void DrawGLScene() // Main Drawing Routine { GLmatrix16f Minv, Inv; GLvector4f lp; // Clear Color Buffer, Depth Buffer, Stencil Buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); glColor4f(0.7f, 0.4f, 0.0f, 1.0f); glLoadIdentity(); glPushMatrix(); { glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into Screen 20 Units glLightfv(GL_LIGHT1, GL_POSITION, LightPos); // Position Light1 glTranslatef(SpherePos[0], SpherePos[1], SpherePos[2]); // Position The Sphere gluSphere(q, 1.5f, 32, 16); // Draw A Sphere } glPopMatrix(); glPushMatrix(); { glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into The Screen 20 Units DrawGLRoom(); // Draw The Room glTranslatef(ObjPos[0], ObjPos[1], ObjPos[2]); // Position The Object glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Spin It On The X Axis By xrot glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Spin It On The Y Axis By yrot DrawGLObject(obj); // Procedure For Drawing The Loaded Object // 获得光源的位置(返回值是在视觉坐标系下的) glGetLightfv(GL_LIGHT1, GL_POSITION, lp); glGetFloatv(GL_MODELVIEW_MATRIX, Minv); m3dInvertMatrix44(Inv, Minv); // 把光源位置从视觉坐标系下变换到当前的场景坐标系(obj)下. VMatMult(Inv, lp); // 开始渲染阴影 CastShadow(&obj, lp); // 用一个小黄球标记出光源的位置 glPushMatrix(); { glColor4f(0.7f, 0.4f, 0.0f, 1.0f); // Set Color To Purplish Blue glDisable(GL_LIGHTING); // Disable Lighting glDepthMask(GL_FALSE); // Disable Depth Mask glTranslatef(lp[0], lp[1], lp[2]); gluSphere(q, 0.2f, 16, 8); glEnable(GL_LIGHTING); // Enable Lighting glDepthMask(GL_TRUE); // Enable Depth Mask } glPopMatrix(); } glPopMatrix(); xrot += xspeed; yrot += yspeed; glFlush(); glutSwapBuffers(); }
bool doMesh2TexelUnits(void) { GLfloat c[4]={0.0f,0.0f,0.0f,1.0f}; // holds current vertex GLfloat n[4]={0.0f,0.0f,0.0f,1.0f}; // normalized normal of current surface GLfloat s[4]={0.0f,0.0f,0.0f,1.0f}; // s-texture coordinate direction, normalized GLfloat t[4]={0.0f,0.0f,0.0f,1.0f}; // t-texture coordinate direction, normalized GLfloat l[4]; // holds our lightposition to be transformed into object space GLfloat Minv[16]; // holds the inverted modelview matrix to do so. int i; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer // Build Inverse Modelview Matrix First. This Substitutes One Push/Pop With One glLoadIdentity(); // Simply Build It By Doing All Transformations Negated And In Reverse Order. glLoadIdentity(); glRotatef(-yrot,0.0f,1.0f,0.0f); glRotatef(-xrot,1.0f,0.0f,0.0f); glTranslatef(0.0f,0.0f,-z); glGetFloatv(GL_MODELVIEW_MATRIX,Minv); glLoadIdentity(); glTranslatef(0.0f,0.0f,z); glRotatef(xrot,1.0f,0.0f,0.0f); glRotatef(yrot,0.0f,1.0f,0.0f); // Transform The Lightposition Into Object Coordinates: l[0]=LightPosition[0]; l[1]=LightPosition[1]; l[2]=LightPosition[2]; l[3]=1.0f; // Homogenous Coordinate VMatMult(Minv,l); /* PASS#1: Texel-Unit 0: Use Texture "Bump" No Blend No Lighting No Offset Texture-Coordinates Texture-Operation "Replace" Texel-Unit 1: Use Texture "Invbump" No Lighting Offset Texture Coordinates Texture-Operation "Replace" */ // TEXTURE-UNIT #0 glActiveTextureARB(GL_TEXTURE0_ARB); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, bump[filter]); glTexEnvf(GL_TEXTURE_ENV, (GLenum)GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf(GL_TEXTURE_ENV, (GLenum)GL_COMBINE_RGB_EXT, GL_REPLACE); // TEXTURE-UNIT #1: glActiveTextureARB(GL_TEXTURE1_ARB); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, invbump[filter]); glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT); glTexEnvf (GL_TEXTURE_ENV, (GLenum)GL_COMBINE_RGB_EXT, GL_ADD); // General Switches: glDisable(GL_BLEND); glDisable(GL_LIGHTING); glBegin(GL_QUADS); // Front Face n[0]=0.0f; n[1]=0.0f; n[2]=1.0f; s[0]=1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=0; i<4; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1]); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Back Face n[0]=0.0f; n[1]=0.0f; n[2]=-1.0f; s[0]=-1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=4; i<8; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1]); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Top Face n[0]=0.0f; n[1]=1.0f; n[2]=0.0f; s[0]=1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=0.0f; t[2]=-1.0f; for (i=8; i<12; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1] ); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Bottom Face n[0]=0.0f; n[1]=-1.0f; n[2]=0.0f; s[0]=-1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=0.0f; t[2]=-1.0f; for (i=12; i<16; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1] ); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Right Face n[0]=1.0f; n[1]=0.0f; n[2]=0.0f; s[0]=0.0f; s[1]=0.0f; s[2]=-1.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=16; i<20; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1] ); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Left Face n[0]=-1.0f; n[1]=0.0f; n[2]=0.0f; s[0]=0.0f; s[1]=0.0f; s[2]=1.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=20; i<24; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i] , data[5*i+1] ); glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } glEnd(); /* PASS#2 Use Texture "Base" Blend GL_DST_COLOR To GL_SRC_COLOR (Multiplies By 2) Lighting Enabled No Offset Texture-Coordinates */ glActiveTextureARB(GL_TEXTURE1_ARB); glDisable(GL_TEXTURE_2D); glActiveTextureARB(GL_TEXTURE0_ARB); if (!emboss) { glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBindTexture(GL_TEXTURE_2D,texture[filter]); glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR); glEnable(GL_BLEND); glEnable(GL_LIGHTING); doCube(); } xrot+=xspeed; yrot+=yspeed; if (xrot>360.0f) xrot-=360.0f; if (xrot<0.0f) xrot+=360.0f; if (yrot>360.0f) yrot-=360.0f; if (yrot<0.0f) yrot+=360.0f; /* LAST PASS: Do The Logos! */ doLogo(); return true; // Keep Going }
bool doMesh1TexelUnits(void) { GLfloat c[4]={0.0f,0.0f,0.0f,1.0f}; // Holds Current Vertex GLfloat n[4]={0.0f,0.0f,0.0f,1.0f}; // Normalized Normal Of Current Surface GLfloat s[4]={0.0f,0.0f,0.0f,1.0f}; // s-Texture Coordinate Direction, Normalized GLfloat t[4]={0.0f,0.0f,0.0f,1.0f}; // t-Texture Coordinate Direction, Normalized GLfloat l[4]; // Holds Our Lightposition To Be Transformed Into Object Space GLfloat Minv[16]; // Holds The Inverted Modelview Matrix To Do So. int i; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer // Build Inverse Modelview Matrix First. This Substitutes One Push/Pop With One glLoadIdentity(); // Simply Build It By Doing All Transformations Negated And In Reverse Order. glLoadIdentity(); glRotatef(-yrot,0.0f,1.0f,0.0f); glRotatef(-xrot,1.0f,0.0f,0.0f); glTranslatef(0.0f,0.0f,-z); glGetFloatv(GL_MODELVIEW_MATRIX,Minv); glLoadIdentity(); glTranslatef(0.0f,0.0f,z); glRotatef(xrot,1.0f,0.0f,0.0f); glRotatef(yrot,0.0f,1.0f,0.0f); // Transform The Lightposition Into Object Coordinates: l[0]=LightPosition[0]; l[1]=LightPosition[1]; l[2]=LightPosition[2]; l[3]=1.0f; // Homogenous Coordinate VMatMult(Minv,l); /* PASS#1: Use Texture "Bump" No Blend No Lighting No Offset Texture-Coordinates */ glBindTexture(GL_TEXTURE_2D, bump[filter]); glDisable(GL_BLEND); glDisable(GL_LIGHTING); doCube(); /* PASS#2: Use Texture "Invbump" Blend GL_ONE To GL_ONE No Lighting Offset Texture Coordinates */ glBindTexture(GL_TEXTURE_2D,invbump[filter]); glBlendFunc(GL_ONE,GL_ONE); glDepthFunc(GL_LEQUAL); glEnable(GL_BLEND); glBegin(GL_QUADS); // Front Face n[0]=0.0f; n[1]=0.0f; n[2]=1.0f; s[0]=1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=0; i<4; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Back Face n[0]=0.0f; n[1]=0.0f; n[2]=-1.0f; s[0]=-1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=4; i<8; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Top Face n[0]=0.0f; n[1]=1.0f; n[2]=0.0f; s[0]=1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=0.0f; t[2]=-1.0f; for (i=8; i<12; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Bottom Face n[0]=0.0f; n[1]=-1.0f; n[2]=0.0f; s[0]=-1.0f; s[1]=0.0f; s[2]=0.0f; t[0]=0.0f; t[1]=0.0f; t[2]=-1.0f; for (i=12; i<16; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Right Face n[0]=1.0f; n[1]=0.0f; n[2]=0.0f; s[0]=0.0f; s[1]=0.0f; s[2]=-1.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=16; i<20; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } // Left Face n[0]=-1.0f; n[1]=0.0f; n[2]=0.0f; s[0]=0.0f; s[1]=0.0f; s[2]=1.0f; t[0]=0.0f; t[1]=1.0f; t[2]=0.0f; for (i=20; i<24; i++) { c[0]=data[5*i+2]; c[1]=data[5*i+3]; c[2]=data[5*i+4]; SetUpBumps(n,c,l,s,t); glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]); glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]); } glEnd(); /* PASS#3: Use Texture "Base" Blend GL_DST_COLOR To GL_SRC_COLOR (Multiplies By 2) Lighting Enabled No Offset Texture-Coordinates */ if (!emboss) { glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glBindTexture(GL_TEXTURE_2D,texture[filter]); glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR); glEnable(GL_LIGHTING); doCube(); } xrot+=xspeed; yrot+=yspeed; if (xrot>360.0f) xrot-=360.0f; if (xrot<0.0f) xrot+=360.0f; if (yrot>360.0f) yrot-=360.0f; if (yrot<0.0f) yrot+=360.0f; /* LAST PASS: Do The Logos! */ doLogo(); return true; // Keep Going }
void SceneTutorial27::Draw() { Scene::Draw(); float Minv[16]; float wlp[4]; float lp[4]; // Clear Color Buffer, Depth Buffer, Stencil Buffer glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); glLoadIdentity(); // Reset Modelview Matrix glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into Screen 20 Units glLightfv(GL_LIGHT1, GL_POSITION, LightPos); // Position Light1 glTranslatef(SpherePos[0], SpherePos[1], SpherePos[2]); // Position The Sphere gluSphere(q, 1.5f, 32, 16); // Draw A Sphere // calculate light's position relative to local coordinate system // dunno if this is the best way to do it, but it actually works // if u find another aproach, let me know ;) // we build the inversed matrix by doing all the actions in reverse order // and with reverse parameters (notice -xrot, -yrot, -ObjPos[], etc.) glLoadIdentity(); // Reset Matrix glRotatef(-yrot, 0.0f, 1.0f, 0.0f); // Rotate By -yrot On Y Axis glRotatef(-xrot, 1.0f, 0.0f, 0.0f); // Rotate By -xrot On X Axis glGetFloatv(GL_MODELVIEW_MATRIX,Minv); // Retrieve ModelView Matrix (Stores In Minv) lp[0] = LightPos[0]; // Store Light Position X In lp[0] lp[1] = LightPos[1]; // Store Light Position Y In lp[1] lp[2] = LightPos[2]; // Store Light Position Z In lp[2] lp[3] = LightPos[3]; // Store Light Direction In lp[3] VMatMult(Minv, lp); // We Store Rotated Light Vector In 'lp' Array glTranslatef(-ObjPos[0], -ObjPos[1], -ObjPos[2]); // Move Negative On All Axis Based On ObjPos[] Values (X, Y, Z) glGetFloatv(GL_MODELVIEW_MATRIX,Minv); // Retrieve ModelView Matrix From Minv wlp[0] = 0.0f; // World Local Coord X To 0 wlp[1] = 0.0f; // World Local Coord Y To 0 wlp[2] = 0.0f; // World Local Coord Z To 0 wlp[3] = 1.0f; VMatMult(Minv, wlp); // We Store The Position Of The World Origin Relative To The // Local Coord. System In 'wlp' Array lp[0] += wlp[0]; // Adding These Two Gives Us The lp[1] += wlp[1]; // Position Of The Light Relative To lp[2] += wlp[2]; // The Local Coordinate System glColor4f(0.7f, 0.4f, 0.0f, 1.0f); // Set Color To An Orange glLoadIdentity(); // Reset Modelview Matrix glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into The Screen 20 Units DrawGLRoom(); // Draw The Room glTranslatef(ObjPos[0], ObjPos[1], ObjPos[2]); // Position The Object glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Spin It On The X Axis By xrot glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Spin It On The Y Axis By yrot DrawShadowedObject(obj); // Procedure For Drawing The Loaded Object castShadow(obj, lp ); // Procedure For Casting The Shadow Based On The Silhouette glColor4f(0.7f, 0.4f, 0.0f, 1.0f); // Set Color To Purplish Blue glDisable(GL_LIGHTING); // Disable Lighting glDepthMask(GL_FALSE); // Disable Depth Mask glTranslatef(lp[0], lp[1], lp[2]); // Translate To Light's Position // Notice We're Still In Local Coordinate System gluSphere(q, 0.2f, 16, 8); // Draw A Little Yellow Sphere (Represents Light) glEnable(GL_LIGHTING); // Enable Lighting glDepthMask(GL_TRUE); // Enable Depth Mask glutSwapBuffers(); }