
    else {
        /* The ascent has solved the problem! */
        Optimum = BestCost = (GainType) LowerBound;
        UpdateStatistics(Optimum, GetTime() - LastTime);
        RecordBetterTour();
        RecordBestTour();
        WriteTour(OutputTourFileName, BestTour, BestCost);
        WriteTour(TourFileName, BestTour, BestCost);
        Runs = 0;
    }

    /* Find a specified number (Runs) of local optima */
    for (Run = 1; Run <= Runs; Run++) {
        LastTime = GetTime();
        Cost = FindTour();      /* using the Lin-Kernighan heuristic */
        if (MaxPopulationSize > 1) {
            /* Genetic algorithm */
            int i;
            for (i = 0; i < PopulationSize; i++) {
                GainType OldCost = Cost;
                Cost = MergeTourWithIndividual(i);
                if (TraceLevel >= 1 && Cost < OldCost) {
                    printff("  Merged with %d: Cost = " GainFormat, i + 1,
                            Cost);
                    if (Optimum != MINUS_INFINITY && Optimum != 0)
                        printff(", Gap = %0.4f%%",
                                100.0 * (Cost - Optimum) / Optimum);
                    printff("\n");
                }
            }
            if (!HasFitness(Cost)) {
                if (PopulationSize < MaxPopulationSize) {
                    AddToPopulation(Cost);
                    if (TraceLevel >= 1)
                        PrintPopulation();
                } else if (Cost < Fitness[PopulationSize - 1]) {
                    i = ReplacementIndividual(Cost);
                    ReplaceIndividualWithTour(i, Cost);
                    if (TraceLevel >= 1)
                        PrintPopulation();
                }
            }
        } else if (Run > 1)
            Cost = MergeBetterTourWithBestTour();
        if (Cost < BestCost) {
            BestCost = Cost;
            RecordBetterTour();
            RecordBestTour();
            WriteTour(OutputTourFileName, BestTour, BestCost);
            WriteTour(TourFileName, BestTour, BestCost);
        }
        if (Cost < Optimum) {
            if (FirstNode->InputSuc) {
                Node *N = FirstNode;
                while ((N = N->InputSuc = N->Suc) != FirstNode);
            }
            Optimum = Cost;
            printff("*** New optimum = " GainFormat " ***\n\n", Optimum);
        }
        Time = fabs(GetTime() - LastTime);
        UpdateStatistics(Cost, Time);
        if (TraceLevel >= 1 && Cost != PLUS_INFINITY) {
            printff("Run %d: Cost = " GainFormat, Run, Cost);
            if (Optimum != MINUS_INFINITY && Optimum != 0)
                printff(", Gap = %0.4f%%",
                        100.0 * (Cost - Optimum) / Optimum);
            printff(", Time = %0.2f sec. %s\n\n", Time,
                    Cost < Optimum ? "<" : Cost == Optimum ? "=" : "");
        }
        if (PopulationSize >= 2 &&
                (PopulationSize == MaxPopulationSize ||
                 Run >= 2 * MaxPopulationSize) && Run < Runs) {
            Node *N;
            int Parent1, Parent2;
            Parent1 = LinearSelection(PopulationSize, 1.25);
            do
                Parent2 = LinearSelection(PopulationSize, 1.25);
            while (Parent2 == Parent1);
            ApplyCrossover(Parent1, Parent2);
            N = FirstNode;
            do {
                int d = C(N, N->Suc);
                AddCandidate(N, N->Suc, d, INT_MAX);
                AddCandidate(N->Suc, N, d, INT_MAX);
                N = N->InitialSuc = N->Suc;
            }
            while (N != FirstNode);
        }
        SRandom(++Seed);
    }
    PrintStatistics();
    return EXIT_SUCCESS;
}
double StatisticalProfiler::GetRawStdDev() const
{
    UpdateStatistics();
    return mRawStdDev;
}
Example #30
0
int tsp_lkh()
{
	GainType Cost, OldOptimum;
	double Time, LastTime = GetTime();

	/* Read the specification of the problem */


	ReadParameters();
	MaxMatrixDimension = 10000;

	init();


	AllocateStructures();
	CreateCandidateSet();
	InitializeStatistics();


	BestCost = PLUS_INFINITY;



	for (Run = 1; Run <= Runs; Run++) {
		LastTime = GetTime();
		Cost = FindTour();      /* using the Lin-Kernighan heuristic */
		if (MaxPopulationSize > 1) {
			/* Genetic algorithm */
			int i;
			for (i = 0; i < PopulationSize; i++) {
				GainType OldCost = Cost;
				Cost = MergeTourWithIndividual(i);
				if (TraceLevel >= 1 && Cost < OldCost) {
					//				printff("  Merged with %d: Cost = " GainFormat, i + 1,
					///				Cost);
					//		if (Optimum != MINUS_INFINITY && Optimum != 0)
					//		printff(", Gap = %0.4f%%",
					//	100.0 * (Cost - Optimum) / Optimum);
					//printff("\n");
				}
			}
			if (!HasFitness(Cost)) {
				if (PopulationSize < MaxPopulationSize) {
					AddToPopulation(Cost);
					if (TraceLevel >= 1)
						PrintPopulation();
				}
				else if (Cost < Fitness[PopulationSize - 1]) {
					i = ReplacementIndividual(Cost);
					ReplaceIndividualWithTour(i, Cost);
					if (TraceLevel >= 1)
						PrintPopulation();
				}
			}
		}
		else if (Run > 1)
			Cost = MergeTourWithBestTour();
		if (Cost < BestCost) {
			BestCost = Cost;
			RecordBetterTour();
			RecordBestTour();

		}
		OldOptimum = Optimum;
		if (Cost < Optimum) {
			if (FirstNode->InputSuc) {
				Node *N = FirstNode;
				while ((N = N->InputSuc = N->Suc) != FirstNode);
			}
			Optimum = Cost;
			//printff("*** New optimum = " GainFormat " ***\n\n", Optimum);
		}
		Time = fabs(GetTime() - LastTime);
		UpdateStatistics(Cost, Time);
		/*
		if (TraceLevel >= 1 && Cost != PLUS_INFINITY) {
			printff("Run %d: Cost = " GainFormat, Run, Cost);
			if (Optimum != MINUS_INFINITY && Optimum != 0)
				printff(", Gap = %0.4f%%",
				100.0 * (Cost - Optimum) / Optimum);
			printff(", Time = %0.2f sec. %s\n\n", Time,
				Cost < Optimum ? "<" : Cost == Optimum ? "=" : "");
		}*/
		if (StopAtOptimum && Cost == OldOptimum && MaxPopulationSize >= 1) {
			Runs = Run;
			break;
		}
		if (PopulationSize >= 2 &&
			(PopulationSize == MaxPopulationSize ||
			Run >= 2 * MaxPopulationSize) && Run < Runs) {
			Node *N;
			int Parent1, Parent2;
			Parent1 = LinearSelection(PopulationSize, 1.25);
			do
			Parent2 = LinearSelection(PopulationSize, 1.25);
			while (Parent2 == Parent1);
			ApplyCrossover(Parent1, Parent2);
			N = FirstNode;
			do {
				if (ProblemType != HCP && ProblemType != HPP) {
					int d = C(N, N->Suc);
					AddCandidate(N, N->Suc, d, INT_MAX);
					AddCandidate(N->Suc, N, d, INT_MAX);
				}
				N = N->InitialSuc = N->Suc;
			} while (N != FirstNode);
		}
		SRandom(++Seed);
	}
	//	PrintStatistics();

	for (int i = 0; i < TSP_N; i++)
	{
		TSP_RESULT[i] = BestTour[i] - 1;
	}
	//		printf("%d -¡·",BestTour[i]-1);

	return BestCost;
}