/**Function*************************************************************

  Synopsis    [ Given a node, evaluate its cuts and save the best one ]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rewrite_NodeRewrite( Mig_Man_t * pMig, Rewrite_Man_t * p, Cut_Man_t * pManCut, Mig_Obj_t * pNode, Cut_Cut_t * pCut, int fUpdateLevel )
{
    Gra_Graph_t * pGraph;
    Mig_Obj_t * pFanin;
    unsigned uPhase;
    unsigned uTruthBest = 0;
    unsigned uTruth;
    char * pPerm;
    int Required, nNodesSaved, nNodesSaveCur = -1;
    int i, GainCur = -1, GainBest = -1;

    Required = fUpdateLevel ? Mig_ObjRequiredLevel(pMig, pNode) : ABC_INFINITY;

    // triv cut is omitted
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        if ( pCut->nLeaves < 4 ) continue;

        // NPN conditions
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ (int)p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanin nodes
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Mig_ManObj( pMig, pCut->pLeaves[(int)pPerm[i]] );
            if( pFanin == NULL ) break;
            //assert( pFanin ); // bad cut condition-> fanin may be removed
            pFanin = Mig_NotCond( pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves ) continue;  // bad cut: fanin is removed

        // 1. mark boundary 2. mark MFFC  3.recover boundary
        Vec_PtrForEachEntry( Mig_Obj_t *, p->vFaninsCur, pFanin, i )
            Mig_Regular(pFanin)->vFanouts.nSize++;
        Mig_ManIncTravId( pMig );
        nNodesSaved = Mig_NodeMffcLabelMig( pMig, pNode );
        Vec_PtrForEachEntry( Mig_Obj_t *, p->vFaninsCur, pFanin, i )
            Mig_Regular(pFanin)->vFanouts.nSize--;

        // evaluate the cut

        pGraph = Rewrite_CutEvaluate( pMig, p, pNode, pCut, nNodesSaved, &GainCur, Required, 0xFFFF );

        if( pGraph != NULL && GainBest < GainCur )
        {
            nNodesSaveCur = nNodesSaved;
            GainBest = GainCur;
            p->pGraph = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0 );
            uTruthBest =  0xFFFF & *Cut_CutReadTruth(pCut);
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( Mig_Obj_t *, p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
Example #2
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Cov_Man_t * Cov_ManAlloc( Abc_Ntk_t * pNtk, int nFaninMax )
{
    Cov_Man_t * pMan;
    Cov_Obj_t * pMem;
    Abc_Obj_t * pObj;
    int i;
    assert( pNtk->pManCut == NULL );

    // start the manager
    pMan = ABC_ALLOC( Cov_Man_t, 1 );
    memset( pMan, 0, sizeof(Cov_Man_t) );
    pMan->nFaninMax = nFaninMax;
    pMan->nCubesMax = 2 * pMan->nFaninMax;
    pMan->nWords    = Abc_BitWordNum( nFaninMax * 2 );

    // get the cubes
    pMan->vComTo0 = Vec_IntAlloc( 2*nFaninMax );
    pMan->vComTo1 = Vec_IntAlloc( 2*nFaninMax );
    pMan->vPairs0 = Vec_IntAlloc( nFaninMax );
    pMan->vPairs1 = Vec_IntAlloc( nFaninMax );
    pMan->vTriv0  = Vec_IntAlloc( 1 );  Vec_IntPush( pMan->vTriv0, -1 ); 
    pMan->vTriv1  = Vec_IntAlloc( 1 );  Vec_IntPush( pMan->vTriv1, -1 ); 

    // allocate memory for object structures
    pMan->pMemory = pMem = ABC_ALLOC( Cov_Obj_t, sizeof(Cov_Obj_t) * Abc_NtkObjNumMax(pNtk) );
    memset( pMem, 0, sizeof(Cov_Obj_t) * Abc_NtkObjNumMax(pNtk) );
    // allocate storage for the pointers to the memory
    pMan->vObjStrs = Vec_PtrAlloc( Abc_NtkObjNumMax(pNtk) );
    Vec_PtrFill( pMan->vObjStrs, Abc_NtkObjNumMax(pNtk), NULL );
    Abc_NtkForEachObj( pNtk, pObj, i )
        Vec_PtrWriteEntry( pMan->vObjStrs, i, pMem + i );
    // create the cube manager
    pMan->pManMin = Min_ManAlloc( nFaninMax );
    return pMan;
}
Example #3
0
/**Function*************************************************************

  Synopsis    [Deallocates sequential AIG manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Seq_Resize( Abc_Seq_t * p, int nMaxId )
{
    if ( p->nSize > nMaxId )
        return;
    p->nSize = nMaxId + 1;
    Vec_IntFill( p->vNums,     2 * p->nSize, 0 ); 
    Vec_PtrFill( p->vInits,    2 * p->nSize, NULL ); 
    Vec_IntFill( p->vLValues,  p->nSize, 0 ); 
    Vec_StrFill( p->vLags,     p->nSize, 0 ); 
    Vec_IntFill( p->vLValuesN, p->nSize, 0 ); 
    Vec_IntFill( p->vAFlows,   p->nSize, 0 ); 
    Vec_StrFill( p->vLagsN,    p->nSize, 0 ); 
    Vec_StrFill( p->vUses,     p->nSize, 0 ); 
}
/**Function*************************************************************

  Synopsis    [Converts combinational AIG with latches into sequential AIG.]

  Description [The const/PI/PO nodes are duplicated. The internal
  nodes are duplicated in the topological order. The dangling nodes
  are not duplicated. The choice nodes are duplicated.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;
    Abc_Obj_t * pObj, * pFaninNew;
    Vec_Int_t * vInitValues;
    Abc_InitType_t Init;
    int i, k, RetValue;

    // make sure it is an AIG without self-feeding latches
    assert( Abc_NtkIsStrash(pNtk) );
    assert( Abc_NtkIsDfsOrdered(pNtk) );

    if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
        printf( "Modified %d self-feeding latches. The result will not verify.\n", RetValue );
    assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );

    // start the network
    pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG, 1 );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
    pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);

    // map the constant nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);

    // copy all objects, except the latches and constant
    Vec_PtrFill( pNtkNew->vObjs, Abc_NtkObjNumMax(pNtk), NULL );
    Vec_PtrWriteEntry( pNtkNew->vObjs, 0, Abc_AigConst1(pNtk)->pCopy );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( i == 0 || Abc_ObjIsLatch(pObj) )
            continue;
        pObj->pCopy = Abc_ObjAlloc( pNtkNew, pObj->Type );
        pObj->pCopy->Id     = pObj->Id;      // the ID is the same for both
        pObj->pCopy->fPhase = pObj->fPhase;  // used to work with choices
        pObj->pCopy->Level  = pObj->Level;   // used for upper bound on clock cycle
        Vec_PtrWriteEntry( pNtkNew->vObjs, pObj->pCopy->Id, pObj->pCopy );
        pNtkNew->nObjs++;
    }
    pNtkNew->nObjCounts[ABC_OBJ_NODE] = pNtk->nObjCounts[ABC_OBJ_NODE];

    // create PI/PO and their names
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        Vec_PtrPush( pNtkNew->vPis, pObj->pCopy );
        Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
    }
Example #5
0
/**Function*************************************************************

  Synopsis    []

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
Bal_Man_t * Bal_ManAlloc( Gia_Man_t * pGia, Gia_Man_t * pNew, int nLutSize, int nCutNum, int fVerbose )
{
    Bal_Man_t * p;
    p = ABC_CALLOC( Bal_Man_t, 1 );
    p->clkStart = Abc_Clock();
    p->pGia     = pGia;
    p->pNew     = pNew;
    p->nLutSize = nLutSize;
    p->nCutNum  = nCutNum;
    p->fVerbose = fVerbose;
    p->vCosts   = Vec_IntAlloc( 3 * Gia_ManObjNum(pGia) / 2 );
    p->vCutSets = Vec_PtrAlloc( 3 * Gia_ManObjNum(pGia) / 2 );
    Vec_IntFill( p->vCosts, Gia_ManObjNum(pNew), 0 );
    Vec_PtrFill( p->vCutSets, Gia_ManObjNum(pNew), NULL );
    pNew->pData = p;
    return p;
}
Example #6
0
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase, uTruthBest, uTruth;
    char * pPerm;
    int Required, nNodesSaved, nNodesSaveCur;
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }
p->timeRes += clock() - clk;

    if ( GainBest == -1 )
        return -1;
/*
    if ( GainBest > 0 )
    {
        printf( "Class %d  ", p->pMap[uTruthBest] );
        printf( "Gain = %d. Node %d : ", GainBest, pNode->Id );
        Vec_PtrForEachEntry( p->vFanins, pFanin, i )
            printf( "%d ", Abc_ObjRegular(pFanin)->Id );
        Dec_GraphPrint( stdout, p->pGraph, NULL, NULL );
        printf( "\n" );
    }
*/

//    printf( "%d", nNodesSaveCur - GainBest );
/*
    if ( GainBest > 0 )
    {
        if ( Rwr_CutIsBoolean( pNode, p->vFanins ) )
            printf( "b" );
        else
        {
            printf( "Node %d : ", pNode->Id );
            Vec_PtrForEachEntry( p->vFanins, pFanin, i )
                printf( "%d ", Abc_ObjRegular(pFanin)->Id );
            printf( "a" );
        }
    }
*/
/*
    if ( GainBest > 0 )
        if ( p->fCompl )
            printf( "c" );
        else
            printf( "." );
*/

    // copy the leaves
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        Dec_GraphNode(p->pGraph, i)->pFunc = pFanin;
/*
    printf( "(" );
    Vec_PtrForEachEntry( p->vFanins, pFanin, i )
        printf( " %d", Abc_ObjRegular(pFanin)->vFanouts.nSize - 1 );
    printf( " )  " );
*/
//    printf( "%d ", Rwr_NodeGetDepth_rec( pNode, p->vFanins ) );

    p->nScores[p->pMap[uTruthBest]]++;
    p->nNodesGained += GainBest;
    if ( fUseZeros || GainBest > 0 )
    {
        p->nNodesRewritten++;
    }

    // report the progress
    if ( fVeryVerbose && GainBest > 0 )
    {
        printf( "Node %6s :   ", Abc_ObjName(pNode) );
        printf( "Fanins = %d. ", p->vFanins->nSize );
        printf( "Save = %d.  ", nNodesSaveCur );
        printf( "Add = %d.  ",  nNodesSaveCur-GainBest );
        printf( "GAIN = %d.  ", GainBest );
        printf( "Cone = %d.  ", p->pGraph? Dec_GraphNodeNum(p->pGraph) : 0 );
        printf( "Class = %d.  ", p->pMap[uTruthBest] );
        printf( "\n" );
    }
    return GainBest;
}
Example #7
0
File: rwrEva.c Project: mrkj/abc
/**Function*************************************************************

  Synopsis    [Performs rewriting for one node.]

  Description [This procedure considers all the cuts computed for the node
  and tries to rewrite each of them using the "forest" of different AIG
  structures precomputed and stored in the RWR manager. 
  Determines the best rewriting and computes the gain in the number of AIG
  nodes in the final network. In the end, p->vFanins contains information 
  about the best cut that can be used for rewriting, while p->pGraph gives 
  the decomposition dag (represented using decomposition graph data structure).
  Returns gain in the number of nodes or -1 if node cannot be rewritten.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Rwr_NodeRewrite( Rwr_Man_t * p, Cut_Man_t * pManCut, Abc_Obj_t * pNode, int fUpdateLevel, int fUseZeros, int fPlaceEnable )
{
    int fVeryVerbose = 0;
    Dec_Graph_t * pGraph;
    Cut_Cut_t * pCut;//, * pTemp;
    Abc_Obj_t * pFanin;
    unsigned uPhase;
    unsigned uTruthBest = 0; // Suppress "might be used uninitialized"
    unsigned uTruth;
    char * pPerm;
    int Required, nNodesSaved;
    int nNodesSaveCur = -1; // Suppress "might be used uninitialized"
    int i, GainCur, GainBest = -1;
    int clk, clk2;//, Counter;

    p->nNodesConsidered++;
    // get the required times
    Required = fUpdateLevel? Abc_ObjRequiredLevel(pNode) : ABC_INFINITY;

    // get the node's cuts
clk = clock();
    pCut = (Cut_Cut_t *)Abc_NodeGetCutsRecursive( pManCut, pNode, 0, 0 );
    assert( pCut != NULL );
p->timeCut += clock() - clk;

//printf( " %d", Rwr_CutCountNumNodes(pNode, pCut) );
/*
    Counter = 0;
    for ( pTemp = pCut->pNext; pTemp; pTemp = pTemp->pNext )
        Counter++;
    printf( "%d ", Counter );
*/
    // go through the cuts
clk = clock();
    for ( pCut = pCut->pNext; pCut; pCut = pCut->pNext )
    {
        // consider only 4-input cuts
        if ( pCut->nLeaves < 4 )
            continue;
//            Cut_CutPrint( pCut, 0 ), printf( "\n" );

        // get the fanin permutation
        uTruth = 0xFFFF & *Cut_CutReadTruth(pCut);
        pPerm = p->pPerms4[ (int)p->pPerms[uTruth] ];
        uPhase = p->pPhases[uTruth];
        // collect fanins with the corresponding permutation/phase
        Vec_PtrClear( p->vFaninsCur );
        Vec_PtrFill( p->vFaninsCur, (int)pCut->nLeaves, 0 );
        for ( i = 0; i < (int)pCut->nLeaves; i++ )
        {
            pFanin = Abc_NtkObj( pNode->pNtk, pCut->pLeaves[(int)pPerm[i]] );
            if ( pFanin == NULL )
                break;
            pFanin = Abc_ObjNotCond(pFanin, ((uPhase & (1<<i)) > 0) );
            Vec_PtrWriteEntry( p->vFaninsCur, i, pFanin );
        }
        if ( i != (int)pCut->nLeaves )
        {
            p->nCutsBad++;
            continue;
        }
        p->nCutsGood++;

        {
            int Counter = 0;
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                if ( Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) == 1 )
                    Counter++;
            if ( Counter > 2 )
                continue;
        }

clk2 = clock();
/*
        printf( "Considering: (" );
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            printf( "%d ", Abc_ObjFanoutNum(Abc_ObjRegular(pFanin)) );
        printf( ")\n" );
*/
        // mark the fanin boundary 
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize++;

        // label MFFC with current ID
        Abc_NtkIncrementTravId( pNode->pNtk );
        nNodesSaved = Abc_NodeMffcLabelAig( pNode );
        // unmark the fanin boundary
        Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
            Abc_ObjRegular(pFanin)->vFanouts.nSize--;
p->timeMffc += clock() - clk2;

        // evaluate the cut
clk2 = clock();
        pGraph = Rwr_CutEvaluate( p, pNode, pCut, p->vFaninsCur, nNodesSaved, Required, &GainCur, fPlaceEnable );
p->timeEval += clock() - clk2;

        // check if the cut is better than the current best one
        if ( pGraph != NULL && GainBest < GainCur )
        {
            // save this form
            nNodesSaveCur = nNodesSaved;
            GainBest  = GainCur;
            p->pGraph  = pGraph;
            p->fCompl = ((uPhase & (1<<4)) > 0);
            uTruthBest = 0xFFFF & *Cut_CutReadTruth(pCut);
            // collect fanins in the
            Vec_PtrClear( p->vFanins );
            Vec_PtrForEachEntry( Abc_Obj_t *, p->vFaninsCur, pFanin, i )
                Vec_PtrPush( p->vFanins, pFanin );
        }
    }