Example #1
0
ssize_t			/* bytes read, or (-)  error */
xfs_read(
    bhv_desc_t		*bdp,
    struct kiocb		*iocb,
    const struct iovec	*iovp,
    unsigned int		segs,
    loff_t			*offset,
    int			ioflags,
    cred_t			*credp)
{
    struct file		*file = iocb->ki_filp;
    struct inode		*inode = file->f_mapping->host;
    size_t			size = 0;
    ssize_t			ret;
    xfs_fsize_t		n;
    xfs_inode_t		*ip;
    xfs_mount_t		*mp;
    vnode_t			*vp;
    unsigned long		seg;

    ip = XFS_BHVTOI(bdp);
    vp = BHV_TO_VNODE(bdp);
    mp = ip->i_mount;

    XFS_STATS_INC(xs_read_calls);

    /* START copy & waste from filemap.c */
    for (seg = 0; seg < segs; seg++) {
        const struct iovec *iv = &iovp[seg];

        /*
         * If any segment has a negative length, or the cumulative
         * length ever wraps negative then return -EINVAL.
         */
        size += iv->iov_len;
        if (unlikely((ssize_t)(size|iv->iov_len) < 0))
            return XFS_ERROR(-EINVAL);
    }
    /* END copy & waste from filemap.c */

    if (unlikely(ioflags & IO_ISDIRECT)) {
        xfs_buftarg_t	*target =
            (ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
            mp->m_rtdev_targp : mp->m_ddev_targp;
        if ((*offset & target->pbr_smask) ||
                (size & target->pbr_smask)) {
            if (*offset == ip->i_d.di_size) {
                return (0);
            }
            return -XFS_ERROR(EINVAL);
        }
    }

    n = XFS_MAXIOFFSET(mp) - *offset;
    if ((n <= 0) || (size == 0))
        return 0;

    if (n < size)
        size = n;

    if (XFS_FORCED_SHUTDOWN(mp)) {
        return -EIO;
    }

    if (unlikely(ioflags & IO_ISDIRECT))
        down(&inode->i_sem);
    xfs_ilock(ip, XFS_IOLOCK_SHARED);

    if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
            !(ioflags & IO_INVIS)) {
        vrwlock_t locktype = VRWLOCK_READ;

        ret = -XFS_SEND_DATA(mp, DM_EVENT_READ,
                             BHV_TO_VNODE(bdp), *offset, size,
                             FILP_DELAY_FLAG(file), &locktype);
        if (ret) {
            xfs_iunlock(ip, XFS_IOLOCK_SHARED);
            goto unlock_isem;
        }
    }

    xfs_rw_enter_trace(XFS_READ_ENTER, &ip->i_iocore,
                       (void *)iovp, segs, *offset, ioflags);
    ret = __generic_file_aio_read(iocb, iovp, segs, offset);
    if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
        ret = wait_on_sync_kiocb(iocb);
    if (ret > 0)
        XFS_STATS_ADD(xs_read_bytes, ret);

    xfs_iunlock(ip, XFS_IOLOCK_SHARED);

    if (likely(!(ioflags & IO_INVIS)))
        xfs_ichgtime(ip, XFS_ICHGTIME_ACC);

unlock_isem:
    if (unlikely(ioflags & IO_ISDIRECT))
        up(&inode->i_sem);
    return ret;
}
Example #2
0
ssize_t
xfs_sendfile(
    bhv_desc_t		*bdp,
    struct file		*filp,
    loff_t			*offset,
    int			ioflags,
    size_t			count,
    read_actor_t		actor,
    void			*target,
    cred_t			*credp)
{
    ssize_t			ret;
    xfs_fsize_t		n;
    xfs_inode_t		*ip;
    xfs_mount_t		*mp;
    vnode_t			*vp;

    ip = XFS_BHVTOI(bdp);
    vp = BHV_TO_VNODE(bdp);
    mp = ip->i_mount;

    XFS_STATS_INC(xs_read_calls);

    n = XFS_MAXIOFFSET(mp) - *offset;
    if ((n <= 0) || (count == 0))
        return 0;

    if (n < count)
        count = n;

    if (XFS_FORCED_SHUTDOWN(ip->i_mount))
        return -EIO;

    xfs_ilock(ip, XFS_IOLOCK_SHARED);

    if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
            (!(ioflags & IO_INVIS))) {
        vrwlock_t locktype = VRWLOCK_READ;
        int error;

        error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp), *offset, count,
                              FILP_DELAY_FLAG(filp), &locktype);
        if (error) {
            xfs_iunlock(ip, XFS_IOLOCK_SHARED);
            return -error;
        }
    }
    xfs_rw_enter_trace(XFS_SENDFILE_ENTER, &ip->i_iocore,
                       (void *)(unsigned long)target, count, *offset, ioflags);
    ret = generic_file_sendfile(filp, offset, count, actor, target);

    xfs_iunlock(ip, XFS_IOLOCK_SHARED);

    if (ret > 0)
        XFS_STATS_ADD(xs_read_bytes, ret);

    if (likely(!(ioflags & IO_INVIS)))
        xfs_ichgtime(ip, XFS_ICHGTIME_ACC);

    return ret;
}
Example #3
0
ssize_t
xfs_splice_write(
	xfs_inode_t		*ip,
	struct pipe_inode_info	*pipe,
	struct file		*outfilp,
	loff_t			*ppos,
	size_t			count,
	int			flags,
	int			ioflags)
{
	xfs_mount_t		*mp = ip->i_mount;
	ssize_t			ret;
	struct inode		*inode = outfilp->f_mapping->host;
	xfs_fsize_t		isize, new_size;

	XFS_STATS_INC(xs_write_calls);
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	xfs_ilock(ip, XFS_IOLOCK_EXCL);

	if (DM_EVENT_ENABLED(ip, DM_EVENT_WRITE) && !(ioflags & IO_INVIS)) {
		int iolock = XFS_IOLOCK_EXCL;
		int error;

		error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, *ppos, count,
					FILP_DELAY_FLAG(outfilp), &iolock);
		if (error) {
			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
			return -error;
		}
	}

	new_size = *ppos + count;

	xfs_ilock(ip, XFS_ILOCK_EXCL);
	if (new_size > ip->i_size)
		ip->i_new_size = new_size;
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);

	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
	if (ret > 0)
		XFS_STATS_ADD(xs_write_bytes, ret);

	isize = i_size_read(inode);
	if (unlikely(ret < 0 && ret != -EFAULT && *ppos > isize))
		*ppos = isize;

	if (*ppos > ip->i_size) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		if (*ppos > ip->i_size)
			ip->i_size = *ppos;
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	}

	if (ip->i_new_size) {
		xfs_ilock(ip, XFS_ILOCK_EXCL);
		ip->i_new_size = 0;
		if (ip->i_d.di_size > ip->i_size)
			ip->i_d.di_size = ip->i_size;
		xfs_iunlock(ip, XFS_ILOCK_EXCL);
	}
	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
	return ret;
}
Example #4
0
/*
 * Notes about direct IO locking for write:
 *
 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 * pages are flushed out.
 *
 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 * allowing them to be done in parallel with reads and other direct IO writes.
 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 * needs to do sub-block zeroing and that requires serialisation against other
 * direct IOs to the same block. In this case we need to serialise the
 * submission of the unaligned IOs so that we don't get racing block zeroing in
 * the dio layer.  To avoid the problem with aio, we also need to wait for
 * outstanding IOs to complete so that unwritten extent conversion is completed
 * before we try to map the overlapping block. This is currently implemented by
 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
 */
ssize_t				/* bytes written, or (-) error */
xfs_write(
	struct xfs_inode	*xip,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		nsegs,
	loff_t			*offset,
	int			ioflags)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	unsigned long		segs = nsegs;
	xfs_mount_t		*mp;
	ssize_t			ret = 0;
	xfs_fsize_t		isize, new_size;
	int			iolock;
	int			eventsent = 0;
	size_t			ocount = 0, count;
	loff_t			pos;
	int			need_i_mutex;
	int			unaligned_io = 0;

	XFS_STATS_INC(xs_write_calls);

	ret = generic_segment_checks(iovp, &segs, &ocount, VERIFY_READ);
	if (ret)
		return ret;

	count = ocount;
	pos = *offset;

	if (count == 0)
		return 0;

	mp = xip->i_mount;

	xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	if ((ioflags & IO_ISDIRECT) &&
	    ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask)))
		unaligned_io = 1;
relock:
	if ((ioflags & IO_ISDIRECT) && !unaligned_io) {
		iolock = XFS_IOLOCK_SHARED;
		need_i_mutex = 0;
	} else {
		iolock = XFS_IOLOCK_EXCL;
		need_i_mutex = 1;
		mutex_lock(&inode->i_mutex);
	}

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

start:
	ret = generic_write_checks(file, &pos, &count,
					S_ISBLK(inode->i_mode));
	if (ret) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		goto out_unlock_mutex;
	}

	if ((DM_EVENT_ENABLED(xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		int		dmflags = FILP_DELAY_FLAG(file);

		if (need_i_mutex)
			dmflags |= DM_FLAGS_IMUX;

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		ret = -XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, xip,
				      pos, count, dmflags, &iolock);
		if (ret)
			goto out_unlock_internal;
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reacquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) && pos != xip->i_size)
			goto start;
	}

	if (ioflags & IO_ISDIRECT) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(xip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((pos & target->bt_smask) || (count & target->bt_smask)) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			return XFS_ERROR(-EINVAL);
		}

		if (!need_i_mutex && (mapping->nrpages || pos > xip->i_size)) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			iolock = XFS_IOLOCK_EXCL;
			need_i_mutex = 1;
			mutex_lock(&inode->i_mutex);
			xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
			goto start;
		}
	}

	new_size = pos + count;
	if (new_size > xip->i_size)
		xip->i_new_size = new_size;

	if (likely(!(ioflags & IO_INVIS)))
		file_update_time(file);

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (pos > xip->i_size) {
		ret = -xfs_zero_eof(xip, pos, xip->i_size);
		if (ret) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL);
			goto out_unlock_internal;
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		ret = -xfs_write_clear_setuid(xip);
		if (likely(!ret))
			ret = file_remove_suid(file);
		if (unlikely(ret)) {
			goto out_unlock_internal;
		}
	}

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

	if ((ioflags & IO_ISDIRECT)) {
		if (mapping->nrpages) {
			WARN_ON(need_i_mutex == 0);
			ret = -xfs_flushinval_pages(xip,
					(pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
			if (ret)
				goto out_unlock_internal;
		}

		/*
		 * If we are doing unaligned IO, wait for all other IO to drain,
		 * otherwise demote the lock if we had to flush cached pages
		 */
		if (unaligned_io)
			xfs_ioend_wait(xip);
		else if (need_i_mutex) {
			/* demote the lock now the cached pages are gone */
			xfs_ilock_demote(xip, XFS_IOLOCK_EXCL);
			mutex_unlock(&inode->i_mutex);

			iolock = XFS_IOLOCK_SHARED;
			need_i_mutex = 0;
		}

		trace_xfs_file_direct_write(xip, count, *offset, ioflags);
		ret = generic_file_direct_write(iocb, iovp,
				&segs, pos, offset, count, ocount);

		/*
		 * direct-io write to a hole: fall through to buffered I/O
		 * for completing the rest of the request.
		 */
		if (ret >= 0 && ret != count) {
			XFS_STATS_ADD(xs_write_bytes, ret);

			pos += ret;
			count -= ret;

			ioflags &= ~IO_ISDIRECT;
			xfs_iunlock(xip, iolock);
			if (need_i_mutex)
				mutex_unlock(&inode->i_mutex);
			goto relock;
		}
	} else {
		int enospc = 0;

write_retry:
		trace_xfs_file_buffered_write(xip, count, *offset, ioflags);
		ret = generic_file_buffered_write(iocb, iovp, segs,
				pos, offset, count, ret);
		/*
		 * if we just got an ENOSPC, flush the inode now we
		 * aren't holding any page locks and retry *once*
		 */
		if (ret == -ENOSPC && !enospc) {
			ret = -xfs_flush_pages(xip, 0, -1, 0, FI_NONE);
			if (ret)
				goto out_unlock_internal;
			enospc = 1;
			goto write_retry;
		}
	}

	current->backing_dev_info = NULL;

	isize = i_size_read(inode);
	if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
		*offset = isize;

	if (*offset > xip->i_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_size)
			xip->i_size = *offset;
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	if (ret == -ENOSPC &&
	    DM_EVENT_ENABLED(xip, DM_EVENT_NOSPACE) && !(ioflags & IO_INVIS)) {
		xfs_iunlock(xip, iolock);
		if (need_i_mutex)
			mutex_unlock(&inode->i_mutex);
		ret = -XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, xip,
				DM_RIGHT_NULL, xip, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (need_i_mutex)
			mutex_lock(&inode->i_mutex);
		xfs_ilock(xip, iolock);
		if (ret)
			goto out_unlock_internal;
		goto start;
	}

	if (ret <= 0)
		goto out_unlock_internal;

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
		loff_t end = pos + ret - 1;
		int error, error2;

		xfs_iunlock(xip, iolock);
		if (need_i_mutex)
			mutex_unlock(&inode->i_mutex);

		error = filemap_write_and_wait_range(mapping, pos, end);
		if (need_i_mutex)
			mutex_lock(&inode->i_mutex);
		xfs_ilock(xip, iolock);

		error2 = -xfs_fsync(xip);
		if (error)
			ret = error;
		else if (error2)
			ret = error2;
	}

 out_unlock_internal:
	if (xip->i_new_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		xip->i_new_size = 0;
		/*
		 * If this was a direct or synchronous I/O that failed (such
		 * as ENOSPC) then part of the I/O may have been written to
		 * disk before the error occured.  In this case the on-disk
		 * file size may have been adjusted beyond the in-memory file
		 * size and now needs to be truncated back.
		 */
		if (xip->i_d.di_size > xip->i_size)
			xip->i_d.di_size = xip->i_size;
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}
	xfs_iunlock(xip, iolock);
 out_unlock_mutex:
	if (need_i_mutex)
		mutex_unlock(&inode->i_mutex);
	return ret;
}
Example #5
0
STATIC ssize_t
xfs_file_aio_read(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	size_t			size = 0;
	ssize_t			ret = 0;
	int			ioflags = 0;
	xfs_fsize_t		n;
	unsigned long		seg;

	XFS_STATS_INC(xs_read_calls);

	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

	/* START copy & waste from filemap.c */
	for (seg = 0; seg < nr_segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
		if ((iocb->ki_pos & target->bt_smask) ||
		    (size & target->bt_smask)) {
			if (iocb->ki_pos == ip->i_size)
				return 0;
			return -XFS_ERROR(EINVAL);
		}
	}

	n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
	if (n <= 0 || size == 0)
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

		if (inode->i_mapping->nrpages) {
			ret = -xfs_flushinval_pages(ip,
					(iocb->ki_pos & PAGE_CACHE_MASK),
					-1, FI_REMAPF_LOCKED);
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
		}
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
	}

	trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);

	ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
	return ret;
}
Example #6
0
ssize_t			/* bytes read, or (-)  error */
xfs_read(
	xfs_inode_t		*ip,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		segs,
	loff_t			*offset,
	int			ioflags)
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
	xfs_mount_t		*mp = ip->i_mount;
	size_t			size = 0;
	ssize_t			ret = 0;
	xfs_fsize_t		n;
	unsigned long		seg;


	XFS_STATS_INC(xs_read_calls);

	/* START copy & waste from filemap.c */
	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
		if ((*offset & target->bt_smask) ||
		    (size & target->bt_smask)) {
			if (*offset == ip->i_size) {
				return (0);
			}
			return -XFS_ERROR(EINVAL);
		}
	}

	n = XFS_MAXIOFFSET(mp) - *offset;
	if ((n <= 0) || (size == 0))
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	if (unlikely(ioflags & IO_ISDIRECT))
		mutex_lock(&inode->i_mutex);
	xfs_ilock(ip, XFS_IOLOCK_SHARED);

	if (DM_EVENT_ENABLED(ip, DM_EVENT_READ) && !(ioflags & IO_INVIS)) {
		int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
		int iolock = XFS_IOLOCK_SHARED;

		ret = -XFS_SEND_DATA(mp, DM_EVENT_READ, ip, *offset, size,
					dmflags, &iolock);
		if (ret) {
			xfs_iunlock(ip, XFS_IOLOCK_SHARED);
			if (unlikely(ioflags & IO_ISDIRECT))
				mutex_unlock(&inode->i_mutex);
			return ret;
		}
	}

	if (unlikely(ioflags & IO_ISDIRECT)) {
		if (inode->i_mapping->nrpages)
			ret = -xfs_flushinval_pages(ip, (*offset & PAGE_CACHE_MASK),
						    -1, FI_REMAPF_LOCKED);
		mutex_unlock(&inode->i_mutex);
		if (ret) {
			xfs_iunlock(ip, XFS_IOLOCK_SHARED);
			return ret;
		}
	}

	trace_xfs_file_read(ip, size, *offset, ioflags);

	iocb->ki_pos = *offset;
	ret = generic_file_aio_read(iocb, iovp, segs, *offset);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
	return ret;
}
Example #7
0
static int
xfs_dio_write_end_io(
	struct kiocb		*iocb,
	ssize_t			size,
	unsigned		flags)
{
	struct inode		*inode = file_inode(iocb->ki_filp);
	struct xfs_inode	*ip = XFS_I(inode);
	loff_t			offset = iocb->ki_pos;
	int			error = 0;

	trace_xfs_end_io_direct_write(ip, offset, size);

	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		return -EIO;

	if (size <= 0)
		return size;

	/*
	 * Capture amount written on completion as we can't reliably account
	 * for it on submission.
	 */
	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);

	if (flags & IOMAP_DIO_COW) {
		error = xfs_reflink_end_cow(ip, offset, size);
		if (error)
			return error;
	}

	/*
	 * Unwritten conversion updates the in-core isize after extent
	 * conversion but before updating the on-disk size. Updating isize any
	 * earlier allows a racing dio read to find unwritten extents before
	 * they are converted.
	 */
	if (flags & IOMAP_DIO_UNWRITTEN)
		return xfs_iomap_write_unwritten(ip, offset, size, true);

	/*
	 * We need to update the in-core inode size here so that we don't end up
	 * with the on-disk inode size being outside the in-core inode size. We
	 * have no other method of updating EOF for AIO, so always do it here
	 * if necessary.
	 *
	 * We need to lock the test/set EOF update as we can be racing with
	 * other IO completions here to update the EOF. Failing to serialise
	 * here can result in EOF moving backwards and Bad Things Happen when
	 * that occurs.
	 */
	spin_lock(&ip->i_flags_lock);
	if (offset + size > i_size_read(inode)) {
		i_size_write(inode, offset + size);
		spin_unlock(&ip->i_flags_lock);
		error = xfs_setfilesize(ip, offset, size);
	} else {
		spin_unlock(&ip->i_flags_lock);
	}

	return error;
}
Example #8
0
STATIC ssize_t
xfs_file_buffered_aio_write(
	struct kiocb		*iocb,
	struct iov_iter		*from)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	ssize_t			ret;
	int			enospc = 0;
	int			iolock;

	if (iocb->ki_flags & IOCB_NOWAIT)
		return -EOPNOTSUPP;

write_retry:
	iolock = XFS_IOLOCK_EXCL;
	xfs_ilock(ip, iolock);

	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
	if (ret)
		goto out;

	/* We can write back this queue in page reclaim */
	current->backing_dev_info = inode_to_bdi(inode);

	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
	if (likely(ret >= 0))
		iocb->ki_pos += ret;

	/*
	 * If we hit a space limit, try to free up some lingering preallocated
	 * space before returning an error. In the case of ENOSPC, first try to
	 * write back all dirty inodes to free up some of the excess reserved
	 * metadata space. This reduces the chances that the eofblocks scan
	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
	 * also behaves as a filter to prevent too many eofblocks scans from
	 * running at the same time.
	 */
	if (ret == -EDQUOT && !enospc) {
		xfs_iunlock(ip, iolock);
		enospc = xfs_inode_free_quota_eofblocks(ip);
		if (enospc)
			goto write_retry;
		enospc = xfs_inode_free_quota_cowblocks(ip);
		if (enospc)
			goto write_retry;
		iolock = 0;
	} else if (ret == -ENOSPC && !enospc) {
		struct xfs_eofblocks eofb = {0};

		enospc = 1;
		xfs_flush_inodes(ip->i_mount);

		xfs_iunlock(ip, iolock);
		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
		goto write_retry;
	}

	current->backing_dev_info = NULL;
out:
	if (iolock)
		xfs_iunlock(ip, iolock);

	if (ret > 0) {
		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
		/* Handle various SYNC-type writes */
		ret = generic_write_sync(iocb, ret);
	}
	return ret;
}
Example #9
0
ssize_t			/* bytes read, or (-)  error */
xfs_read(
	bhv_desc_t		*bdp,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		segs,
	loff_t			*offset,
	int			ioflags,
	cred_t			*credp)
{
	struct file		*file = iocb->ki_filp;
	size_t			size = 0;
	ssize_t			ret;
	xfs_fsize_t		n;
	xfs_inode_t		*ip;
	xfs_mount_t		*mp;
	vnode_t			*vp;
	unsigned long		seg;

	ip = XFS_BHVTOI(bdp);
	vp = BHV_TO_VNODE(bdp);
	mp = ip->i_mount;
	vn_trace_entry(vp, "xfs_read", (inst_t *)__return_address);

	XFS_STATS_INC(xs_read_calls);

	/* START copy & waste from filemap.c */
	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (ioflags & IO_ISDIRECT) {
		pb_target_t	*target =
			(ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
		if ((*offset & target->pbr_smask) ||
		    (size & target->pbr_smask)) {
			if (*offset == ip->i_d.di_size) {
				return (0);
			}
			return -XFS_ERROR(EINVAL);
		}
	}

	n = XFS_MAXIOFFSET(mp) - *offset;
	if ((n <= 0) || (size == 0))
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp)) {
		return -EIO;
	}

	/* OK so we are holding the I/O lock for the duration
	 * of the submission, then what happens if the I/O
	 * does not really happen here, but is scheduled 
	 * later?
	 */
	xfs_ilock(ip, XFS_IOLOCK_SHARED);

	if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
	    !(ioflags & IO_INVIS)) {
		int error;
		vrwlock_t locktype = VRWLOCK_READ;

		error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp), *offset, size,
				      FILP_DELAY_FLAG(file), &locktype);
		if (error) {
			xfs_iunlock(ip, XFS_IOLOCK_SHARED);
			return -error;
		}
	}

	ret = __generic_file_aio_read(iocb, iovp, segs, offset);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

	if (likely(!(ioflags & IO_INVIS)))
		xfs_ichgtime(ip, XFS_ICHGTIME_ACC);

	return ret;
}
Example #10
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t		*bdp,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		segs,
	loff_t			*offset,
	int			ioflags,
	cred_t			*credp)
{
	struct file		*file = iocb->ki_filp;
	size_t			size = 0;
	xfs_inode_t		*xip;
	xfs_mount_t		*mp;
	ssize_t			ret;
	int			error = 0;
	xfs_fsize_t		isize, new_size;
	xfs_fsize_t		n, limit;
	xfs_iocore_t		*io;
	vnode_t			*vp;
	unsigned long		seg;
	int			iolock;
	int			eventsent = 0;
	vrwlock_t		locktype;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	vn_trace_entry(vp, "xfs_write", (inst_t *)__return_address);
	xip = XFS_BHVTOI(bdp);

	/* START copy & waste from filemap.c */
	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		size += iv->iov_len;
		if (unlikely((ssize_t)(size|iv->iov_len) < 0))
			return XFS_ERROR(-EINVAL);
	}
	/* END copy & waste from filemap.c */

	if (size == 0)
		return 0;

	io = &(xip->i_iocore);
	mp = io->io_mount;

	xfs_check_frozen(mp, bdp, XFS_FREEZE_WRITE);

	if (XFS_FORCED_SHUTDOWN(mp)) {
		return -EIO;
	}

	if (ioflags & IO_ISDIRECT) {
		pb_target_t	*target =
			(xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((*offset & target->pbr_smask) ||
		    (size & target->pbr_smask)) {
			return XFS_ERROR(-EINVAL);
		}
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	} else {
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;
	}

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = xip->i_d.di_size;
	limit = XFS_MAXIOFFSET(mp);

	if (file->f_flags & O_APPEND)
		*offset = isize;

start:
	n = limit - *offset;
	if (n <= 0) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		return -EFBIG;
	}

	if (n < size)
		size = n;

	new_size = *offset + size;
	if (new_size > isize) {
		io->io_new_size = new_size;
	}

	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = *offset;

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      *offset, size,
				      FILP_DELAY_FLAG(file), &locktype);
		if (error) {
			xfs_iunlock(xip, iolock);
			return -error;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) &&
		    savedsize != xip->i_d.di_size) {
			*offset = isize = xip->i_d.di_size;
			goto start;
		}
	}

	/*
	 * On Linux, generic_file_write updates the times even if
	 * no data is copied in so long as the write had a size.
	 *
	 * We must update xfs' times since revalidate will overcopy xfs.
	 */
	if (size && !(ioflags & IO_INVIS))
		xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (!(ioflags & IO_ISDIRECT) && (*offset > isize && isize)) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, *offset,
			isize, *offset + size);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			return(-error);
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (error) {
			xfs_iunlock(xip, iolock);
			return -error;
		}
	}

retry:
	if (ioflags & IO_ISDIRECT) {
		xfs_inval_cached_pages(vp, &xip->i_iocore, *offset, 1, 1);
	}

	ret = generic_file_aio_write_nolock(iocb, iovp, segs, offset);

	if ((ret == -ENOSPC) &&
	    DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
	    !(ioflags & IO_INVIS)) {

		xfs_rwunlock(bdp, locktype);
		error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
				DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (error)
			return -error;
		xfs_rwlock(bdp, locktype);
		*offset = xip->i_d.di_size;
		goto retry;

	}

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			struct inode	*inode = LINVFS_GET_IP(vp);

			xip->i_d.di_size = *offset;
			i_size_write(inode, *offset);
			xip->i_update_core = 1;
			xip->i_update_size = 1;
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	if (ret <= 0) {
		xfs_rwunlock(bdp, locktype);
		return ret;
	}

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(file->f_dentry->d_inode)) {

		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */

		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC)
			&& !(xip->i_update_size)) {
			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */

			xfs_inode_log_item_t *iip;
			xfs_lsn_t lsn;

			iip = xip->i_itemp;
			if (iip && iip->ili_last_lsn) {
				lsn = iip->ili_last_lsn;
				xfs_log_force(mp, lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, (xfs_lsn_t)0);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
			}
		}
	} /* (ioflags & O_SYNC) */

	xfs_rwunlock(bdp, locktype);
	return(ret);
}
Example #11
0
ssize_t				/* bytes written, or (-) error */
xfs_write(
	bhv_desc_t		*bdp,
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned int		nsegs,
	loff_t			*offset,
	int			ioflags,
	cred_t			*credp)
{
	struct file		*file = iocb->ki_filp;
	struct address_space	*mapping = file->f_mapping;
	struct inode		*inode = mapping->host;
	unsigned long		segs = nsegs;
	xfs_inode_t		*xip;
	xfs_mount_t		*mp;
	ssize_t			ret = 0, error = 0;
	xfs_fsize_t		isize, new_size;
	xfs_iocore_t		*io;
	vnode_t			*vp;
	unsigned long		seg;
	int			iolock;
	int			eventsent = 0;
	vrwlock_t		locktype;
	size_t			ocount = 0, count;
	loff_t			pos;
	int			need_isem = 1, need_flush = 0;

	XFS_STATS_INC(xs_write_calls);

	vp = BHV_TO_VNODE(bdp);
	xip = XFS_BHVTOI(bdp);

	for (seg = 0; seg < segs; seg++) {
		const struct iovec *iv = &iovp[seg];

		/*
		 * If any segment has a negative length, or the cumulative
		 * length ever wraps negative then return -EINVAL.
		 */
		ocount += iv->iov_len;
		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
			return -EINVAL;
		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
			continue;
		if (seg == 0)
			return -EFAULT;
		segs = seg;
		ocount -= iv->iov_len;  /* This segment is no good */
		break;
	}

	count = ocount;
	pos = *offset;

	if (count == 0)
		return 0;

	io = &xip->i_iocore;
	mp = io->io_mount;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	if (ioflags & IO_ISDIRECT) {
		xfs_buftarg_t	*target =
			(xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;

		if ((pos & target->pbr_smask) || (count & target->pbr_smask))
			return XFS_ERROR(-EINVAL);

		if (!VN_CACHED(vp) && pos < i_size_read(inode))
			need_isem = 0;

		if (VN_CACHED(vp))
			need_flush = 1;
	}

relock:
	if (need_isem) {
		iolock = XFS_IOLOCK_EXCL;
		locktype = VRWLOCK_WRITE;

		down(&inode->i_sem);
	} else {
		iolock = XFS_IOLOCK_SHARED;
		locktype = VRWLOCK_WRITE_DIRECT;
	}

	xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);

	isize = i_size_read(inode);

	if (file->f_flags & O_APPEND)
		*offset = isize;

start:
	error = -generic_write_checks(file, &pos, &count,
					S_ISBLK(inode->i_mode));
	if (error) {
		xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
		goto out_unlock_isem;
	}

	new_size = pos + count;
	if (new_size > isize)
		io->io_new_size = new_size;

	if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
	    !(ioflags & IO_INVIS) && !eventsent)) {
		loff_t		savedsize = pos;
		int		dmflags = FILP_DELAY_FLAG(file);

		if (need_isem)
			dmflags |= DM_FLAGS_ISEM;

		xfs_iunlock(xip, XFS_ILOCK_EXCL);
		error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
				      pos, count,
				      dmflags, &locktype);
		if (error) {
			xfs_iunlock(xip, iolock);
			goto out_unlock_isem;
		}
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		eventsent = 1;

		/*
		 * The iolock was dropped and reaquired in XFS_SEND_DATA
		 * so we have to recheck the size when appending.
		 * We will only "goto start;" once, since having sent the
		 * event prevents another call to XFS_SEND_DATA, which is
		 * what allows the size to change in the first place.
		 */
		if ((file->f_flags & O_APPEND) && savedsize != isize) {
			pos = isize = xip->i_d.di_size;
			goto start;
		}
	}

	/*
	 * On Linux, generic_file_write updates the times even if
	 * no data is copied in so long as the write had a size.
	 *
	 * We must update xfs' times since revalidate will overcopy xfs.
	 */
	if (!(ioflags & IO_INVIS)) {
		xfs_ichgtime(xip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
		inode_update_time(inode, 1);
	}

	/*
	 * If the offset is beyond the size of the file, we have a couple
	 * of things to do. First, if there is already space allocated
	 * we need to either create holes or zero the disk or ...
	 *
	 * If there is a page where the previous size lands, we need
	 * to zero it out up to the new size.
	 */

	if (pos > isize) {
		error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos,
					isize, pos + count);
		if (error) {
			xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
			goto out_unlock_isem;
		}
	}
	xfs_iunlock(xip, XFS_ILOCK_EXCL);

	/*
	 * If we're writing the file then make sure to clear the
	 * setuid and setgid bits if the process is not being run
	 * by root.  This keeps people from modifying setuid and
	 * setgid binaries.
	 */

	if (((xip->i_d.di_mode & S_ISUID) ||
	    ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
		(S_ISGID | S_IXGRP))) &&
	     !capable(CAP_FSETID)) {
		error = xfs_write_clear_setuid(xip);
		if (likely(!error))
			error = -remove_suid(file->f_dentry);
		if (unlikely(error)) {
			xfs_iunlock(xip, iolock);
			goto out_unlock_isem;
		}
	}

retry:
	/* We can write back this queue in page reclaim */
	current->backing_dev_info = mapping->backing_dev_info;

	if ((ioflags & IO_ISDIRECT)) {
		if (need_flush) {
			xfs_inval_cached_trace(io, pos, -1,
					ctooff(offtoct(pos)), -1);
			VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)),
					-1, FI_REMAPF_LOCKED);
		}

		if (need_isem) {
			/* demote the lock now the cached pages are gone */
			XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL);
			up(&inode->i_sem);

			iolock = XFS_IOLOCK_SHARED;
			locktype = VRWLOCK_WRITE_DIRECT;
			need_isem = 0;
		}

 		xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs,
				*offset, ioflags);
		ret = generic_file_direct_write(iocb, iovp,
				&segs, pos, offset, count, ocount);

		/*
		 * direct-io write to a hole: fall through to buffered I/O
		 * for completing the rest of the request.
		 */
		if (ret >= 0 && ret != count) {
			XFS_STATS_ADD(xs_write_bytes, ret);

			pos += ret;
			count -= ret;

			need_isem = 1;
			ioflags &= ~IO_ISDIRECT;
			xfs_iunlock(xip, iolock);
			goto relock;
		}
	} else {
		xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs,
				*offset, ioflags);
		ret = generic_file_buffered_write(iocb, iovp, segs,
				pos, offset, count, ret);
	}

	current->backing_dev_info = NULL;

	if (ret == -EIOCBQUEUED)
		ret = wait_on_sync_kiocb(iocb);

	if ((ret == -ENOSPC) &&
	    DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
	    !(ioflags & IO_INVIS)) {

		xfs_rwunlock(bdp, locktype);
		error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
				DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
				0, 0, 0); /* Delay flag intentionally  unused */
		if (error)
			goto out_unlock_isem;
		xfs_rwlock(bdp, locktype);
		pos = xip->i_d.di_size;
		goto retry;
	}

	if (*offset > xip->i_d.di_size) {
		xfs_ilock(xip, XFS_ILOCK_EXCL);
		if (*offset > xip->i_d.di_size) {
			xip->i_d.di_size = *offset;
			i_size_write(inode, *offset);
			xip->i_update_core = 1;
			xip->i_update_size = 1;
		}
		xfs_iunlock(xip, XFS_ILOCK_EXCL);
	}

	error = -ret;
	if (ret <= 0)
		goto out_unlock_internal;

	XFS_STATS_ADD(xs_write_bytes, ret);

	/* Handle various SYNC-type writes */
	if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
		/*
		 * If we're treating this as O_DSYNC and we have not updated the
		 * size, force the log.
		 */
		if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
		    !(xip->i_update_size)) {
			xfs_inode_log_item_t	*iip = xip->i_itemp;

			/*
			 * If an allocation transaction occurred
			 * without extending the size, then we have to force
			 * the log up the proper point to ensure that the
			 * allocation is permanent.  We can't count on
			 * the fact that buffered writes lock out direct I/O
			 * writes - the direct I/O write could have extended
			 * the size nontransactionally, then finished before
			 * we started.  xfs_write_file will think that the file
			 * didn't grow but the update isn't safe unless the
			 * size change is logged.
			 *
			 * Force the log if we've committed a transaction
			 * against the inode or if someone else has and
			 * the commit record hasn't gone to disk (e.g.
			 * the inode is pinned).  This guarantees that
			 * all changes affecting the inode are permanent
			 * when we return.
			 */
			if (iip && iip->ili_last_lsn) {
				xfs_log_force(mp, iip->ili_last_lsn,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			} else if (xfs_ipincount(xip) > 0) {
				xfs_log_force(mp, (xfs_lsn_t)0,
						XFS_LOG_FORCE | XFS_LOG_SYNC);
			}

		} else {
			xfs_trans_t	*tp;

			/*
			 * O_SYNC or O_DSYNC _with_ a size update are handled
			 * the same way.
			 *
			 * If the write was synchronous then we need to make
			 * sure that the inode modification time is permanent.
			 * We'll have updated the timestamp above, so here
			 * we use a synchronous transaction to log the inode.
			 * It's not fast, but it's necessary.
			 *
			 * If this a dsync write and the size got changed
			 * non-transactionally, then we need to ensure that
			 * the size change gets logged in a synchronous
			 * transaction.
			 */

			tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
			if ((error = xfs_trans_reserve(tp, 0,
						      XFS_SWRITE_LOG_RES(mp),
						      0, 0, 0))) {
				/* Transaction reserve failed */
				xfs_trans_cancel(tp, 0);
			} else {
				/* Transaction reserve successful */
				xfs_ilock(xip, XFS_ILOCK_EXCL);
				xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
				xfs_trans_ihold(tp, xip);
				xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
				xfs_trans_set_sync(tp);
				error = xfs_trans_commit(tp, 0, NULL);
				xfs_iunlock(xip, XFS_ILOCK_EXCL);
				if (error)
					goto out_unlock_internal;
			}
		}
	
		xfs_rwunlock(bdp, locktype);
		if (need_isem)
			up(&inode->i_sem);

		error = sync_page_range(inode, mapping, pos, ret);
		if (!error)
			error = ret;
		return error;
	}

 out_unlock_internal:
	xfs_rwunlock(bdp, locktype);
 out_unlock_isem:
	if (need_isem)
		up(&inode->i_sem);
	return -error;
}
Example #12
0
/*
 * Pass in a delayed allocate extent, convert it to real extents;
 * return to the caller the extent we create which maps on top of
 * the originating callers request.
 *
 * Called without a lock on the inode.
 *
 * We no longer bother to look at the incoming map - all we have to
 * guarantee is that whatever we allocate fills the required range.
 */
int
xfs_iomap_write_allocate(
	xfs_inode_t	*ip,
	xfs_off_t	offset,
	size_t		count,
	xfs_bmbt_irec_t *map,
	int		*retmap)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_fileoff_t	offset_fsb, last_block;
	xfs_fileoff_t	end_fsb, map_start_fsb;
	xfs_fsblock_t	first_block;
	xfs_bmap_free_t	free_list;
	xfs_filblks_t	count_fsb;
	xfs_bmbt_irec_t	imap;
	xfs_trans_t	*tp;
	int		nimaps, committed;
	int		error = 0;
	int		nres;

	*retmap = 0;

	/*
	 * Make sure that the dquots are there.
	 */
	error = xfs_qm_dqattach(ip, 0);
	if (error)
		return XFS_ERROR(error);

	offset_fsb = XFS_B_TO_FSBT(mp, offset);
	count_fsb = map->br_blockcount;
	map_start_fsb = map->br_startoff;

	XFS_STATS_ADD(xs_xstrat_bytes, XFS_FSB_TO_B(mp, count_fsb));

	while (count_fsb != 0) {
		/*
		 * Set up a transaction with which to allocate the
		 * backing store for the file.  Do allocations in a
		 * loop until we get some space in the range we are
		 * interested in.  The other space that might be allocated
		 * is in the delayed allocation extent on which we sit
		 * but before our buffer starts.
		 */

		nimaps = 0;
		while (nimaps == 0) {
			tp = xfs_trans_alloc(mp, XFS_TRANS_STRAT_WRITE);
			tp->t_flags |= XFS_TRANS_RESERVE;
			nres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
			error = xfs_trans_reserve(tp, nres,
					XFS_WRITE_LOG_RES(mp),
					0, XFS_TRANS_PERM_LOG_RES,
					XFS_WRITE_LOG_COUNT);
			if (error) {
				xfs_trans_cancel(tp, 0);
				return XFS_ERROR(error);
			}
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
			xfs_trans_ihold(tp, ip);

			xfs_bmap_init(&free_list, &first_block);

			/*
			 * it is possible that the extents have changed since
			 * we did the read call as we dropped the ilock for a
			 * while. We have to be careful about truncates or hole
			 * punchs here - we are not allowed to allocate
			 * non-delalloc blocks here.
			 *
			 * The only protection against truncation is the pages
			 * for the range we are being asked to convert are
			 * locked and hence a truncate will block on them
			 * first.
			 *
			 * As a result, if we go beyond the range we really
			 * need and hit an delalloc extent boundary followed by
			 * a hole while we have excess blocks in the map, we
			 * will fill the hole incorrectly and overrun the
			 * transaction reservation.
			 *
			 * Using a single map prevents this as we are forced to
			 * check each map we look for overlap with the desired
			 * range and abort as soon as we find it. Also, given
			 * that we only return a single map, having one beyond
			 * what we can return is probably a bit silly.
			 *
			 * We also need to check that we don't go beyond EOF;
			 * this is a truncate optimisation as a truncate sets
			 * the new file size before block on the pages we
			 * currently have locked under writeback. Because they
			 * are about to be tossed, we don't need to write them
			 * back....
			 */
			nimaps = 1;
			end_fsb = XFS_B_TO_FSB(mp, ip->i_size);
			error = xfs_bmap_last_offset(NULL, ip, &last_block,
							XFS_DATA_FORK);
			if (error)
				goto trans_cancel;

			last_block = XFS_FILEOFF_MAX(last_block, end_fsb);
			if ((map_start_fsb + count_fsb) > last_block) {
				count_fsb = last_block - map_start_fsb;
				if (count_fsb == 0) {
					error = EAGAIN;
					goto trans_cancel;
				}
			}

			/* Go get the actual blocks */
			error = xfs_bmapi(tp, ip, map_start_fsb, count_fsb,
					XFS_BMAPI_WRITE, &first_block, 1,
					&imap, &nimaps, &free_list, NULL);
			if (error)
				goto trans_cancel;

			error = xfs_bmap_finish(&tp, &free_list, &committed);
			if (error)
				goto trans_cancel;

			error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
			if (error)
				goto error0;

			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}

		/*
		 * See if we were able to allocate an extent that
		 * covers at least part of the callers request
		 */
		if (!(imap.br_startblock || XFS_IS_REALTIME_INODE(ip)))
			return xfs_cmn_err_fsblock_zero(ip, &imap);

		if ((offset_fsb >= imap.br_startoff) &&
		    (offset_fsb < (imap.br_startoff +
				   imap.br_blockcount))) {
			*map = imap;
			*retmap = 1;
			XFS_STATS_INC(xs_xstrat_quick);
			return 0;
		}

		/*
		 * So far we have not mapped the requested part of the
		 * file, just surrounding data, try again.
		 */
		count_fsb -= imap.br_blockcount;
		map_start_fsb = imap.br_startoff + imap.br_blockcount;
	}

trans_cancel:
	xfs_bmap_cancel(&free_list);
	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
error0:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return XFS_ERROR(error);
}
/*
 * Pass in a delayed allocate extent, convert it to real extents;
 * return to the caller the extent we create which maps on top of
 * the originating callers request.
 *
 * Called without a lock on the inode.
 */
int
xfs_iomap_write_allocate(
	xfs_inode_t	*ip,
	xfs_off_t	offset,
	size_t		count,
	xfs_bmbt_irec_t *map,
	int		*retmap)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_iocore_t    *io = &ip->i_iocore;
	xfs_fileoff_t	offset_fsb, last_block;
	xfs_fileoff_t	end_fsb, map_start_fsb;
	xfs_fsblock_t	first_block;
	xfs_bmap_free_t	free_list;
	xfs_filblks_t	count_fsb;
	xfs_bmbt_irec_t	imap[XFS_STRAT_WRITE_IMAPS];
	xfs_trans_t	*tp;
	int		i, nimaps, committed;
	int		error = 0;
	int		nres;

	*retmap = 0;

	/*
	 * Make sure that the dquots are there.
	 */
	if ((error = XFS_QM_DQATTACH(mp, ip, 0)))
		return XFS_ERROR(error);

	offset_fsb = XFS_B_TO_FSBT(mp, offset);
	count_fsb = map->br_blockcount;
	map_start_fsb = map->br_startoff;

	XFS_STATS_ADD(xs_xstrat_bytes, XFS_FSB_TO_B(mp, count_fsb));

	while (count_fsb != 0) {
		/*
		 * Set up a transaction with which to allocate the
		 * backing store for the file.  Do allocations in a
		 * loop until we get some space in the range we are
		 * interested in.  The other space that might be allocated
		 * is in the delayed allocation extent on which we sit
		 * but before our buffer starts.
		 */

		nimaps = 0;
		while (nimaps == 0) {
			tp = xfs_trans_alloc(mp, XFS_TRANS_STRAT_WRITE);
			nres = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
			error = xfs_trans_reserve(tp, nres,
					XFS_WRITE_LOG_RES(mp),
					0, XFS_TRANS_PERM_LOG_RES,
					XFS_WRITE_LOG_COUNT);
			if (error == ENOSPC) {
				error = xfs_trans_reserve(tp, 0,
						XFS_WRITE_LOG_RES(mp),
						0,
						XFS_TRANS_PERM_LOG_RES,
						XFS_WRITE_LOG_COUNT);
			}
			if (error) {
				xfs_trans_cancel(tp, 0);
				return XFS_ERROR(error);
			}
			xfs_ilock(ip, XFS_ILOCK_EXCL);
			xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
			xfs_trans_ihold(tp, ip);

			XFS_BMAP_INIT(&free_list, &first_block);

			nimaps = XFS_STRAT_WRITE_IMAPS;
			/*
			 * Ensure we don't go beyond eof - it is possible
			 * the extents changed since we did the read call,
			 * we dropped the ilock in the interim.
			 */

			end_fsb = XFS_B_TO_FSB(mp, ip->i_d.di_size);
			xfs_bmap_last_offset(NULL, ip, &last_block,
				XFS_DATA_FORK);
			last_block = XFS_FILEOFF_MAX(last_block, end_fsb);
			if ((map_start_fsb + count_fsb) > last_block) {
				count_fsb = last_block - map_start_fsb;
				if (count_fsb == 0) {
					error = EAGAIN;
					goto trans_cancel;
				}
			}

			/* Go get the actual blocks */
			error = xfs_bmapi(tp, ip, map_start_fsb, count_fsb,
					XFS_BMAPI_WRITE, &first_block, 1,
					imap, &nimaps, &free_list);
			if (error)
				goto trans_cancel;

			error = xfs_bmap_finish(&tp, &free_list,
					first_block, &committed);
			if (error)
				goto trans_cancel;

			error = xfs_trans_commit(tp,
					XFS_TRANS_RELEASE_LOG_RES, NULL);
			if (error)
				goto error0;

			xfs_iunlock(ip, XFS_ILOCK_EXCL);
		}

		/*
		 * See if we were able to allocate an extent that
		 * covers at least part of the callers request
		 */

		for (i = 0; i < nimaps; i++) {
			if ( !(io->io_flags & XFS_IOCORE_RT)  && 
				!imap[i].br_startblock) {
				cmn_err(CE_PANIC,"Access to block zero:  "
					"fs <%s> inode: %lld "
					"start_block : %llx start_off : %llx " 
					"blkcnt : %llx extent-state : %x \n",
					(ip->i_mount)->m_fsname,
					(long long)ip->i_ino,
					imap[i].br_startblock,
					imap[i].br_startoff,
				        imap[i].br_blockcount,imap[i].br_state);
                        }
			if ((offset_fsb >= imap[i].br_startoff) &&
			    (offset_fsb < (imap[i].br_startoff +
					   imap[i].br_blockcount))) {
				*map = imap[i];
				*retmap = 1;
				XFS_STATS_INC(xs_xstrat_quick);
				return 0;
			}
			count_fsb -= imap[i].br_blockcount;
		}

		/* So far we have not mapped the requested part of the
		 * file, just surrounding data, try again.
		 */
		nimaps--;
		map_start_fsb = imap[nimaps].br_startoff +
				imap[nimaps].br_blockcount;
	}

trans_cancel:
	xfs_bmap_cancel(&free_list);
	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
error0:
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	return XFS_ERROR(error);
}
Example #14
0
STATIC ssize_t
xfs_file_read_iter(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	size_t			size = iov_iter_count(to);
	ssize_t			ret = 0;
	int			ioflags = 0;
	xfs_fsize_t		n;
	loff_t			pos = iocb->ki_pos;

	XFS_STATS_INC(mp, xs_read_calls);

	if (unlikely(iocb->ki_flags & IOCB_DIRECT))
		ioflags |= XFS_IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= XFS_IO_INVIS;

	if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
		/* DIO must be aligned to device logical sector size */
		if ((pos | size) & target->bt_logical_sectormask) {
			if (pos == i_size_read(inode))
				return 0;
			return -EINVAL;
		}
	}

	n = mp->m_super->s_maxbytes - pos;
	if (n <= 0 || size == 0)
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	/*
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
		if (inode->i_mapping->nrpages) {
			ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
			ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
			WARN_ON_ONCE(ret);
			ret = 0;
		}
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
	}

	trace_xfs_file_read(ip, size, pos, ioflags);

	ret = generic_file_read_iter(iocb, to);
	if (ret > 0)
		XFS_STATS_ADD(mp, xs_read_bytes, ret);

	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
	return ret;
}
STATIC ssize_t
xfs_file_aio_read(
	struct kiocb		*iocb,
	const struct iovec	*iovp,
	unsigned long		nr_segs,
	loff_t			pos)
{
	struct file		*file = iocb->ki_filp;
	struct inode		*inode = file->f_mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	struct xfs_mount	*mp = ip->i_mount;
	size_t			size = 0;
	ssize_t			ret = 0;
	int			ioflags = 0;
	xfs_fsize_t		n;

	XFS_STATS_INC(xs_read_calls);

	BUG_ON(iocb->ki_pos != pos);

	if (unlikely(file->f_flags & O_DIRECT))
		ioflags |= IO_ISDIRECT;
	if (file->f_mode & FMODE_NOCMTIME)
		ioflags |= IO_INVIS;

	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
	if (ret < 0)
		return ret;

	if (unlikely(ioflags & IO_ISDIRECT)) {
		xfs_buftarg_t	*target =
			XFS_IS_REALTIME_INODE(ip) ?
				mp->m_rtdev_targp : mp->m_ddev_targp;
		if ((pos & target->bt_smask) || (size & target->bt_smask)) {
			if (pos == i_size_read(inode))
				return 0;
			return -XFS_ERROR(EINVAL);
		}
	}

	n = mp->m_super->s_maxbytes - pos;
	if (n <= 0 || size == 0)
		return 0;

	if (n < size)
		size = n;

	if (XFS_FORCED_SHUTDOWN(mp))
		return -EIO;

	/*
	 * Locking is a bit tricky here. If we take an exclusive lock
	 * for direct IO, we effectively serialise all new concurrent
	 * read IO to this file and block it behind IO that is currently in
	 * progress because IO in progress holds the IO lock shared. We only
	 * need to hold the lock exclusive to blow away the page cache, so
	 * only take lock exclusively if the page cache needs invalidation.
	 * This allows the normal direct IO case of no page cache pages to
	 * proceeed concurrently without serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

		if (inode->i_mapping->nrpages) {
			ret = -filemap_write_and_wait_range(
							VFS_I(ip)->i_mapping,
							pos, -1);
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}
			truncate_pagecache_range(VFS_I(ip), pos, -1);
		}
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
	}

	trace_xfs_file_read(ip, size, pos, ioflags);

	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
	if (ret > 0)
		XFS_STATS_ADD(xs_read_bytes, ret);

	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
	return ret;
}