Example #1
0
//----------------------------------------------------------------------------
void ExtremalQuery::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);
    mCullState = new0 CullState();
    mCullState->Enabled = false;
    mRenderer->SetOverrideCullState(mCullState);

    const int numVertices = 32;
    CreateConvexPolyhedron(numVertices);
    mScene->AttachChild(CreateVisualConvexPolyhedron());

    // Use small spheres to show the extreme points in the camera's right
    // direction.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);

    StandardMesh sm(vformat);
    VertexColor3Effect* effect = new0 VertexColor3Effect();

    // maximum sphere
    mMaxSphere = sm.Sphere(8, 8, 0.05f);
    mMaxSphere->SetEffectInstance(effect->CreateInstance());
    mScene->AttachChild(mMaxSphere);

    // minimum sphere
    mMinSphere = sm.Sphere(8, 8, 0.05f);
    mMinSphere->SetEffectInstance(effect->CreateInstance());
    mScene->AttachChild(mMinSphere);

    UpdateExtremePoints();
}
Example #2
0
//----------------------------------------------------------------------------
void BlendedAnimations::CreateScene ()
{
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);

	mScene = new0 Node();
	mScene->AttachChild(mManager.GetRoot());

	// Create a floor to walk on.
	VertexFormat* vformat = VertexFormat::Create(3,
	                        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
	                        VertexFormat::AU_NORMAL, VertexFormat::AT_FLOAT3, 0,
	                        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

	mFloor = StandardMesh(vformat).Rectangle(2, 2, 1024.0f, 2048.0f);
	VertexBufferAccessor vba(mFloor);
	for (int i = 0; i < vba.GetNumVertices(); ++i)
	{
		Float2& tcoord = vba.TCoord<Float2>(0, i);
		tcoord[0] *= 64.0f;
		tcoord[1] *= 256.0f;
	}

	std::string textureName = Environment::GetPathR("Grating.wmtf");
	Texture2D* texture = Texture2D::LoadWMTF(textureName);
	texture->GenerateMipmaps();
	mFloor->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
	                          Shader::SF_LINEAR_LINEAR, Shader::SC_REPEAT, Shader::SC_REPEAT));

	mScene->AttachChild(mFloor);

	ComputeVisibleSet(mScene);
}
//----------------------------------------------------------------------------
void FreeFormDeformation::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Load the small brain data set.  It has positions (x,y,z) and texture
    // coordinates (u,v).
    std::string path = Environment::GetPathR("SmallBrainPT2.wmvf");
    Visual::PrimitiveType type;
    VertexFormat* vformat;
    VertexBuffer* vbuffer;
    IndexBuffer* ibuffer;
    Visual::LoadWMVF(path, type, vformat, vbuffer, ibuffer);

    path = Environment::GetPathR("Quartz.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);
    mMesh = new0 TriMesh(vformat, vbuffer, ibuffer);
    mMesh->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
        Shader::SF_LINEAR, Shader::SC_CLAMP_EDGE, Shader::SC_CLAMP_EDGE));

    mTrnNode->AttachChild(mMesh);

    CreateBSplineVolume();
    CreatePolylines();
    CreateControlBoxes();
}
//----------------------------------------------------------------------------
void FoucaultPendulum::CreateScene ()
{
    mScene = new0 Node();
    mScene->AttachChild(CreateFloor());
    mScene->AttachChild(CreatePath());
    mScene->AttachChild(CreatePendulum());
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);
}
//----------------------------------------------------------------------------
void SimplePendulumFriction::CreateScene ()
{
	mScene = new0 Node();
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);

	mScene->AttachChild(CreateFloor());
	mScene->AttachChild(CreatePendulum());
}
//----------------------------------------------------------------------------
void PointInPolyhedron::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Create a semitransparent sphere mesh.
    VertexFormat* vformatMesh = VertexFormat::Create(1,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0);
    TriMesh* mesh = StandardMesh(vformatMesh).Sphere(16, 16, 1.0f);
    Material* material = new0 Material();
    material->Diffuse = Float4(1.0f, 0.0f, 0.0f, 0.25f);
    VisualEffectInstance* instance = MaterialEffect::CreateUniqueInstance(
        material);
    instance->GetEffect()->GetAlphaState(0, 0)->BlendEnabled = true;
    mesh->SetEffectInstance(instance);

    // Create the data structures for the polyhedron that represents the
    // sphere mesh.
    CreateQuery(mesh);

    // Create a set of random points.  Points inside the polyhedron are
    // colored white.  Points outside the polyhedron are colored blue.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);
    int vstride = vformat->GetStride();

    VertexBuffer* vbuffer = new0 VertexBuffer(1024, vstride);
    VertexBufferAccessor vba(vformat, vbuffer);
    Float3 white(1.0f, 1.0f, 1.0f);
    Float3 blue(0.0f, 0.0f, 1.0f);
    for (int i = 0; i < vba.GetNumVertices(); ++i)
    {
        Vector3f random(Mathf::SymmetricRandom(),
            Mathf::SymmetricRandom(), Mathf::SymmetricRandom());

        vba.Position<Vector3f>(i) = random;

        if (mQuery->Contains(random))
        {
            vba.Color<Float3>(0, i) = white;
        }
        else
        {
            vba.Color<Float3>(0, i) = blue;
        }
    }

    DeleteQuery();

    mPoints = new0 Polypoint(vformat, vbuffer);
    mPoints->SetEffectInstance(VertexColor3Effect::CreateUniqueInstance());

    mScene->AttachChild(mPoints);
    mScene->AttachChild(mesh);
}
Example #7
0
//----------------------------------------------------------------------------
void WrigglingSnake::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    CreateSnake();
}
Example #8
0
//----------------------------------------------------------------------------
void PlanarShadows::CreateScene ()
{
	mScene = new0 Node();
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);

	LoadBiped();
	CreatePlanes();
	CreatePlanarShadow();
}
//----------------------------------------------------------------------------
void PlanarReflections::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    LoadBiped();
    CreatePlanes();
    CreatePlanarReflection();
    mScene->LocalTransform.SetRotate(HMatrix(AVector::UNIT_Z, 0.75f));
}
//----------------------------------------------------------------------------
void GelatinCube::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    CreateSprings();
    CreateBox();
}
//----------------------------------------------------------------------------
void RoughPlaneSolidBox::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    mScene->AttachChild(CreateGround());
    mScene->AttachChild(CreateRamp());
    mScene->AttachChild(CreateBox());

    mScene->LocalTransform.SetRotate(HMatrix(AVector::UNIT_Z, 0.661917f));
}
//----------------------------------------------------------------------------
void PolyhedronDistance::CreateScene ()
{
    // ** layout of scene graph **
    // scene
    //     tetra[4]
    //     plane
    //     line[2]

    // Create the objects.
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    TriMesh* plane = CreatePlane();
    int i;
    for (i = 0; i < 2; ++i)
    {
        // Build the display tetrahedra.
        float size = 0.3f + 0.2f*(i + 1);
        if (i == 0)
        {
            mEdgeLength = size;
        }
        mTetras[i] = CreateTetra(size, false);
        mSegments[i] = CreateSegment();

        // Build the point tetrahedra.
        mSmall = 0.02f;
        mTetras[i + 2] = CreateTetra(mSmall, true);
    }

    // Tetrahedra faces.
    mFaces = new1<Tuple<3,int> >(4);
    mFaces[0][0] = 1;  mFaces[0][1] = 2;  mFaces[0][2] = 0;
    mFaces[1][0] = 0;  mFaces[1][1] = 3;  mFaces[1][2] = 2;
    mFaces[2][0] = 0;  mFaces[2][1] = 1;  mFaces[2][2] = 3;
    mFaces[3][0] = 1;  mFaces[3][1] = 2;  mFaces[3][2] = 3;

    // Transform the tetrahedra.
    mTetras[0]->LocalTransform.SetRotate(HMatrix(AVector::UNIT_Z, 1.1f));
    mTetras[0]->LocalTransform.SetTranslate(APoint(-0.25f, 0.1f, 0.3f));
    mTetras[1]->LocalTransform.SetRotate(HMatrix(AVector::UNIT_Z, 0.3f));
    mTetras[1]->LocalTransform.SetTranslate(APoint(0.25f, 0.4f, 0.5f));

    // Set parent-child links.
    mScene->AttachChild(plane);
    for (i = 0; i < 2; ++i)
    {
        mScene->AttachChild(mTetras[i]);
        mScene->AttachChild(mSegments[i]);
        mScene->AttachChild(mTetras[i + 2]);
    }
}
//----------------------------------------------------------------------------
void WaterDropFormation::CreateScene ()
{
	mScene = new0 Node();
	mTrnNode = new0 Node();
	mScene->AttachChild(mTrnNode);
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);

	CreatePlane();
	CreateWall();
	CreateWaterRoot();

	Configuration0();
}
Example #14
0
//----------------------------------------------------------------------------
bool FxCompiler::CreateEffect (const Program& vProgram,
    const Program& pProgram)
{
    InputArray vInputs, pInputs;
    OutputArray vOutputs, pOutputs;
    ConstantArray vConstants, pConstants;
    SamplerArray vSamplers, pSamplers;

    if (!Process(vProgram, vInputs, vOutputs, vConstants, vSamplers))
    {
        return false;
    }

    if (!Process(pProgram, pInputs, pOutputs, pConstants, pSamplers))
    {
        return false;
    }

    mVShader = (VertexShader*)CreateShader(true, vProgram, vInputs, vOutputs,
        vConstants, vSamplers);

    mPShader = (PixelShader*)CreateShader(false, pProgram, pInputs, pOutputs,
        pConstants, pSamplers);

    VisualPass* pass = new0 VisualPass();
    pass->SetVertexShader(mVShader);
    pass->SetPixelShader(mPShader);

    // TODO.  Once Cg FX files are parsed, the global state from each pass
    // should be set here.  For now, the application is responsible for
    // setting the global state after the *.wmfx file is loaded.
    pass->SetAlphaState(new0 AlphaState());
    pass->SetCullState(new0 CullState());
    pass->SetDepthState(new0 DepthState());
    pass->SetOffsetState(new0 OffsetState());
    pass->SetStencilState(new0 StencilState());
    pass->SetWireState(new0 WireState());

    // TODO.  Once Cg FX files are parsed, we might have multiple techniques
    // or multiple passes per technique.
    VisualTechnique* technique = new0 VisualTechnique();
    technique->InsertPass(pass);

    mEffect = new0 VisualEffect();
    mEffect->InsertTechnique(technique);
    return true;
}
Example #15
0
//----------------------------------------------------------------------------
void NonuniformScale::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

    mMesh = StandardMesh(vformat).Dodecahedron();
    std::string path = Environment::GetPathR("Flower.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);
    mMesh->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
        Shader::SF_LINEAR, Shader::SC_CLAMP_EDGE, Shader::SC_CLAMP_EDGE));
    mScene->AttachChild(mMesh);
}
Example #16
0
//----------------------------------------------------------------------------
void IntersectTriangleCylinder::CreateScene ()
{
    mScene = new0 Node();
    mCullState = new0 CullState();
    mCullState->Enabled = false;
    mRenderer->SetOverrideCullState(mCullState);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    VertexFormat* vformat = VertexFormat::Create(2,
                            VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
                            VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);
    int vstride = vformat->GetStride();

    VertexBuffer* vbuffer = new0 VertexBuffer(3, vstride);
    VertexBufferAccessor vba(vformat, vbuffer);
    vba.Position<Vector3f>(0) = (const Vector3f&)mTriangleMVertex0;
    vba.Color<Float3>(0, 0) = Float3(0.0f, 0.0f, 1.0f);
    vba.Position<Vector3f>(1) = (const Vector3f&)mTriangleMVertex1;
    vba.Color<Float3>(0, 1) = Float3(0.0f, 0.0f, 1.0f);
    vba.Position<Vector3f>(2) = (const Vector3f&)mTriangleMVertex2;
    vba.Color<Float3>(0, 2) = Float3(0.0f, 0.0f, 1.0f);

    IndexBuffer* ibuffer = new0 IndexBuffer(3, sizeof(int));
    int* indices = (int*)ibuffer->GetData();
    indices[0] = 0;
    indices[1] = 1;
    indices[2] = 2;
    mTMesh = new0 TriMesh(vformat, vbuffer, ibuffer);
    mTMesh->SetEffectInstance(
        VertexColor3Effect::CreateUniqueInstance());
    mTMesh->LocalTransform.SetTranslate(APoint(0.0f, 1.125f, 0.0f));

    mCMesh = StandardMesh(vformat).Cylinder(8, 16, mCylinderRadius,
                                            mCylinderHeight, false);
    vba.ApplyTo(mCMesh);
    for (int i = 0; i < vba.GetNumVertices(); ++i)
    {
        vba.Color<Float3>(0, i) = Float3(1.0f, 0.0f, 0.0f);
    }
    mCMesh->SetEffectInstance(
        VertexColor3Effect::CreateUniqueInstance());

    mScene->AttachChild(mTMesh);
    mScene->AttachChild(mCMesh);
}
Example #17
0
//----------------------------------------------------------------------------
void BouncingBall::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    CreateBall();
    CreateFloor();
    CreateWall();
    mScene->AttachChild(mFloor);
    mScene->AttachChild(mWall);

    // The floor reflects an image of the ball.
    mPREffect = new0 PlanarReflectionEffect(1);
    mPREffect->SetPlane(0, mFloor);
    mPREffect->SetReflectance(0, 0.2f);
}
Example #18
0
//----------------------------------------------------------------------------
void ConvexHull3D::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);
    mCullState = new0 CullState();
    mCullState->Enabled = false;
    mRenderer->SetOverrideCullState(mCullState);

    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);

    TriMesh* sphere = StandardMesh(vformat).Sphere(8, 8, 0.01f);
    sphere->SetEffectInstance(VertexColor3Effect::CreateUniqueInstance());
    mTrnNode->SetChild(1, sphere);

    // The current file is "Data/data01.txt".
    LoadData();
}
//----------------------------------------------------------------------------
void HelixTubeSurface::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

    mCurve = CreateCurve();
    Float2 tcoordMin(0.0f, 0.0f), tcoordMax(1.0f, 32.0f);
    TubeSurface* tube = new TubeSurface(mCurve, Radial, false,
        Vector3f::UNIT_Z, 256, 32, false, true, &tcoordMin, &tcoordMax,
        vformat);

    std::string path = Environment::GetPathR("Grating.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);
    tube->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
        Shader::SF_LINEAR, Shader::SC_REPEAT, Shader::SC_REPEAT));

    mScene->AttachChild(tube);
}
//----------------------------------------------------------------------------
void ClodMeshes::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Load the face model.
#ifdef WM5_LITTLE_ENDIAN
    std::string path = Environment::GetPathR("FacePN.wmof");
#else
    std::string path = Environment::GetPathR("FacePN.be.wmof");
#endif
    InStream inStream;
    inStream.Load(path);
    TriMeshPtr mesh = StaticCast<TriMesh>(inStream.GetObjectAt(0));
    VertexBufferAccessor vba0(mesh);

    // Remove the normals and add texture coordinates.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
    int vstride = vformat->GetStride();

    VertexBuffer* vbuffer = new0 VertexBuffer(vba0.GetNumVertices(), vstride);
    VertexBufferAccessor vba1(vformat, vbuffer);

    float xmin = Mathf::MAX_REAL, xmax = -Mathf::MAX_REAL;
    float ymin = Mathf::MAX_REAL, ymax = -Mathf::MAX_REAL;
    int i;
    for (i = 0; i < vba0.GetNumVertices(); ++i)
    {
        Float3 position = vba0.Position<Float3>(i);
        vba1.Position<Float3>(i) = position;

        float x = position[0];
        float y = position[2];
        vba1.TCoord<Float2>(0, i) = Float2(x, y);

        if (x < xmin)
        {
            xmin = x;
        }
        if (x > xmax)
        {
            xmax = x;
        }
        if (y < ymin)
        {
            ymin = y;
        }
        if (y > ymax)
        {
            ymax = y;
        }
    }

    float xmult = 1.0f/(xmax - xmin);
    float ymult = 1.0f/(ymax - ymin);
    for (i = 0; i < vba1.GetNumVertices(); ++i)
    {
        Float2 tcoord = vba1.TCoord<Float2>(0, i);
        vba1.TCoord<Float2>(0,i) = Float2(
            (tcoord[0] - xmin)*xmult,
            (tcoord[1] - ymin)*ymult);
    }

    mesh->SetVertexFormat(vformat);
    mesh->SetVertexBuffer(vbuffer);

    // Create a texture for the face.  Use the generated texture coordinates.
    Texture2DEffect* effect = new0 Texture2DEffect(Shader::SF_LINEAR);
    path = Environment::GetPathR("Magician.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);

#ifdef USE_CLOD_MESH
    // Create the collapse records to be shared by two CLOD meshes.
    int numRecords = 0;
    CollapseRecord* records = 0;
    CreateClodMesh ccm(mesh, numRecords, records);
    CollapseRecordArray* recordArray = new0 CollapseRecordArray(numRecords,
        records);

    mClod[0] = new0 ClodMesh(mesh, recordArray);
    mClod[0]->LocalTransform = mesh->LocalTransform;
    mClod[0]->LocalTransform.SetTranslate(mesh->LocalTransform.GetTranslate()
        - 150.0f*AVector::UNIT_X);
    mClod[0]->SetEffectInstance(effect->CreateInstance(texture));
    mTrnNode->AttachChild(mClod[0]);

    mClod[1] = new0 ClodMesh(mesh, recordArray);
    mClod[1]->LocalTransform = mesh->LocalTransform;
    mClod[1]->LocalTransform.SetTranslate(mesh->LocalTransform.GetTranslate()
        + 150.0f*AVector::UNIT_X - 100.0f*AVector::UNIT_Y);
    mClod[1]->SetEffectInstance(effect->CreateInstance(texture));
    mTrnNode->AttachChild(mClod[1]);

    mActive = mClod[0];
#else
    IndexBuffer* ibuffer = mesh->GetIndexBuffer();
    TriMesh* face = new0 TriMesh(vformat, vbuffer,ibuffer);
    face->LocalTransform = mesh->LocalTransform;
    face->LocalTransform.SetTranslate(mesh->LocalTransform.GetTranslate() -
        150.0f*AVector::UNIT_X);
    face->SetEffectInstance(effect->CreateInstance(texture));
    mTrnNode->AttachChild(face);

    face = new0 TriMesh(vformat, vbuffer, ibuffer);
    face->LocalTransform = mesh->LocalTransform;
    face->LocalTransform.SetTranslate(mesh->LocalTransform.GetTranslate() +
        150.0f*AVector::UNIT_X);
    face->SetEffectInstance(effect->CreateInstance(texture));
    mTrnNode->AttachChild(face);
#endif
}
Example #21
0
//----------------------------------------------------------------------------
void CubeMaps::CreateScene ()
{
    // Create the root of the scene.
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Create the walls of the cube room.  Each of the six texture images is
    // RGBA 64-by-64.
    Node* room = new0 Node();
    mScene->AttachChild(room);

    // Index buffer shared by the room walls.
    IndexBuffer* ibuffer = new0 IndexBuffer(6, sizeof(int));
    int* indices = (int*)ibuffer->GetData();
    indices[0] = 0;  indices[1] = 1;  indices[2] = 3;
    indices[3] = 0;  indices[4] = 3;  indices[5] = 2;

    // The vertex format shared by the room walls.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
    int vstride = vformat->GetStride();
    VertexBufferAccessor vba;

    // The texture effect shared by the room walls.
    Texture2DEffect* effect = new0 Texture2DEffect(Shader::SF_LINEAR);

    VertexBuffer* vbuffer;
    TriMesh* wall;
    std::string textureName;

    // +x wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(+1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(1) = Float3(+1.0f, -1.0f, +1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, +1.0f, -1.0f);
    vba.Position<Float3>(3) = Float3(+1.0f, +1.0f, +1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("XpFace.wmtf");
    Texture2D* xpTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(xpTexture));

    // -x wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(-1.0f, -1.0f, +1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(2) = Float3(-1.0f, +1.0f, +1.0f);
    vba.Position<Float3>(3) = Float3(-1.0f, +1.0f, -1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("XmFace.wmtf");
    Texture2D* xmTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(xmTexture));

    // +y wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(+1.0f, +1.0f, +1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, +1.0f, +1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, +1.0f, -1.0f);
    vba.Position<Float3>(3) = Float3(-1.0f, +1.0f, -1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("YpFace.wmtf");
    Texture2D* ypTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(ypTexture));

    // -y wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(+1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, -1.0f, +1.0f);
    vba.Position<Float3>(3) = Float3(-1.0f, -1.0f, +1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("YmFace.wmtf");
    Texture2D* ymTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(ymTexture));

    // +z wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(+1.0f, -1.0f, +1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, -1.0f, +1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, +1.0f, +1.0f);
    vba.Position<Float3>(3) = Float3(-1.0f, +1.0f, +1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("ZpFace.wmtf");
    Texture2D* zpTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(zpTexture));

    // -z wall
    vbuffer = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer);
    vba.Position<Float3>(0) = Float3(-1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(1) = Float3(+1.0f, -1.0f, -1.0f);
    vba.Position<Float3>(2) = Float3(-1.0f, +1.0f, -1.0f);
    vba.Position<Float3>(3) = Float3(+1.0f, +1.0f, -1.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(0.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(1.0f, 1.0f);
    wall = new0 TriMesh(vformat, vbuffer, ibuffer);
    room->AttachChild(wall);
    textureName = Environment::GetPathR("ZmFace.wmtf");
    Texture2D* zmTexture = Texture2D::LoadWMTF(textureName);
    wall->SetEffectInstance(effect->CreateInstance(zmTexture));

    // A sphere to reflect the environment via a cube map.  The colors will
    // be used to modulate the cube map texture.
    vformat = VertexFormat::Create(3,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_NORMAL, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);
    vstride = vformat->GetStride();

    mSphere = StandardMesh(vformat).Sphere(64, 64, 0.125f);
    room->AttachChild(mSphere);

    // Generate random vertex colors for the sphere.  The StandardMesh class
    // produces a sphere with duplicated vertices along a longitude line.
    // This allows texture coordinates to be assigned in a manner that treats
    // the sphere as if it were a rectangle mesh.  For vertex colors, we want
    // the duplicated vertices to have the same color, so a hash table is used
    // to look up vertex colors for the duplicates.
    vba.ApplyTo(mSphere);
    std::map<Float3,Float3> dataMap;
    for (int i = 0; i < vba.GetNumVertices(); ++i)
    {
        Float3& position = vba.Position<Float3>(i);
        Float3& color = vba.Color<Float3>(0, i);
        std::map<Float3,Float3>::iterator iter = dataMap.find(position);
        if (iter != dataMap.end())
        {
            color = iter->second;
        }
        else
        {
            color[0] = 0.0f;
            color[1] = Mathf::IntervalRandom(0.5f, 0.75f);
            color[2] = Mathf::IntervalRandom(0.75f, 1.0f);
            dataMap.insert(std::make_pair(position, color));
        }
    }

    // Create the cube map and attach it to the sphere.
    std::string effectFile = Environment::GetPathR("CubeMap.wmfx");
    CubeMapEffect* cubeMapEffect = new0 CubeMapEffect(effectFile);

    ShaderFloat* reflectivity = new0 ShaderFloat(1);
    (*reflectivity)[0] = 0.5f;

    std::string cubeName = Environment::GetPathR("CubeMap.wmtf");
    TextureCube* cubeTexture = TextureCube::LoadWMTF(cubeName);
    cubeTexture->GenerateMipmaps();
    mCubeMapInstance = cubeMapEffect->CreateInstance(cubeTexture,
        reflectivity, false);

    mSphere->SetEffectInstance(mCubeMapInstance);

    // Allow culling to be disabled on the sphere so when you move inside
    // the sphere, you can see the previously hidden facets and verify that
    // the cube image for those facets is correctly oriented.
    mSphereCullState = cubeMapEffect->GetCullState(0, 0);
}
//----------------------------------------------------------------------------
void CollisionsBoundTree::CreateScene ()
{
    // The root of the scene will have two cylinders as children.
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);
    mCullState = new0 CullState();
    mCullState->Enabled = false;
    mRenderer->SetOverrideCullState(mCullState);

    // Create a texture image to be used by both cylinders.
    Texture2D* texture = new0 Texture2D(Texture::TF_A8R8G8B8, 2, 2, 1);
    unsigned int* data = (unsigned int*)texture->GetData(0);
    data[0] = Color::MakeR8G8B8(0,     0, 255);  // blue
    data[1] = Color::MakeR8G8B8(0,   255, 255);  // cyan
    data[2] = Color::MakeR8G8B8(255,   0,   0);  // red
    data[3] = Color::MakeR8G8B8(255, 255,   0);  // yellow

    Texture2DEffect* effect = new0 Texture2DEffect(Shader::SF_LINEAR);

    // Create two cylinders, one short and thick, one tall and thin.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

    StandardMesh sm(vformat);
    VertexBufferAccessor vba;
    int i;

    mCylinder0 = sm.Cylinder(8, 16, 1.0f, 2.0f, false);
    vba.ApplyTo(mCylinder0);
    for (i = 0; i < vba.GetNumVertices(); ++i)
    {
        vba.TCoord<Float2>(0, i) = mBlueUV;
    }
    mCylinder0->SetEffectInstance(effect->CreateInstance(texture));
    mScene->AttachChild(mCylinder0);

    mCylinder1 = sm.Cylinder(16,8,0.25,4.0,false);
    vba.ApplyTo(mCylinder1);
    for (i = 0; i < vba.GetNumVertices(); ++i)
    {
        vba.TCoord<Float2>(0, i) = mRedUV;
    }
    mCylinder1->SetEffectInstance(effect->CreateInstance(texture));
    mScene->AttachChild(mCylinder1);

    mScene->Update();

    // Set up the collision system.  Record0 handles the collision response.
    // Record1 is not given a callback so that 'double processing' of the
    // events does not occur.
    CTree* tree0 = new0 CTree(mCylinder0, 1, false);
    CRecord* record0 = new0 CRecord(tree0, 0, Response, this);
    CTree* tree1 = new0 CTree(mCylinder1, 1, false);
    CRecord* record1 = new0 CRecord(tree1, 0, 0, 0);
    mGroup = new0 CGroup();
    mGroup->Add(record0);
    mGroup->Add(record1);

    ResetColors();
    mGroup->TestIntersection();
}
Example #23
0
//----------------------------------------------------------------------------
void BSplineSurfaceFitter::CreateScene ()
{
	mScene = new0 Node();
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);
	mCullState = new0 CullState();
	mCullState->Enabled = false;
	mRenderer->SetOverrideCullState(mCullState);

	// Begin with a flat 64x64 height field.
	const int numSamples = 64;
	const float extent = 8.0f;
	VertexFormat* vformat = VertexFormat::Create(2,
	                        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
	                        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
	mHeightField = StandardMesh(vformat).Rectangle(numSamples, numSamples,
	               extent, extent);
	mScene->AttachChild(mHeightField);

	// Set the heights based on a precomputed height field.  Also create a
	// texture image to go with the height field.
	std::string path = Environment::GetPathR("HeightField.wmtf");
	Texture2D* texture = Texture2D::LoadWMTF(path);
	VisualEffectInstance* instance = Texture2DEffect::CreateUniqueInstance(
	                                     texture, Shader::SF_LINEAR, Shader::SC_CLAMP_EDGE,
	                                     Shader::SC_CLAMP_EDGE);
	mHeightField->SetEffectInstance(instance);
	unsigned char* data = (unsigned char*)texture->GetData(0);

	VertexBufferAccessor vba(mHeightField);
	Vector3f** samplePoints = new2<Vector3f>(numSamples, numSamples);
	int i;
	for (i = 0; i < vba.GetNumVertices(); ++i)
	{
		unsigned char value = *data;
		float height = 3.0f*((float)value)/255.0f +
		               0.05f*Mathf::SymmetricRandom();

		*data++ = (unsigned char)Mathf::IntervalRandom(32.0f, 64.0f);
		*data++ = 3*(128 - value/2)/4;
		*data++ = 0;
		data++;

		vba.Position<Vector3f>(i).Z() = height;
		samplePoints[i % numSamples][i / numSamples] =
		    vba.Position<Vector3f>(i);
	}

	// Compute a B-Spline surface with NxN control points, where N < 64.
	// This surface will be sampled to 64x64 and displayed together with the
	// original height field for comparison.
	const int numCtrlPoints = 32;
	const int degree = 3;
	BSplineSurfaceFitf fitter(degree, numCtrlPoints, numSamples, degree,
	                          numCtrlPoints, numSamples, samplePoints);
	delete2(samplePoints);

	vformat = VertexFormat::Create(2,
	                               VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
	                               VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT4, 0);
	mFittedField = StandardMesh(vformat).Rectangle(numSamples, numSamples,
	               extent, extent);
	mScene->AttachChild(mFittedField);

	vba.ApplyTo(mFittedField);
	Float4 translucent(1.0f, 1.0f, 1.0f, 0.5f);
	for (i = 0; i < vba.GetNumVertices(); ++i)
	{
		float u = 0.5f*(vba.Position<Vector3f>(i).X()/extent + 1.0f);
		float v = 0.5f*(vba.Position<Vector3f>(i).Y()/extent + 1.0f);
		vba.Position<Vector3f>(i) = fitter.GetPosition(u, v);
		vba.Color<Float4>(0,i) = translucent;
	}

	instance = VertexColor4Effect::CreateUniqueInstance();
	mFittedField->SetEffectInstance(instance);
	instance->GetEffect()->GetAlphaState(0, 0)->BlendEnabled = true;
}
Example #24
0
//----------------------------------------------------------------------------
void PolygonOffsets::CreateScene ()
{
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_COLOR, VertexFormat::AT_FLOAT3, 0);
    int vstride = vformat->GetStride();

    // Vertices to be shared by rectangles 1 and 3.
    VertexBuffer* vbuffer0 = new0 VertexBuffer(4, vstride);
    VertexBufferAccessor vba(vformat, vbuffer0);
    vba.Position<Float3>(0) = Float3(-1.0f, 0.0f, -1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, 0.0f, +1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, 0.0f, +1.0f);
    vba.Position<Float3>(3) = Float3(+1.0f, 0.0f, -1.0f);
    vba.Color<Float3>(0, 0) = Float3(1.0f, 0.0f, 0.0f);
    vba.Color<Float3>(0, 1) = Float3(1.0f, 0.0f, 0.0f);
    vba.Color<Float3>(0, 2) = Float3(1.0f, 0.0f, 0.0f);
    vba.Color<Float3>(0, 3) = Float3(1.0f, 0.0f, 0.0f);

    // Vertices to be shared by rectangles 2 and 4.
    VertexBuffer* vbuffer1 = new0 VertexBuffer(4, vstride);
    vba.ApplyTo(vformat, vbuffer1);
    vba.Position<Float3>(0) = Float3(-1.0f, 0.0f, -1.0f);
    vba.Position<Float3>(1) = Float3(-1.0f, 0.0f, +1.0f);
    vba.Position<Float3>(2) = Float3(+1.0f, 0.0f, +1.0f);
    vba.Position<Float3>(3) = Float3(+1.0f, 0.0f, -1.0f);
    vba.Color<Float3>(0, 0) = Float3(0.0f, 1.0f, 0.0f);
    vba.Color<Float3>(0, 1) = Float3(0.0f, 1.0f, 0.0f);
    vba.Color<Float3>(0, 2) = Float3(0.0f, 1.0f, 0.0f);
    vba.Color<Float3>(0, 3) = Float3(0.0f, 1.0f, 0.0f);

    // Indices to be shared by all rectangles.
    IndexBuffer* ibuffer = new0 IndexBuffer(6, sizeof(int));
    int* indices = (int*)ibuffer->GetData();
    indices[0] = 0;  indices[1] = 1;  indices[2] = 3;
    indices[3] = 3;  indices[4] = 1;  indices[5] = 2;

    // Effect to be shared by the first three rectangles.
    VertexColor3Effect* effect = new0 VertexColor3Effect();

    // rectangle 1
    TriMesh* mesh = new0 TriMesh(vformat, vbuffer0, ibuffer);
    mesh->SetEffectInstance(effect->CreateInstance());
    mesh->LocalTransform.SetTranslate(APoint(+2.0f, -4.0f, 0.0f));
    mScene->AttachChild(mesh);

    // rectangle 2
    mesh = new0 TriMesh(vformat, vbuffer1, ibuffer);
    mesh->SetEffectInstance(effect->CreateInstance());
    mesh->LocalTransform.SetTranslate(APoint(+2.0f, -4.0f, 0.0f));
    mesh->LocalTransform.SetUniformScale(0.5f);
    mScene->AttachChild(mesh);

    // rectangle 3
    mesh = new0 TriMesh(vformat, vbuffer0, ibuffer);
    mesh->SetEffectInstance(effect->CreateInstance());
    mesh->LocalTransform.SetTranslate(APoint(-2.0f, -4.0f, 0.0f));
    mScene->AttachChild(mesh);

    // rectangle 4
    mesh = new0 TriMesh(vformat, vbuffer1, ibuffer);
    mesh->LocalTransform.SetTranslate(APoint(-2.0f, -4.0f, 0.0f));
    mesh->LocalTransform.SetUniformScale(0.5f);
    mScene->AttachChild(mesh);

    // Set up the polygon offset for rectangle 4.
    effect = new0 VertexColor3Effect();
    OffsetState* ostate = effect->GetOffsetState(0, 0);
    ostate->FillEnabled = true;
    ostate->Scale = -1.0f;
    ostate->Bias = -2.0f;
    mesh->SetEffectInstance(effect->CreateInstance());
}
Example #25
0
//----------------------------------------------------------------------------
void GeodesicHeightField::CreateScene ()
{
	mScene = new0 Node();
	mWireState = new0 WireState();
	mRenderer->SetOverrideWireState(mWireState);
	mCullState = new0 CullState();
	mCullState->Enabled = false;
	mRenderer->SetOverrideCullState(mCullState);

	// Create the ground.  It covers a square with vertices (1,1,0), (1,-1,0),
	// (-1,1,0), and (-1,-1,0).
	VertexFormat* vformat = VertexFormat::Create(3,
	                        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
	                        VertexFormat::AU_NORMAL, VertexFormat::AT_FLOAT3, 0,
	                        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

	const int xSize = 64;
	const int ySize = 64;
	const float xExtent = 1.0f;
	const float yExtent = 1.0f;
	mMesh = StandardMesh(vformat).Rectangle(xSize, ySize, xExtent, yExtent);

	// Create a B-Spline height field.  The heights of the control point are
	// defined in an input file.  The input file is structured as
	//
	// numUCtrlPoints numVCtrlPoints UDegree VDegree
	// z[0][0] z[0][1] ... z[0][numV-1]
	// z[1][0] z[1][1] ... z[1][numV_1]
	// :
	// z[numU-1][0] z[numU-1][1] ... z[numU-1][numV-1]

	std::string path = Environment::GetPathR("ControlPoints.txt");
	std::ifstream inFile(path.c_str());
	int numUCtrlPoints, numVCtrlPoints, uDegree, vDegree;
	double height;
	inFile >> numUCtrlPoints;
	inFile >> numVCtrlPoints;
	inFile >> uDegree;
	inFile >> vDegree;
	Vector3d** ctrlPoints = new2<Vector3d>(numUCtrlPoints, numVCtrlPoints);

	int i;
	for (i = 0; i < numUCtrlPoints; ++i)
	{
		double u = (double)(xExtent*(-1.0f + 2.0f*i/(numUCtrlPoints-1)));
		for (int j = 0; j < numVCtrlPoints; ++j)
		{
			double v = (double)(yExtent*(-1.0f + 2.0f*j/(numVCtrlPoints-1)));
			inFile >> height;
			ctrlPoints[i][j] = Vector3d(u, v, height);
		}
	}
	inFile.close();

	mSurface = new0 BSplineRectangled(numUCtrlPoints, numVCtrlPoints,
	                                  ctrlPoints, uDegree, vDegree, false, false, true, true);

	delete2(ctrlPoints);

	VertexBufferAccessor vba(mMesh);
	for (i = 0; i < vba.GetNumVertices(); ++i)
	{
		Vector3f& position = vba.Position<Vector3f>(i);
		double u = (double)((position.X() + xExtent)/(2.0f*xExtent));
		double v = (double)((position.Y() + yExtent)/(2.0f*yExtent));
		position.Z() = (float)mSurface->P(u,v).Z();
	}
	mMesh->UpdateModelSpace(Visual::GU_NORMALS);

	// Attach an effect that uses lights, material, and texture.
	mMesh->SetEffectInstance(CreateEffectInstance());

	mScene->AttachChild(mMesh);

	// Create the geodesic calculator.
	mGeodesic = new0 BSplineGeodesicd(*mSurface);
	mGeodesic->Subdivisions = 6;
	mGeodesic->Refinements = 1;
	mGeodesic->SearchRadius = 0.1;
	mGeodesic->RefineCallback = &GeodesicHeightField::RefineCallback;
	mPQuantity = (1 << mGeodesic->Subdivisions) + 1;
}
Example #26
0
//----------------------------------------------------------------------------
void MaterialTextures::CreateScene ()
{
    mScene = new0 Node();
    mTrnNode = new0 Node();
    mScene->AttachChild(mTrnNode);
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Create a square object.
    VertexFormat* vformat = VertexFormat::Create(2,
                            VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
                            VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);
    int vstride = vformat->GetStride();

    VertexBuffer* vbuffer = new0 VertexBuffer(4, vstride);
    VertexBufferAccessor vba(vformat, vbuffer);

    vba.Position<Float3>(0) = Float3(-1.0f, -1.0f, 0.0f);
    vba.Position<Float3>(1) = Float3(-1.0f,  1.0f, 0.0f);
    vba.Position<Float3>(2) = Float3( 1.0f,  1.0f, 0.0f);
    vba.Position<Float3>(3) = Float3( 1.0f, -1.0f, 0.0f);
    vba.TCoord<Float2>(0, 0) = Float2(0.0f, 0.0f);
    vba.TCoord<Float2>(0, 1) = Float2(1.0f, 0.0f);
    vba.TCoord<Float2>(0, 2) = Float2(1.0f, 1.0f);
    vba.TCoord<Float2>(0, 3) = Float2(0.0f, 1.0f);

    IndexBuffer* ibuffer = new0 IndexBuffer(6, sizeof(int));
    int* indices = (int*)ibuffer->GetData();
    indices[0] = 0;
    indices[1] = 1;
    indices[2] = 3;
    indices[3] = 3;
    indices[4] = 1;
    indices[5] = 2;

    // Create a square with a door texture.
    TriMesh* door = new0 TriMesh(vformat, vbuffer, ibuffer);
    std::string path = Environment::GetPathR("Door.wmtf");
    Texture2D* texture = Texture2D::LoadWMTF(path);
    door->SetEffectInstance(Texture2DEffect::CreateUniqueInstance(texture,
                            Shader::SF_LINEAR, Shader::SC_CLAMP_EDGE, Shader::SC_CLAMP_EDGE));
    mTrnNode->AttachChild(door);

    // Material-texture effect shared by two objects.  The material is
    // semitransparent, so alpha blending must be enabled.
    MaterialTextureEffect* effect =
        new0 MaterialTextureEffect(Shader::SF_LINEAR);
    effect->GetAlphaState(0, 0)->BlendEnabled = true;

    // Create a square with a material-texture effect. The texture is combined
    // with the material to produce a semitransparenteffect on the sand.  You
    // should be able to see the door through it.
    TriMesh* sand = new0 TriMesh(vformat, vbuffer, ibuffer);
    sand->LocalTransform.SetTranslate(APoint(0.25f, 0.25f, -0.25f));
    mTrnNode->AttachChild(sand);

    mMaterial = new0 Material();
    mMaterial->Diffuse = Float4(1.0f, 0.0f, 0.0f, 0.5f);
    path = Environment::GetPathR("Sand.wmtf");
    texture = Texture2D::LoadWMTF(path);
    VisualEffectInstance* instance =
        effect->CreateInstance(mMaterial, texture);
    sand->SetEffectInstance(instance);

    // The material alpha is adjustable during run time, so we must enable
    // the corresponding shader constant to automatically update.
    instance->GetVertexConstant(0, "MaterialDiffuse")->EnableUpdater();

    // Create another square with a material-texture effect.
    TriMesh* water = new0 TriMesh(vformat, vbuffer, ibuffer);
    water->LocalTransform.SetTranslate(APoint(0.5f, 0.5f, -0.5f));
    mTrnNode->AttachChild(water);

    Material* material = new0 Material();
    material->Diffuse = Float4(0.0f, 0.0f, 1.0f, 0.5f);
    path = Environment::GetPathR("Water.wmtf");
    texture = Texture2D::LoadWMTF(path);
    water->SetEffectInstance(effect->CreateInstance(material, texture));
}
Example #27
0
//----------------------------------------------------------------------------
VisualEffectInstance* GeodesicHeightField::CreateEffectInstance ()
{
	// Create the vertex shader.
	VertexShader* vshader = new0 VertexShader("Wm5.DLight2MatTex",
	                        3, 3, 16, 0, false);
	vshader->SetInput(0, "modelPosition", Shader::VT_FLOAT3,
	                  Shader::VS_POSITION);
	vshader->SetInput(1, "modelNormal", Shader::VT_FLOAT3,
	                  Shader::VS_NORMAL);
	vshader->SetInput(2, "modelTCoord", Shader::VT_FLOAT2,
	                  Shader::VS_TEXCOORD0);
	vshader->SetOutput(0, "clipPosition", Shader::VT_FLOAT4,
	                   Shader::VS_POSITION);
	vshader->SetOutput(1, "vertexColor", Shader::VT_FLOAT4,
	                   Shader::VS_COLOR0);
	vshader->SetOutput(2, "vertexTCoord", Shader::VT_FLOAT2,
	                   Shader::VS_TEXCOORD0);
	vshader->SetConstant( 0, "PVWMatrix", 4);
	vshader->SetConstant( 1, "CameraModelPosition", 1);
	vshader->SetConstant( 2, "MaterialEmissive", 1);
	vshader->SetConstant( 3, "MaterialAmbient", 1);
	vshader->SetConstant( 4, "MaterialDiffuse", 1);
	vshader->SetConstant( 5, "MaterialSpecular", 1);
	vshader->SetConstant( 6, "Light0ModelDirection", 1);
	vshader->SetConstant( 7, "Light0Ambient", 1);
	vshader->SetConstant( 8, "Light0Diffuse", 1);
	vshader->SetConstant( 9, "Light0Specular", 1);
	vshader->SetConstant(10, "Light0Attenuation", 1);
	vshader->SetConstant(11, "Light1ModelDirection", 1);
	vshader->SetConstant(12, "Light1Ambient", 1);
	vshader->SetConstant(13, "Light1Diffuse", 1);
	vshader->SetConstant(14, "Light1Specular", 1);
	vshader->SetConstant(15, "Light1Attenuation", 1);
	vshader->SetBaseRegisters(msVRegisters);
	vshader->SetPrograms(msVPrograms);

	// Create the pixel shader.
	PixelShader* pshader = new0 PixelShader("Wm5.DLight2MatTex",
	                                        2, 1, 0, 1, false);
	pshader->SetInput(0, "vertexColor", Shader::VT_FLOAT4,
	                  Shader::VS_COLOR0);
	pshader->SetInput(1, "vertexTCoord", Shader::VT_FLOAT2,
	                  Shader::VS_TEXCOORD0);
	pshader->SetOutput(0, "pixelColor", Shader::VT_FLOAT4,
	                   Shader::VS_COLOR0);
	pshader->SetSampler(0, "BaseSampler", Shader::ST_2D);
	pshader->SetFilter(0, Shader::SF_LINEAR /*_LINEAR */);
	pshader->SetCoordinate(0, 0, Shader::SC_CLAMP_EDGE);
	pshader->SetCoordinate(0, 1, Shader::SC_CLAMP_EDGE);
	pshader->SetTextureUnits(msPTextureUnits);
	pshader->SetPrograms(msPPrograms);

	VisualPass* pass = new0 VisualPass();
	pass->SetVertexShader(vshader);
	pass->SetPixelShader(pshader);
	pass->SetAlphaState(new0 AlphaState());
	pass->SetCullState(new0 CullState());
	pass->SetDepthState(new0 DepthState());
	pass->SetOffsetState(new0 OffsetState());
	pass->SetStencilState(new0 StencilState());
	pass->SetWireState(new0 WireState());

	// Create the effect.
	VisualTechnique* technique = new0 VisualTechnique();
	technique->InsertPass(pass);
	VisualEffect* effect = new0 VisualEffect();
	effect->InsertTechnique(technique);

	// Create the material for the effect.
	Float4 black(0.0f, 0.0f, 0.0f, 1.0f);
	Float4 white(1.0f, 1.0f, 1.0f, 1.0f);
	Material* material = new0 Material();
	material->Emissive = black;
	material->Ambient = Float4(0.24725f, 0.2245f, 0.0645f, 1.0f);
	material->Diffuse = Float4(0.34615f, 0.3143f, 0.0903f, 1.0f);
	material->Specular = Float4(0.797357f, 0.723991f, 0.208006f, 83.2f);

	// Create the lights for the effect.
	Light* light0 = new0 Light(Light::LT_DIRECTIONAL);
	light0->SetDirection(AVector(0.0f, 0.0f, -1.0f));
	light0->Ambient = white;
	light0->Diffuse = white;
	light0->Specular = black;

	Light* light1 = new0 Light(Light::LT_DIRECTIONAL);
	light1->SetDirection(AVector(0.0f, 0.0f, 1.0f));
	light1->Ambient = white;
	light1->Diffuse = white;
	light1->Specular = black;

	// Create a texture for the effect.
	mTexture = new0 Texture2D(Texture::TF_A8R8G8B8, 512, 512, 0);
	unsigned char* data = (unsigned char*)mTexture->GetData(0);
	memset(data, 0xFF, mTexture->GetNumLevelBytes(0));

	// Create an instance of the effect.
	VisualEffectInstance* instance = new0 VisualEffectInstance(effect, 0);
	instance->SetVertexConstant(0, 0,
	                            new0 PVWMatrixConstant());
	instance->SetVertexConstant(0, 1,
	                            new0 CameraModelPositionConstant());
	instance->SetVertexConstant(0, 2,
	                            new0 MaterialEmissiveConstant(material));
	instance->SetVertexConstant(0, 3,
	                            new0 MaterialAmbientConstant(material));
	instance->SetVertexConstant(0, 4,
	                            new0 MaterialDiffuseConstant(material));
	instance->SetVertexConstant(0, 5,
	                            new0 MaterialSpecularConstant(material));
	instance->SetVertexConstant(0, 6,
	                            new0 LightModelDVectorConstant(light0));
	instance->SetVertexConstant(0, 7,
	                            new0 LightAmbientConstant(light0));
	instance->SetVertexConstant(0, 8,
	                            new0 LightDiffuseConstant(light0));
	instance->SetVertexConstant(0, 9,
	                            new0 LightSpecularConstant(light0));
	instance->SetVertexConstant(0, 10,
	                            new0 LightAttenuationConstant(light0));
	instance->SetVertexConstant(0, 11,
	                            new0 LightModelDVectorConstant(light1));
	instance->SetVertexConstant(0, 12,
	                            new0 LightAmbientConstant(light1));
	instance->SetVertexConstant(0, 13,
	                            new0 LightDiffuseConstant(light1));
	instance->SetVertexConstant(0, 14,
	                            new0 LightSpecularConstant(light1));
	instance->SetVertexConstant(0, 15,
	                            new0 LightAttenuationConstant(light1));

	instance->SetPixelTexture(0, 0, mTexture);

	return instance;
}
//----------------------------------------------------------------------------
void IntersectingBoxes::CreateScene ()
{
    // Create some axis-aligned boxes for intersection testing.
    const int imax = 16;
    int i;
    for (i = 0; i < imax; ++i)
    {
        float xMin = 0.5f*mSize*Mathf::SymmetricRandom();
        float xMax = xMin + Mathf::IntervalRandom(8.0f, 32.0f);
        float yMin = 0.5f*mSize*Mathf::SymmetricRandom();
        float yMax = yMin + Mathf::IntervalRandom(8.0f, 32.0f);
        float zMin = 0.5f*mSize*Mathf::SymmetricRandom();
        float zMax = zMin + Mathf::IntervalRandom(8.0f, 32.0f);
        mBoxes.push_back(
            AxisAlignedBox3f(xMin, xMax, yMin, yMax, zMin, zMax));
    }
    mManager = new0 BoxManagerf(mBoxes);

    // Scene graph for the visual representation of the boxes.
    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    // Effects for boxes, blue for nonintersecting and red for intersecting.
    Float4 black(0.0f, 0.0f, 0.0f, 1.0f);
    Float4 white(1.0f, 1.0f, 1.0f, 1.0f);
    Material* blueMaterial = new0 Material();
    blueMaterial->Emissive = black;
    blueMaterial->Ambient = Float4(0.25f, 0.25f, 0.25f, 1.0f);
    blueMaterial->Diffuse = Float4(0.0f, 0.0f, 1.0f, 1.0f);
    blueMaterial->Specular = black;

    Material* redMaterial = new0 Material();
    redMaterial->Emissive = black;
    redMaterial->Ambient = Float4(0.25f, 0.25f, 0.25f, 1.0f);
    redMaterial->Diffuse = Float4(1.0f, 0.0f, 0.0f, 1.0f);
    redMaterial->Specular = black;

    // A light for the effects.
    Light* light = new0 Light(Light::LT_DIRECTIONAL);
    light->Ambient = white;
    light->Diffuse = white;
    light->Specular = black;
    light->SetDirection(AVector::UNIT_Z);

    LightDirPerVerEffect* effect = new0 LightDirPerVerEffect();
    mNoIntersectEffect = effect->CreateInstance(light, blueMaterial);
    mIntersectEffect = effect->CreateInstance(light, redMaterial);

    // Create visual representations of the boxes.
    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_NORMAL, VertexFormat::AT_FLOAT3, 0);

    for (i = 0; i < imax; ++i)
    {
        APoint center(
            0.5f*(mBoxes[i].Min[0] + mBoxes[i].Max[0]),
            0.5f*(mBoxes[i].Min[1] + mBoxes[i].Max[1]),
            0.5f*(mBoxes[i].Min[2] + mBoxes[i].Max[2]));

        Transform transform;
        transform.SetTranslate(center);

        float xExtent = 0.5f*(mBoxes[i].Max[0] - mBoxes[i].Min[0]);
        float yExtent = 0.5f*(mBoxes[i].Max[1] - mBoxes[i].Min[1]);
        float zExtent = 0.5f*(mBoxes[i].Max[2] - mBoxes[i].Min[2]);

        StandardMesh sm(vformat, true, false, &transform);
        TriMesh* mesh = sm.Box(xExtent, yExtent, zExtent);

        mesh->SetEffectInstance(mNoIntersectEffect);
        mScene->AttachChild(mesh);
    }
}
Example #29
0
//----------------------------------------------------------------------------
void BouncingSpheres::CreateScene ()
{
    CreateBalls();
    CreateFloor();
    CreateBackWall();
    CreateSideWall1();
    CreateSideWall2();

    // ** layout of scene graph **
    // scene
    //     room
    //         backwall
    //         floor
    //         sidewall1
    //         sidewall2
    //     balls

    mScene = new0 Node();
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    Node* room = new0 Node();
    room->AttachChild(mFloor);
    room->AttachChild(mSideWall1);
    room->AttachChild(mSideWall2);
    room->AttachChild(mBackWall);
    mScene->AttachChild(room);

    Node* ballRoot = new0 Node();
    int i;
    for (i = 0; i < NUM_BALLS; ++i)
    {
        ballRoot->AttachChild(mBallNodes[i]);
    }
    mScene->AttachChild(ballRoot);

    // The balls are constrained to bounce around in a rectangular solid
    // region.  The six defining planes are defined to be immovable rigid
    // bodies.  The boundaries are parallel to coordinate axes and pass
    // through the points indicated by the value other than +-100.  That is,
    // the back wall is at x = 1, the left wall is at y = 2, the floor is at
    // z = 1, the right wall is at y = 15, the ceiling is at z = 17, and the
    // front wall is at x = 9.  The ceiling and front wall are invisible
    // objects (not rendered), but you will see balls bouncing against it
    // and reflecting away from it towards the back wall.
    mBoundaryLocations[0] = Vector3f(1.0f, -100.0f, -100.0f);
    mBoundaryNormals[0] = Vector3f(1.0f, 0.0f, 0.0f);
    mBoundaryLocations[1] = Vector3f(-100.0f, 2.0f, -100.0f);
    mBoundaryNormals[1] = Vector3f(0.0f, 1.0f, 0.0f);
    mBoundaryLocations[2] = Vector3f(-100.0f, -100.0f, 1.0f);
    mBoundaryNormals[2] = Vector3f(0.0f, 0.0f, 1.0f);
    mBoundaryLocations[3] = Vector3f(100.0f, 15.0f, 100.0f);
    mBoundaryNormals[3] = Vector3f(0.0f, -1.0f, 0.0f);
    mBoundaryLocations[4] = Vector3f(100.0f, 100.0f, 17.0f);
    mBoundaryNormals[4] = Vector3f(0.0f, 0.0f, -1.0f);
    mBoundaryLocations[5] = Vector3f(8.0f, 100.0f, 100.0f);
    mBoundaryNormals[5] = Vector3f(-1.0f, 0.0f, 0.0f);
    for (i = 0; i < 6; ++i)
    {
        mBoundaries[i].SetMass(0.0f);
        mBoundaries[i].SetPosition(mBoundaryLocations[i]);
    }
}
//----------------------------------------------------------------------------
bool NonlocalBlowup::OnInitialize ()
{
    if (!WindowApplication3::OnInitialize())
    {
        return false;
    }
#ifdef RUN_CONSOLE
    RunConsole();
    return false;
#endif

    mScene = new0 Node();
    mScene->LocalTransform.SetRotate(HMatrix(
        0.80475128f, 0.59107417f, -0.054833174f, 0.0f,
        -0.17529237f, 0.32487807f, 0.92936903f, 0.0f,
        0.56714010f, -0.73829913f, 0.36505684f, 0.0f,
        0.0f, 0.0f, 0.0f, 1.0f));
    mWireState = new0 WireState();
    mRenderer->SetOverrideWireState(mWireState);

    VertexFormat* vformat = VertexFormat::Create(2,
        VertexFormat::AU_POSITION, VertexFormat::AT_FLOAT3, 0,
        VertexFormat::AU_TEXCOORD, VertexFormat::AT_FLOAT2, 0);

    TriMesh* mesh = StandardMesh(vformat).Rectangle(256, 256, 16.0f, 16.0f);
    mScene->AttachChild(mesh);

    std::string gridName = Environment::GetPathR("Grid.wmtf");
    Texture2D* gridTexture = Texture2D::LoadWMTF(gridName);
    gridTexture->GenerateMipmaps();

    Texture1D* colorTexture = new0 Texture1D(Texture::TF_A8R8G8B8, 8, 1);
    unsigned char* color = (unsigned char*)colorTexture->GetData(0);
    color[ 0] = 128;  color[ 1] = 128;  color[ 2] = 128;  color[ 3] = 255;
    color[ 4] = 255;  color[ 5] =   0;  color[ 6] = 128;  color[ 7] = 255;
    color[ 8] = 255;  color[ 9] =   0;  color[10] =   0;  color[11] = 255;
    color[12] =   0;  color[13] = 255;  color[14] =   0;  color[15] = 255;
    color[16] =   0;  color[17] = 255;  color[18] = 255;  color[19] = 255;
    color[20] =   0;  color[21] = 128;  color[22] = 255;  color[23] = 255;
    color[24] =   0;  color[25] =   0;  color[26] = 255;  color[27] = 255;
    color[28] = 255;  color[29] = 255;  color[30] = 255;  color[31] = 255;

    float dt = 0.01f, dx = 1.0f, dy = 1.0f;
    // Uncomment only one of these at a time.
    NonconvexDomain0p50(dt, dx, dy);
    //SquareSymmetric0p01(dt, dx, dy);
    //SquareSymmetric0p50(dt, dx, dy);
    //SquareSymmetric0p99(dt, dx, dy);
    //SquareGaussX0p50(dt, dx, dy);
    //SquareGaussXY0p50(dt, dx, dy);
    //SquareGaussFour0p50(dt, dx, dy);

    DisplacementEffect* effect = new0 DisplacementEffect();
    mesh->SetEffectInstance(effect->CreateInstance(mHeightTexture,
        gridTexture, colorTexture, mDomainTexture));

    // Set up the camera so that it looks at the graph from slightly above
    // the xy-plane and at a skewed angle/direction of view.
    mCamera->SetFrustum(60.0f, GetAspectRatio(), 1.0f, 10000.0f);
    APoint camPosition(0.0f, 3.46f, 42.97f);
    AVector camDVector(0.0f, 0.0f, -1.0f);
    AVector camUVector(0.0f, 1.0f, 0.0f);
    AVector camRVector = camDVector.Cross(camUVector);
    mCamera->SetFrame(camPosition, camDVector, camUVector, camRVector);

    // Initial update of objects.
    mScene->Update();

    // Initial culling of scene.
    mCuller.SetCamera(mCamera);
    mCuller.ComputeVisibleSet(mScene);

    InitializeCameraMotion(0.01f, 0.01f);
    InitializeObjectMotion(mScene);
    return true;
}