Example #1
0
void CP25Control::setBusyBits(unsigned char* data, unsigned int ssOffset, bool b1, bool b2)
{
    assert(data != NULL);

    WRITE_BIT(data, ssOffset, b1);
    WRITE_BIT(data, ssOffset + 1U, b2);
}
Example #2
0
void CDMRTrellis::interleave(const signed char* dibits, unsigned char* data) const
{
	for (unsigned int i = 0U; i < 98U; i++) {
		unsigned int n = INTERLEAVE_TABLE[i];

		bool b1, b2;
		switch (dibits[n]) {
		case +3:
			b1 = false;
			b2 = true;
			break;
		case +1:
			b1 = false;
			b2 = false;
			break;
		case -1:
			b1 = true;
			b2 = false;
			break;
		default:
			b1 = true;
			b2 = true;
			break;
		}

		n = i * 2U + 0U;
		if (n >= 98U) n += 68U;
		WRITE_BIT(data, n, b1);

		n = i * 2U + 1U;
		if (n >= 98U) n += 68U;
		WRITE_BIT(data, n, b2);
	}
}
Example #3
0
void CP25Control::addBusyBits(unsigned char* data, unsigned int length, bool b1, bool b2)
{
	assert(data != NULL);

	for (unsigned int ss0Pos = P25_SS0_START; ss0Pos < length; ss0Pos += P25_SS_INCREMENT) {
		unsigned int ss1Pos = ss0Pos + 1U;
		WRITE_BIT(data, ss0Pos, b1);
		WRITE_BIT(data, ss1Pos, b2);
	}
}
Example #4
0
unsigned int CP25Utils::encode(const unsigned char* in, unsigned char* out, unsigned int length)
{
	assert(in != NULL);
	assert(out != NULL);

	// Move the SSx positions to the range needed
	unsigned int ss0Pos = P25_SS0_START;
	unsigned int ss1Pos = P25_SS1_START;

	unsigned int n = 0U;
	unsigned int pos = 0U;
	while (n < length) {
		if (pos == ss0Pos) {
			ss0Pos += P25_SS_INCREMENT;
		} else if (pos == ss1Pos) {
			ss1Pos += P25_SS_INCREMENT;
		} else {
			bool b = READ_BIT(in, n);
			WRITE_BIT(out, pos, b);
			n++;
		}
		pos++;
	}

	return pos;
}
Example #5
0
unsigned int CP25Utils::encode(const unsigned char* in, unsigned char* out, unsigned int start, unsigned int stop)
{
	assert(in != NULL);
	assert(out != NULL);

	// Move the SSx positions to the range needed
	unsigned int ss0Pos = P25_SS0_START;
	unsigned int ss1Pos = P25_SS1_START;

	while (ss0Pos < start) {
		ss0Pos += P25_SS_INCREMENT;
		ss1Pos += P25_SS_INCREMENT;
	}

	unsigned int n = 0U;
	for (unsigned int i = start; i < stop; i++) {
		if (i == ss0Pos) {
			ss0Pos += P25_SS_INCREMENT;
		} else if (i == ss1Pos) {
			ss1Pos += P25_SS_INCREMENT;
		} else {
			bool b = READ_BIT(in, n);
			WRITE_BIT(out, i, b);
			n++;
		}
	}

	return n;
}
Example #6
0
void CDMRTrellis::tribitsToBits(const unsigned char* tribits, unsigned char* payload) const
{
	for (unsigned int i = 0U; i < 48U; i++) {
		unsigned char tribit = tribits[i];

		bool b1 = (tribit & 0x04U) == 0x04U;
		bool b2 = (tribit & 0x02U) == 0x02U;
		bool b3 = (tribit & 0x01U) == 0x01U;

		unsigned int n = 143U - i * 3U;

		WRITE_BIT(payload, n, b1);
		n--;
		WRITE_BIT(payload, n, b2);
		n--;
		WRITE_BIT(payload, n, b3);
	}
}
void ProbabilityCoder::WriteSymbol(unsigned int symbol){
	if ( max_val <= 1 ){
		assert(symbol == 1);
		return;
	}
	unsigned int new_max=0;
	for ( unsigned int a=1;a<=max_val;a<<=1){
		WRITE_BIT(symbol&a);
		if ( symbol&a ){
			new_max = a;
		}
	}
	max_val = new_max;
}
Example #8
0
void CDMRRX::processCACH(const unsigned char* buffer)
{
	bool word[7U];

	word[0U] = (buffer[0U] & 0x80U) == 0x80U;
	word[1U] = (buffer[0U] & 0x08U) == 0x08U;

	word[2U] = (buffer[1U] & 0x80U) == 0x80U;
	word[3U] = (buffer[1U] & 0x08U) == 0x08U;

	word[4U] = (buffer[1U] & 0x02U) == 0x02U;
	word[5U] = (buffer[2U] & 0x20U) == 0x20U;
	word[6U] = (buffer[2U] & 0x02U) == 0x02U;

	CHamming::decode743(word);

	if (!word[2U] && word[3U])
		m_shortN = 0U;
	else if (word[2U] && !word[3U])
		m_shortN = 3U;

	for (unsigned int i = 0U; i < 17U; i++) {
		unsigned int m = CACH_INTERLEAVE[i];
		bool b = READ_BIT(buffer, m) != 0x00U;

		unsigned int n = i + (m_shortN * 17U);
		WRITE_BIT(m_shortLC, n, b);
	}

	if (word[2U] && !word[3U]) {
		unsigned char lc[5U];

		CDMRShortLC shortLC;
		bool valid = shortLC.decode(m_shortLC, lc);

		if (valid)
			LogMessage("  [CACH] AT=%d TC=%d LCSS=%d%d %02X %02X %02X %02X %02X %02X %02X %02X %02X LC=%02X %02X %02X %02X %02X", word[0U] ? 1 : 0, word[1U] ? 1 : 0, word[2U] ? 1 : 0, word[3U] ? 1 : 0, m_shortLC[0U], m_shortLC[1U], m_shortLC[2U], m_shortLC[3U], m_shortLC[4U], m_shortLC[5U], m_shortLC[6U], m_shortLC[7U], m_shortLC[8U], lc[0U], lc[1U], lc[2U], lc[3U], lc[4U]);
		else
			LogMessage("  [CACH] AT=%d TC=%d LCSS=%d%d %02X %02X %02X %02X %02X %02X %02X %02X %02X <Invalid LC>", word[0U] ? 1 : 0, word[1U] ? 1 : 0, word[2U] ? 1 : 0, word[3U] ? 1 : 0, m_shortLC[0U], m_shortLC[1U], m_shortLC[2U], m_shortLC[3U], m_shortLC[4U], m_shortLC[5U], m_shortLC[6U], m_shortLC[7U], m_shortLC[8U]);
	} else {
		LogMessage("  [CACH] AT=%d TC=%d LCSS=%d%d", word[0U] ? 1 : 0, word[1U] ? 1 : 0, word[2U] ? 1 : 0, word[3U] ? 1 : 0);
	}

	m_shortN++;
	if (m_shortN >= 4U)
		m_shortN = 0U;

	m_slotNo = word[1U] ? 2U : 1U;
}
Example #9
0
void CBCH::encode(unsigned char* nid)
{
	assert(nid != NULL);

	int data[16];
	for (int i = 0; i < 16; i++)
		data[i] = READ_BIT(nid, i) ? 1 : 0;

	int bb[63];
	encode(data, bb);

	for (int i = 0; i < (length - k); i++) {
		bool b = bb[i] == 1;
		WRITE_BIT(nid, i + 16U, b);
	}
}
Example #10
0
void CDMRRX::processBit(bool b)
{
	WRITE_BIT(m_buffer, m_pos, b);
	m_pos++;

	if (m_pos == DMR_FRAME_LENGTH_BITS) {
		// CUtils::dump("DMR Frame bytes", m_buffer, DMR_FRAME_LENGTH_BYTES);

		switch (m_type) {
		case SYNC_AUDIO: {
				CAMBEFEC fec;
				unsigned int ber = fec.regenerateDMR(m_buffer);
				LogMessage("%u [Audio Sync] BER=%.1f%%", m_slotNo, float(ber) / 1.41F);
				m_n = 0U;

				if (m_socket != NULL && m_slotNo == m_udpSlot)
					writeAMBE(m_buffer);
		}
			break;
		case SYNC_DATA:
			processDataSync(m_buffer);
			break;
		case SYNC_NONE:
			processAudio(m_buffer);
			break;
		default:
			break;
		}

		m_type = SYNC_NONE;

		m_count++;
		if (m_count >= 10U) {
			if (m_idleBits == 0U) m_idleBits = 1U;
			LogMessage("Signal lost, BER=%.1f%%", float(m_idleErrs * 100U) / float(m_idleBits));
			m_receiving = false;
			m_idleBits = 0U;
			m_idleErrs = 0U;
		}
	}

	if (m_pos == (DMR_FRAME_LENGTH_BITS + DMR_CACH_LENGTH_BITS)) {
		// CUtils::dump("DMR CACH bytes", m_buffer + DMR_FRAME_LENGTH_BYTES, DMR_CACH_LENGTH_BYTES);
		processCACH(m_buffer + DMR_FRAME_LENGTH_BYTES);
		m_pos = 0U;
	}
}
Example #11
0
void *
break_outguess_prepare(short *dcts, int bits)
{
	struct ogobj *ogob;
	int i, j, max;
	short val;
	
	ogob = malloc(sizeof(struct ogobj));
	if (ogob == NULL)
		err(1, "malloc");

	ogob->bits = bits;

	max = sizeof(ogob->coeff) * 8;
	j = 0;
	for (i = 0; i < bits && j < max; i++) {
		val = dcts[i];

		WRITE_BIT(ogob->coeff, j, (val & 0x01));
		j++;
	}
	
	return (ogob);
}
Example #12
0
bool CP25Control::writeModem(unsigned char* data, unsigned int len)
{
	assert(data != NULL);

	bool sync = data[1U] == 0x01U;

	if (data[0U] == TAG_LOST && m_rfState == RS_RF_AUDIO) {
		if (m_rssi != 0U)
			LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
		else
			LogMessage("P25, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));

		if (m_netState == RS_NET_IDLE)
			m_display->clearP25();

		writeNetwork(m_rfLDU, m_lastDUID, true);
		writeNetwork(data + 2U, P25_DUID_TERM, true);
		m_rfState = RS_RF_LISTENING;
		m_rfTimeout.stop();
		m_rfData.reset();
#if defined(DUMP_P25)
		closeFile();
#endif
		return false;
	}

	if (data[0U] == TAG_LOST && m_rfState == RS_RF_DATA) {
		if (m_netState == RS_NET_IDLE)
			m_display->clearP25();

		m_rfState    = RS_RF_LISTENING;
		m_rfPDUCount = 0U;
		m_rfPDUBits  = 0U;
#if defined(DUMP_P25)
		closeFile();
#endif
		return false;
	}

	if (data[0U] == TAG_LOST) {
		m_rfState = RS_RF_LISTENING;
		return false;
	}

	if (!sync && m_rfState == RS_RF_LISTENING)
		return false;

	// Decode the NID
	bool valid = m_nid.decode(data + 2U);

	if (m_rfState == RS_RF_LISTENING && !valid)
		return false;

	unsigned char duid = m_nid.getDUID();
	if (!valid) {
		switch (m_lastDUID) {
		case P25_DUID_HEADER:
		case P25_DUID_LDU2:
			duid = P25_DUID_LDU1;
			break;
		case P25_DUID_LDU1:
			duid = P25_DUID_LDU2;
			break;
		case P25_DUID_PDU:
			duid = P25_DUID_PDU;
			break;
		case P25_DUID_TSDU:
			duid = P25_DUID_TSDU;
			break;
		default:
			break;
		}
	}

	// Have we got RSSI bytes on the end of a P25 LDU?
	if (len == (P25_LDU_FRAME_LENGTH_BYTES + 4U)) {
		uint16_t raw = 0U;
		raw |= (data[218U] << 8) & 0xFF00U;
		raw |= (data[219U] << 0) & 0x00FFU;

		// Convert the raw RSSI to dBm
		int rssi = m_rssiMapper->interpolate(raw);
		if (rssi != 0)
			LogDebug("P25, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi);

		// RSSI is always reported as positive
		m_rssi = (rssi >= 0) ? rssi : -rssi;

		if (m_rssi > m_minRSSI)
			m_minRSSI = m_rssi;
		if (m_rssi < m_maxRSSI)
			m_maxRSSI = m_rssi;

		m_aveRSSI += m_rssi;
		m_rssiCount++;
	}

	if (duid == P25_DUID_LDU1) {
		if (m_rfState == RS_RF_LISTENING) {
			m_rfData.reset();
			bool ret = m_rfData.decodeLDU1(data + 2U);
			if (!ret) {
				m_lastDUID = duid;
				return false;
			}

			unsigned int srcId = m_rfData.getSrcId();

			if (m_selfOnly) {
				if (m_id > 99999999U) {		// Check that the Config DMR-ID is bigger than 8 digits
					if (srcId != m_id / 100U)
						return false;
				}

				else if (m_id > 9999999U) {	// Check that the Config DMR-ID is bigger than 7 digits
					if (srcId != m_id / 10U)
						return false;
				}

				else if (srcId != m_id) {	// All other cases
					return false;
				}
			}

			if (!m_uidOverride) {
				bool found = m_lookup->exists(srcId);
				if (!found)
					return false;
			}

			bool           grp = m_rfData.getLCF() == P25_LCF_GROUP;
			unsigned int dstId = m_rfData.getDstId();
			std::string source = m_lookup->find(srcId);

			LogMessage("P25, received RF voice transmission from %s to %s%u", source.c_str(), grp ? "TG " : "", dstId);
			m_display->writeP25(source.c_str(), grp, dstId, "R");

			m_rfState = RS_RF_AUDIO;

			m_minRSSI = m_rssi;
			m_maxRSSI = m_rssi;
			m_aveRSSI = m_rssi;
			m_rssiCount = 1U;

			createRFHeader();
			writeNetwork(data + 2U, P25_DUID_HEADER, false);
		} else if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, false);
		}

		if (m_rfState == RS_RF_AUDIO) {
			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_LDU1);

			// Regenerate LDU1 Data
			m_rfData.encodeLDU1(data + 2U);

			// Regenerate the Low Speed Data
			m_rfLSD.process(data + 2U);

			// Regenerate Audio
			unsigned int errors = m_audio.process(data + 2U);
			LogDebug("P25, LDU1 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F);

			m_display->writeP25BER(float(errors) / 12.33F);

			m_rfBits += 1233U;
			m_rfErrs += errors;
			m_rfFrames++;
			m_lastDUID = duid;

			// Add busy bits
			addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);

#if defined(DUMP_P25)
			writeFile(data + 2U, len - 2U);
#endif

			::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
			}

			m_display->writeP25RSSI(m_rssi);

			return true;
		}
	} else if (duid == P25_DUID_LDU2) {
		if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, false);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_LDU2);

			// Add the dummy LDU2 data
			m_rfData.encodeLDU2(data + 2U);

			// Regenerate the Low Speed Data
			m_rfLSD.process(data + 2U);

			// Regenerate Audio
			unsigned int errors = m_audio.process(data + 2U);
			LogDebug("P25, LDU2 audio, errs: %u/1233 (%.1f%%)", errors, float(errors) / 12.33F);

			m_display->writeP25BER(float(errors) / 12.33F);

			m_rfBits += 1233U;
			m_rfErrs += errors;
			m_rfFrames++;
			m_lastDUID = duid;

			// Add busy bits
			addBusyBits(data + 2U, P25_LDU_FRAME_LENGTH_BITS, false, true);

#if defined(DUMP_P25)
			writeFile(data + 2U, len - 2U);
#endif

			::memcpy(m_rfLDU, data + 2U, P25_LDU_FRAME_LENGTH_BYTES);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_LDU_FRAME_LENGTH_BYTES + 2U);
			}

			m_display->writeP25RSSI(m_rssi);

			return true;
		}
	} else if (duid == P25_DUID_TSDU) {
		if (m_rfState != RS_RF_DATA) {
			m_rfPDUCount = 0U;
			m_rfPDUBits = 0U;
			m_rfState = RS_RF_DATA;
			m_rfDataFrames = 0U;
		}
	
		bool ret = m_rfData.decodeTSDU(data + 2U);
		if (!ret) {
			m_lastDUID = duid;
			return false;
		}
	
		unsigned int srcId = m_rfData.getSrcId();
		unsigned int dstId = m_rfData.getDstId();
	
		unsigned char data[P25_TSDU_FRAME_LENGTH_BYTES + 2U];
	
		switch (m_rfData.getLCF()) {
		case P25_LCF_TSBK_CALL_ALERT:
			LogMessage("P25, received RF TSDU transmission, CALL ALERT from %u to %u", srcId, dstId);
			::memset(data + 2U, 0x00U, P25_TSDU_FRAME_LENGTH_BYTES);
	
			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TSDU);

			// Regenerate TDULC Data
			m_rfData.encodeTSDU(data + 2U);

			// Add busy bits
			addBusyBits(data + 2U, P25_TSDU_FRAME_LENGTH_BITS, true, false);

			// Set first busy bits to 1,1
			setBusyBits(data + 2U, P25_SS0_START, true, true);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;

				writeQueueRF(data, P25_TSDU_FRAME_LENGTH_BYTES + 2U);
			}
			break;
		case P25_LCF_TSBK_ACK_RSP_FNE:
			LogMessage("P25, received RF TSDU transmission, ACK RESPONSE FNE from %u to %u", srcId, dstId);
			::memset(data + 2U, 0x00U, P25_TSDU_FRAME_LENGTH_BYTES);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TSDU);

			// Regenerate TDULC Data
			m_rfData.encodeTSDU(data + 2U);

			// Add busy bits
			addBusyBits(data + 2U, P25_TSDU_FRAME_LENGTH_BITS, true, false);

			// Set first busy bits to 1,1
			setBusyBits(data + 2U, P25_SS0_START, true, true);

			if (m_duplex) {
				data[0U] = TAG_DATA;
				data[1U] = 0x00U;

				writeQueueRF(data, P25_TSDU_FRAME_LENGTH_BYTES + 2U);
			}
			break;
		default:
			LogMessage("P25, recieved RF TSDU transmission, unhandled LCF $%02X", m_rfData.getLCF());
			break;
		}

		m_rfState = RS_RF_LISTENING;
		return true;
	} else if (duid == P25_DUID_TERM || duid == P25_DUID_TERM_LC) {
		if (m_rfState == RS_RF_AUDIO) {
			writeNetwork(m_rfLDU, m_lastDUID, true);

			::memset(data + 2U, 0x00U, P25_TERM_FRAME_LENGTH_BYTES);

			// Regenerate Sync
			CSync::addP25Sync(data + 2U);

			// Regenerate NID
			m_nid.encode(data + 2U, P25_DUID_TERM);

			// Add busy bits
			addBusyBits(data + 2U, P25_TERM_FRAME_LENGTH_BITS, false, true);

			m_rfState = RS_RF_LISTENING;
			m_rfTimeout.stop();
			m_rfData.reset();
			m_lastDUID = duid;

			if (m_rssi != 0U)
				LogMessage("P25, received RF end of voice transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
			else
				LogMessage("P25, received RF end of voice transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 5.56F, float(m_rfErrs * 100U) / float(m_rfBits));

			m_display->clearP25();

#if defined(DUMP_P25)
			closeFile();
#endif

			writeNetwork(data + 2U, P25_DUID_TERM, true);

			if (m_duplex) {
				data[0U] = TAG_EOT;
				data[1U] = 0x00U;
				writeQueueRF(data, P25_TERM_FRAME_LENGTH_BYTES + 2U);
			}
		}
	} else if (duid == P25_DUID_PDU) {
		if (m_rfState != RS_RF_DATA) {
			m_rfPDUCount   = 0U;
			m_rfPDUBits    = 0U;
			m_rfState      = RS_RF_DATA;
			m_rfDataFrames = 0U;
		}

		unsigned int start = m_rfPDUCount * P25_LDU_FRAME_LENGTH_BITS;

		unsigned char buffer[P25_LDU_FRAME_LENGTH_BYTES];
		unsigned int bits = CP25Utils::decode(data + 2U, buffer, start, start + P25_LDU_FRAME_LENGTH_BITS);

		for (unsigned int i = 0U; i < bits; i++, m_rfPDUBits++) {
			bool b = READ_BIT(buffer, i);
			WRITE_BIT(m_rfPDU, m_rfPDUBits, b);
		}

		if (m_rfPDUCount == 0U) {
			CP25Trellis trellis;
			unsigned char header[P25_PDU_HEADER_LENGTH_BYTES];
			bool valid = trellis.decode12(m_rfPDU + P25_SYNC_LENGTH_BYTES + P25_NID_LENGTH_BYTES, header);
			if (valid)
				valid = CCRC::checkCCITT162(header, P25_PDU_HEADER_LENGTH_BYTES);

			if (valid) {
				unsigned int llId = (header[3U] << 16) + (header[4U] << 8) + header[5U];
				unsigned int sap  = header[1U] & 0x3FU;
				m_rfDataFrames    = header[6U] & 0x7FU;

				LogMessage("P25, received RF data transmission for Local Link Id %u, SAP %u, %u blocks", llId, sap, m_rfDataFrames);
			} else {
				m_rfPDUCount   = 0U;
				m_rfPDUBits    = 0U;
				m_rfState      = RS_RF_LISTENING;
				m_rfDataFrames = 0U;
			}
		}

		if (m_rfState == RS_RF_DATA) {
			m_rfPDUCount++;

			unsigned int bitLength = ((m_rfDataFrames + 1U) * P25_PDU_FEC_LENGTH_BITS) + P25_SYNC_LENGTH_BITS + P25_NID_LENGTH_BITS;

			if (m_rfPDUBits >= bitLength) {
				unsigned int offset = P25_SYNC_LENGTH_BYTES + P25_NID_LENGTH_BYTES;

				// Regenerate the PDU header
				CP25Trellis trellis;
				unsigned char header[P25_PDU_HEADER_LENGTH_BYTES];
				trellis.decode12(m_rfPDU + offset, header);
				trellis.encode12(header, m_rfPDU + offset);
				offset += P25_PDU_FEC_LENGTH_BITS;

				// Regenerate the PDU data
				for (unsigned int i = 0U; i < m_rfDataFrames; i++) {
					unsigned char data[P25_PDU_CONFIRMED_LENGTH_BYTES];

					bool valid = trellis.decode34(m_rfPDU + offset, data);
					if (valid) {
						trellis.encode34(data, m_rfPDU + offset);
					} else {
						valid = trellis.decode12(m_rfPDU + offset, data);
						if (valid)
							trellis.encode12(data, m_rfPDU + offset);
					}

					offset += P25_PDU_FEC_LENGTH_BITS;
				}

				unsigned char pdu[1024U];

				// Add the data
				unsigned int newBitLength = CP25Utils::encode(m_rfPDU, pdu + 2U, bitLength);
				unsigned int newByteLength = newBitLength / 8U;
				if ((newBitLength % 8U) > 0U)
					newByteLength++;

				// Regenerate Sync
				CSync::addP25Sync(pdu + 2U);

				// Regenerate NID
				m_nid.encode(pdu + 2U, P25_DUID_PDU);

				// Add busy bits
				addBusyBits(pdu + 2U, newBitLength, false, true);

				if (m_duplex) {
					pdu[0U] = TAG_DATA;
					pdu[1U] = 0x00U;
					writeQueueRF(pdu, newByteLength + 2U);
				}

				LogMessage("P25, ended RF data transmission");
				m_display->clearP25();

				m_rfPDUCount = 0U;
				m_rfPDUBits = 0U;
				m_rfState = RS_RF_LISTENING;
				m_rfDataFrames = 0U;
			}

			return true;
		}
	}

	return false;
}