Example #1
0
/*
*
* This function handles continuation of receiving data. It is invoked
* from interrupt handler.
*
* @param	InstancePtr is a pointer to the XIicPs instance.
*
* @return	Number of bytes still expected by the instance.
*
* @note		None.
*
****************************************************************************/
static int SlaveRecvData(XIicPs *InstancePtr)
{
	volatile u32 StatusReg;
	u32 BaseAddr;

	BaseAddr = InstancePtr->Config.BaseAddress;

	StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

	while (StatusReg & XIICPS_SR_RXDV_MASK) {
		XIicPs_RecvByte(InstancePtr);
		StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
	}

	return InstancePtr->RecvByteCount;
}
Example #2
0
/*
*
* This function handles continuation of receiving data. It is invoked
* from interrupt handler.
*
* @param	InstancePtr is a pointer to the XIicPs instance.
*
* @return	Number of bytes still expected by the instance.
*
* @note		None.
*
****************************************************************************/
static s32 SlaveRecvData(XIicPs *InstancePtr)
{
	u32 StatusReg;
	u32 BaseAddr;

	BaseAddr = InstancePtr->Config.BaseAddress;

	StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

	while (((StatusReg & XIICPS_SR_RXDV_MASK)!=0x0U) &&
			((InstancePtr->RecvByteCount > 0) != 0x0U)) {
		XIicPs_RecvByte(InstancePtr);
		StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
	}

	return InstancePtr->RecvByteCount;
}
Example #3
0
/**
* The interrupt handler for the master mode. It does the protocol handling for
* the interrupt-driven transfers.
*
* Completion events and errors are signaled to upper layer for proper handling.
*
* <pre>
* The interrupts that are handled are:
* - DATA
*	This case is handled only for master receive data.
*	The master has to request for more data (if there is more data to
*	receive) and read the data from the FIFO .
*
* - COMP
*	If the Master is transmitting data and there is more data to be
*	sent then the data is written to the FIFO. If there is no more data to
*	be transmitted then a completion event is signalled to the upper layer
*	by calling the callback handler.
*
*	If the Master is receiving data then the data is read from the FIFO and
*	the Master has to request for more data (if there is more data to
*	receive). If all the data has been received then a completion event
*	is signalled to the upper layer by calling the callback handler.
*	It is an error if the amount of received data is more than expected.
*
* - NAK and SLAVE_RDY
*	This is signalled to the upper layer by calling the callback handler.
*
* - All Other interrupts
*	These interrupts are marked as error. This is signalled to the upper
*	layer by calling the callback handler.
*
* </pre>
*
* @param	InstancePtr is a pointer to the XIicPs instance.
*
* @return	None.
*
* @note 	None.
*
****************************************************************************/
void XIicPs_MasterInterruptHandler(XIicPs *InstancePtr)
{
	u32 IntrStatusReg;
	u32 StatusEvent = 0;
	u32 BaseAddr;
	int ByteCnt;
	int IsHold;

	/*
	 * Assert validates the input arguments.
	 */
	Xil_AssertVoid(InstancePtr != NULL);
	Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);

	BaseAddr = InstancePtr->Config.BaseAddress;

	/*
	 * Read the Interrupt status register.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr,
					 XIICPS_ISR_OFFSET);

	/*
	 * Write the status back to clear the interrupts so no events are
	 * missed while processing this interrupt.
	 */
	XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

	/*
	 * Use the Mask register AND with the Interrupt Status register so
	 * disabled interrupts are not processed.
	 */
	IntrStatusReg &= ~(XIicPs_ReadReg(BaseAddr, XIICPS_IMR_OFFSET));

	ByteCnt = InstancePtr->CurrByteCount;

	IsHold = 0;
	if (XIicPs_ReadReg(BaseAddr, XIICPS_CR_OFFSET) & XIICPS_CR_HOLD_MASK) {
		IsHold = 1;
	}

	/*
	 * Send
	 */
	if ((InstancePtr->IsSend) &&
		(0 != (IntrStatusReg & XIICPS_IXR_COMP_MASK))) {
		if (InstancePtr->SendByteCount > 0) {
			MasterSendData(InstancePtr);
		} else {
			StatusEvent |= XIICPS_EVENT_COMPLETE_SEND;
		}
	}


	/*
	 * Receive
	 */
	if ((!(InstancePtr->IsSend)) &&
		((0 != (IntrStatusReg & XIICPS_IXR_DATA_MASK)) ||
		(0 != (IntrStatusReg & XIICPS_IXR_COMP_MASK)))){

		while (XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET) &
				XIICPS_SR_RXDV_MASK) {
			if ((InstancePtr->RecvByteCount <
				XIICPS_DATA_INTR_DEPTH) && IsHold &&
				(!(InstancePtr->IsRepeatedStart))) {
				IsHold = 0;
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			XIicPs_RecvByte(InstancePtr);
			ByteCnt--;

			if (InstancePtr->UpdateTxSize &&
				(ByteCnt == XIICPS_FIFO_DEPTH + 1))
				break;
		}

		if (InstancePtr->UpdateTxSize &&
			(ByteCnt == XIICPS_FIFO_DEPTH + 1)) {
			/*
			 * wait while fifo is full
			 */
			while(XIicPs_ReadReg(BaseAddr,
				XIICPS_TRANS_SIZE_OFFSET) !=
				(ByteCnt - XIICPS_FIFO_DEPTH));

			if ((InstancePtr->RecvByteCount - XIICPS_FIFO_DEPTH) >
				XIICPS_MAX_TRANSFER_SIZE) {

				XIicPs_WriteReg(BaseAddr,
					XIICPS_TRANS_SIZE_OFFSET,
					XIICPS_MAX_TRANSFER_SIZE);
				ByteCnt = XIICPS_MAX_TRANSFER_SIZE +
						XIICPS_FIFO_DEPTH;
			}else {
				XIicPs_WriteReg(BaseAddr,
					XIICPS_TRANS_SIZE_OFFSET,
					InstancePtr->RecvByteCount -
					XIICPS_FIFO_DEPTH);
				InstancePtr->UpdateTxSize = 0;
				ByteCnt = InstancePtr->RecvByteCount;
			}
		}
		InstancePtr->CurrByteCount = ByteCnt;
	}

	if ((!(InstancePtr->IsSend)) &&
		(0 != (IntrStatusReg & XIICPS_IXR_COMP_MASK))) {
		/*
		 * If all done, tell the application.
		 */
		if (InstancePtr->RecvByteCount == 0){
			if (!(InstancePtr->IsRepeatedStart)) {
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			StatusEvent |= XIICPS_EVENT_COMPLETE_RECV;
		}
	}


	/*
	 * Slave ready interrupt, it is only meaningful for master mode.
	 */
	if (0 != (IntrStatusReg & XIICPS_IXR_SLV_RDY_MASK)) {
		StatusEvent |= XIICPS_EVENT_SLAVE_RDY;
	}

	if (0 != (IntrStatusReg & XIICPS_IXR_NACK_MASK)) {
		if (!(InstancePtr->IsRepeatedStart)) {
			XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
					XIicPs_ReadReg(BaseAddr,
					XIICPS_CR_OFFSET) &
					(~XIICPS_CR_HOLD_MASK));
		}
		StatusEvent |= XIICPS_EVENT_NACK;
	}

	/*
	 * All other interrupts are treated as error.
	 */
	if (0 != (IntrStatusReg & (XIICPS_IXR_NACK_MASK |
			XIICPS_IXR_ARB_LOST_MASK | XIICPS_IXR_RX_UNF_MASK |
			XIICPS_IXR_TX_OVR_MASK | XIICPS_IXR_RX_OVR_MASK))) {
		if (!(InstancePtr->IsRepeatedStart)) {
			XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
					XIicPs_ReadReg(BaseAddr,
					XIICPS_CR_OFFSET) &
					(~XIICPS_CR_HOLD_MASK));
		}
		StatusEvent |= XIICPS_EVENT_ERROR;
	}

	/*
	 * Signal application if there are any events.
	 */
	if (0 != StatusEvent) {
		InstancePtr->StatusHandler(InstancePtr->CallBackRef,
					   StatusEvent);
	}

}
Example #4
0
/**
* This function initiates a polled mode receive in master mode.
*
* It repeatedly sets the transfer size register so the slave can
* send data to us. It polls the data register for data to come in.
* If slave fails to send us data, it fails with time out.
*
* @param	InstancePtr is a pointer to the XIicPs instance.
* @param	MsgPtr is the pointer to the receive buffer.
* @param	ByteCount is the number of bytes to be received.
* @param	SlaveAddr is the address of the slave we are receiving from.
*
* @return
*		- XST_SUCCESS if everything went well.
*		- XST_FAILURE if timed out.
*
* @note		This receive routine is for polled mode transfer only.
*
****************************************************************************/
int XIicPs_MasterRecvPolled(XIicPs *InstancePtr, u8 *MsgPtr,
				int ByteCount, u16 SlaveAddr)
{
	u32 IntrStatusReg;
	u32 Intrs;
	u32 StatusReg;
	u32 BaseAddr;
	int IsHold = 0;
	int UpdateTxSize = 0;

	/*
	 * Assert validates the input arguments.
	 */
	Xil_AssertNonvoid(InstancePtr != NULL);
	Xil_AssertNonvoid(MsgPtr != NULL);
	Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY);
	Xil_AssertNonvoid(XIICPS_ADDR_MASK >= SlaveAddr);

	BaseAddr = InstancePtr->Config.BaseAddress;
	InstancePtr->RecvBufferPtr = MsgPtr;
	InstancePtr->RecvByteCount = ByteCount;

	if((ByteCount > XIICPS_DATA_INTR_DEPTH) ||
		(InstancePtr->IsRepeatedStart))
	{
		XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
				XIicPs_ReadReg(BaseAddr, XIICPS_CR_OFFSET) |
						XIICPS_CR_HOLD_MASK);
		IsHold = 1;
	}

	XIicPs_SetupMaster(InstancePtr, RECVING_ROLE);

	/*
	 * Clear the interrupt status register before use it to monitor.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

	XIicPs_WriteReg(BaseAddr, XIICPS_ADDR_OFFSET, SlaveAddr);

	/*
	 * Set up the transfer size register so the slave knows how much
	 * to send to us.
	 */
	if (ByteCount > XIICPS_MAX_TRANSFER_SIZE) {
		XIicPs_WriteReg(BaseAddr, XIICPS_TRANS_SIZE_OFFSET,
				XIICPS_MAX_TRANSFER_SIZE);
		ByteCount = XIICPS_MAX_TRANSFER_SIZE;
		UpdateTxSize = 1;
	}else {
		XIicPs_WriteReg(BaseAddr, XIICPS_TRANS_SIZE_OFFSET,
			 ByteCount);
	}

	/*
	 * Intrs keeps all the error-related interrupts.
	 */
	Intrs = XIICPS_IXR_ARB_LOST_MASK | XIICPS_IXR_RX_OVR_MASK |
			XIICPS_IXR_RX_UNF_MASK | XIICPS_IXR_NACK_MASK;

	/*
	 * Poll the interrupt status register to find the errors.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	while ((InstancePtr->RecvByteCount > 0) &&
			((IntrStatusReg & Intrs) == 0)) {
		StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

		while (StatusReg & XIICPS_SR_RXDV_MASK) {
			if ((InstancePtr->RecvByteCount <
				XIICPS_DATA_INTR_DEPTH) && IsHold &&
				(!(InstancePtr->IsRepeatedStart))) {
				IsHold = 0;
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			XIicPs_RecvByte(InstancePtr);
			ByteCount --;

			if (UpdateTxSize &&
				(ByteCount == XIICPS_FIFO_DEPTH + 1))
				break;

			StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
		}

		if (UpdateTxSize && (ByteCount == XIICPS_FIFO_DEPTH + 1)) {
			/*
			 * wait while fifo is full
			 */
			while(XIicPs_ReadReg(BaseAddr,
				XIICPS_TRANS_SIZE_OFFSET) !=
				(ByteCount - XIICPS_FIFO_DEPTH));

			if ((InstancePtr->RecvByteCount - XIICPS_FIFO_DEPTH) >
				XIICPS_MAX_TRANSFER_SIZE) {

				XIicPs_WriteReg(BaseAddr,
					XIICPS_TRANS_SIZE_OFFSET,
					XIICPS_MAX_TRANSFER_SIZE);
				ByteCount = XIICPS_MAX_TRANSFER_SIZE +
						XIICPS_FIFO_DEPTH;
			}else {
				XIicPs_WriteReg(BaseAddr,
					XIICPS_TRANS_SIZE_OFFSET,
					InstancePtr->RecvByteCount -
					XIICPS_FIFO_DEPTH);
				UpdateTxSize = 0;
				ByteCount = InstancePtr->RecvByteCount;
			}
		}

		IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	}

	if (!(InstancePtr->IsRepeatedStart)) {
		XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
				XIicPs_ReadReg(BaseAddr,XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
	}

	if (IntrStatusReg & Intrs) {
		return XST_FAILURE;
	}

	return XST_SUCCESS;
}
Example #5
0
/**
* This function receives a buffer in polled mode as a slave.
*
* @param	InstancePtr is a pointer to the XIicPs instance.
* @param	MsgPtr is the pointer to the receive buffer.
* @param	ByteCount is the number of bytes to be received.
*
* @return
*		- XST_SUCCESS if everything went well.
*		- XST_FAILURE if timed out.
*
* @note		This receive routine is for polled mode transfer only.
*
****************************************************************************/
s32 XIicPs_SlaveRecvPolled(XIicPs *InstancePtr, u8 *MsgPtr, s32 ByteCount)
{
	u32 IntrStatusReg;
	u32 StatusReg;
	u32 BaseAddr;
	s32 Count;

	/*
	 * Assert validates the input arguments.
	 */
	Xil_AssertNonvoid(InstancePtr != NULL);
	Xil_AssertNonvoid(MsgPtr != NULL);
	Xil_AssertNonvoid(InstancePtr->IsReady == (u32)XIL_COMPONENT_IS_READY);

	BaseAddr = InstancePtr->Config.BaseAddress;
	InstancePtr->RecvBufferPtr = MsgPtr;
	InstancePtr->RecvByteCount = ByteCount;

	StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

	/*
	 * Clear the interrupt status register.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

	/*
	 * Clear the status register.
	 */
	StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
	XIicPs_WriteReg(BaseAddr, XIICPS_SR_OFFSET, StatusReg);

	StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
	Count = InstancePtr->RecvByteCount;
	while (Count > (s32)0) {

		/* Wait for master to put data */
		while ((StatusReg & XIICPS_SR_RXDV_MASK) == 0U) {
		    StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

			/*
			 * If master terminates the transfer before we get all
			 * the data or the master tries to read from us,
		 	 * it is an error.
			 */
			IntrStatusReg = XIicPs_ReadReg(BaseAddr,
						XIICPS_ISR_OFFSET);
			if (((IntrStatusReg & (XIICPS_IXR_DATA_MASK |
					XIICPS_IXR_COMP_MASK))!=0x0U) &&
				((StatusReg & XIICPS_SR_RXDV_MASK) == 0U) &&
				((InstancePtr->RecvByteCount > 0) != 0x0U)) {

				return (s32)XST_FAILURE;
			}

			/*
			 * Clear the interrupt status register.
			 */
			XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET,
			IntrStatusReg);
		}

		/*
		 * Read all data from FIFO.
		 */
		while (((StatusReg & XIICPS_SR_RXDV_MASK)!=0x0U) &&
			 ((InstancePtr->RecvByteCount > 0) != 0x0U)){

			XIicPs_RecvByte(InstancePtr);

			StatusReg = XIicPs_ReadReg(BaseAddr,
				XIICPS_SR_OFFSET);
		}
		Count = InstancePtr->RecvByteCount;
	}

	return (s32)XST_SUCCESS;
}
Example #6
0
/**
* This function initiates a polled mode receive in master mode.
*
* It repeatedly sets the transfer size register so the slave can
* send data to us. It polls the data register for data to come in.
* If slave fails to send us data, it fails with time out.
*
* @param	InstancePtr is a pointer to the XIicPs instance.
* @param	MsgPtr is the pointer to the receive buffer.
* @param	ByteCount is the number of bytes to be received.
* @param	SlaveAddr is the address of the slave we are receiving from.
*
* @return
*		- XST_SUCCESS if everything went well.
*		- XST_FAILURE if timed out.
*
* @note		This receive routine is for polled mode transfer only.
*
****************************************************************************/
s32 XIicPs_MasterRecvPolled(XIicPs *InstancePtr, u8 *MsgPtr,
				s32 ByteCount, u16 SlaveAddr)
{
	u32 IntrStatusReg;
	u32 Intrs;
	u32 StatusReg;
	u32 BaseAddr;
	s32 BytesToRecv;
	s32 BytesToRead;
	s32 TransSize;
	u32 Status_Rcv;
	u32 Status;
	s32 Result;
	s32 IsHold;
	s32 UpdateTxSize = 0;
	s32 ByteCountVar = ByteCount;
	u32 Platform;

	/*
	 * Assert validates the input arguments.
	 */
	Xil_AssertNonvoid(InstancePtr != NULL);
	Xil_AssertNonvoid(MsgPtr != NULL);
	Xil_AssertNonvoid(InstancePtr->IsReady == (u32)XIL_COMPONENT_IS_READY);
	Xil_AssertNonvoid(XIICPS_ADDR_MASK >= SlaveAddr);

	BaseAddr = InstancePtr->Config.BaseAddress;
	InstancePtr->RecvBufferPtr = MsgPtr;
	InstancePtr->RecvByteCount = ByteCountVar;

	Platform = XGetPlatform_Info();

	if((ByteCountVar > XIICPS_FIFO_DEPTH) ||
		((InstancePtr->IsRepeatedStart) !=0))
	{
		XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
				XIicPs_ReadReg(BaseAddr, (u32)XIICPS_CR_OFFSET) |
						(u32)XIICPS_CR_HOLD_MASK);
		IsHold = 1;
	} else {
		IsHold = 0;
	}

	(void)XIicPs_SetupMaster(InstancePtr, RECVING_ROLE);

	/*
	 * Clear the interrupt status register before use it to monitor.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

	XIicPs_WriteReg(BaseAddr, XIICPS_ADDR_OFFSET, SlaveAddr);

	/*
	 * Set up the transfer size register so the slave knows how much
	 * to send to us.
	 */
	if (ByteCountVar > XIICPS_MAX_TRANSFER_SIZE) {
		XIicPs_WriteReg(BaseAddr, XIICPS_TRANS_SIZE_OFFSET,
				XIICPS_MAX_TRANSFER_SIZE);
		ByteCountVar = (s32)XIICPS_MAX_TRANSFER_SIZE;
		UpdateTxSize = 1;
	}else {
		XIicPs_WriteReg(BaseAddr, XIICPS_TRANS_SIZE_OFFSET,
			 ByteCountVar);
	}

	/*
	 * Intrs keeps all the error-related interrupts.
	 */
	Intrs = (u32)XIICPS_IXR_ARB_LOST_MASK | (u32)XIICPS_IXR_RX_OVR_MASK |
			(u32)XIICPS_IXR_RX_UNF_MASK | (u32)XIICPS_IXR_NACK_MASK;
	/*
	 * Poll the interrupt status register to find the errors.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	while ((InstancePtr->RecvByteCount > 0) &&
			((IntrStatusReg & Intrs) == 0U)) {
		StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);

	    while ((StatusReg & XIICPS_SR_RXDV_MASK) != 0U) {
		    if (((InstancePtr->RecvByteCount <
			    XIICPS_DATA_INTR_DEPTH) != 0U) && (IsHold != 0) &&
			    ((!InstancePtr->IsRepeatedStart) != 0) &&
			    (UpdateTxSize == 0)) {
				IsHold = 0;
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			XIicPs_RecvByte(InstancePtr);
		    ByteCountVar --;

			if (Platform == (u32)XPLAT_ZYNQ) {
			    if ((UpdateTxSize != 0) &&
				    (ByteCountVar == (XIICPS_FIFO_DEPTH + 1))) {
				    break;
				}
			}

			StatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_SR_OFFSET);
		}
		if (Platform == (u32)XPLAT_ZYNQ) {
			if ((UpdateTxSize != 0) &&
				(ByteCountVar == (XIICPS_FIFO_DEPTH + 1))) {
			    /*  wait while fifo is full */
			    while (XIicPs_ReadReg(BaseAddr,
				    XIICPS_TRANS_SIZE_OFFSET) !=
				    (u32)(ByteCountVar - XIICPS_FIFO_DEPTH)) { ;
				}

				if ((InstancePtr->RecvByteCount - XIICPS_FIFO_DEPTH) >
					XIICPS_MAX_TRANSFER_SIZE) {

					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						XIICPS_MAX_TRANSFER_SIZE);
				    ByteCountVar = (s32)XIICPS_MAX_TRANSFER_SIZE +
							XIICPS_FIFO_DEPTH;
				} else {
					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						InstancePtr->RecvByteCount -
						XIICPS_FIFO_DEPTH);
					UpdateTxSize = 0;
				    ByteCountVar = InstancePtr->RecvByteCount;
				}
			}
		} else {
		    if ((InstancePtr->RecvByteCount > 0) && (ByteCountVar == 0)) {
				/*
				 * Clear the interrupt status register before use it to
				 * monitor.
				 */
				IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
				XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

				XIicPs_WriteReg(BaseAddr, XIICPS_ADDR_OFFSET, SlaveAddr);

				if ((InstancePtr->RecvByteCount) >
					XIICPS_MAX_TRANSFER_SIZE) {

					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						XIICPS_MAX_TRANSFER_SIZE);
				    ByteCountVar = (s32)XIICPS_MAX_TRANSFER_SIZE;
				} else {
					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						InstancePtr->RecvByteCount);
					UpdateTxSize = 0;
				    ByteCountVar = InstancePtr->RecvByteCount;
				}
			}
		}

		IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
	}

	if ((!(InstancePtr->IsRepeatedStart)) != 0) {
		XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
				XIicPs_ReadReg(BaseAddr,XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
	}
	if ((IntrStatusReg & Intrs) != 0x0U) {
		Result = (s32)XST_FAILURE;
	}
	else {
		Result =  (s32)XST_SUCCESS;
	}

	return Result;
}
Example #7
0
/**
* The interrupt handler for the master mode. It does the protocol handling for
* the interrupt-driven transfers.
*
* Completion events and errors are signaled to upper layer for proper handling.
*
* <pre>
* The interrupts that are handled are:
* - DATA
*	This case is handled only for master receive data.
*	The master has to request for more data (if there is more data to
*	receive) and read the data from the FIFO .
*
* - COMP
*	If the Master is transmitting data and there is more data to be
*	sent then the data is written to the FIFO. If there is no more data to
*	be transmitted then a completion event is signalled to the upper layer
*	by calling the callback handler.
*
*	If the Master is receiving data then the data is read from the FIFO and
*	the Master has to request for more data (if there is more data to
*	receive). If all the data has been received then a completion event
*	is signalled to the upper layer by calling the callback handler.
*	It is an error if the amount of received data is more than expected.
*
* - NAK and SLAVE_RDY
*	This is signalled to the upper layer by calling the callback handler.
*
* - All Other interrupts
*	These interrupts are marked as error. This is signalled to the upper
*	layer by calling the callback handler.
*
* </pre>
*
* @param	InstancePtr is a pointer to the XIicPs instance.
*
* @return	None.
*
* @note 	None.
*
****************************************************************************/
void XIicPs_MasterInterruptHandler(XIicPs *InstancePtr)
{
	u32 IntrStatusReg;
	u32 StatusEvent = 0U;
	u32 BaseAddr;
	u16 SlaveAddr;
	s32 ByteCnt;
	s32 IsHold;
	u32 Platform;

	/*
	 * Assert validates the input arguments.
	 */
	Xil_AssertVoid(InstancePtr != NULL);
	Xil_AssertVoid(InstancePtr->IsReady == (u32)XIL_COMPONENT_IS_READY);

	BaseAddr = InstancePtr->Config.BaseAddress;

	Platform = XGetPlatform_Info();

	/*
	 * Read the Interrupt status register.
	 */
	IntrStatusReg = XIicPs_ReadReg(BaseAddr,
					 (u32)XIICPS_ISR_OFFSET);

	/*
	 * Write the status back to clear the interrupts so no events are
	 * missed while processing this interrupt.
	 */
	XIicPs_WriteReg(BaseAddr, (u32)XIICPS_ISR_OFFSET, IntrStatusReg);

	/*
	 * Use the Mask register AND with the Interrupt Status register so
	 * disabled interrupts are not processed.
	 */
	IntrStatusReg &= ~(XIicPs_ReadReg(BaseAddr, (u32)XIICPS_IMR_OFFSET));

	ByteCnt = InstancePtr->CurrByteCount;

	IsHold = 0;
	if ((XIicPs_ReadReg(BaseAddr, (u32)XIICPS_CR_OFFSET) & (u32)XIICPS_CR_HOLD_MASK) != 0U) {
		IsHold = 1;
	}

	/*
	 * Send
	 */
	if (((InstancePtr->IsSend) != 0) &&
		((u32)0U != (IntrStatusReg & (u32)XIICPS_IXR_COMP_MASK))) {
		if (InstancePtr->SendByteCount > 0) {
			MasterSendData(InstancePtr);
		} else {
			StatusEvent |= XIICPS_EVENT_COMPLETE_SEND;
		}
	}


	/*
	 * Receive
	 */
	if (((!(InstancePtr->IsSend))!= 0) &&
		((0 != (IntrStatusReg & (u32)XIICPS_IXR_DATA_MASK)) ||
		(0 != (IntrStatusReg & (u32)XIICPS_IXR_COMP_MASK)))){

		while ((XIicPs_ReadReg(BaseAddr, (u32)XIICPS_SR_OFFSET) &
				XIICPS_SR_RXDV_MASK) != 0U) {
			if (((InstancePtr->RecvByteCount <
				XIICPS_DATA_INTR_DEPTH)!= 0U)  && (IsHold != 0)  &&
				((!InstancePtr->IsRepeatedStart)!= 0) &&
				(InstancePtr->UpdateTxSize == 0)) {
				IsHold = 0;
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			XIicPs_RecvByte(InstancePtr);
			ByteCnt--;

			if (Platform == (u32)XPLAT_ZYNQ) {
			    if ((InstancePtr->UpdateTxSize != 0) &&
				    (ByteCnt == (XIICPS_FIFO_DEPTH + 1))) {
				    break;
				}
			}
		}

		if (Platform == (u32)XPLAT_ZYNQ) {
			if ((InstancePtr->UpdateTxSize != 0) &&
				(ByteCnt == (XIICPS_FIFO_DEPTH + 1))) {
				/* wait while fifo is full */
				while (XIicPs_ReadReg(BaseAddr,
					XIICPS_TRANS_SIZE_OFFSET) !=
					(u32)(ByteCnt - XIICPS_FIFO_DEPTH)) {
				}

				if ((InstancePtr->RecvByteCount - XIICPS_FIFO_DEPTH) >
					(s32)XIICPS_MAX_TRANSFER_SIZE) {

					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						XIICPS_MAX_TRANSFER_SIZE);
					ByteCnt = (s32)XIICPS_MAX_TRANSFER_SIZE +
							XIICPS_FIFO_DEPTH;
				} else {
					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						InstancePtr->RecvByteCount -
						XIICPS_FIFO_DEPTH);
					InstancePtr->UpdateTxSize = 0;
					ByteCnt = InstancePtr->RecvByteCount;
				}
			}
		} else {
			if ((InstancePtr->RecvByteCount > 0) && (ByteCnt == 0)) {
				/*
				 * Clear the interrupt status register before use it to
				 * monitor.
				 */
				IntrStatusReg = XIicPs_ReadReg(BaseAddr, XIICPS_ISR_OFFSET);
				XIicPs_WriteReg(BaseAddr, XIICPS_ISR_OFFSET, IntrStatusReg);

				SlaveAddr = (u16)XIicPs_ReadReg(BaseAddr, (u32)XIICPS_ADDR_OFFSET);
				XIicPs_WriteReg(BaseAddr, XIICPS_ADDR_OFFSET, SlaveAddr);

				if ((InstancePtr->RecvByteCount) >
					(s32)XIICPS_MAX_TRANSFER_SIZE) {

					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						XIICPS_MAX_TRANSFER_SIZE);
					ByteCnt = (s32)XIICPS_MAX_TRANSFER_SIZE;
				} else {
					XIicPs_WriteReg(BaseAddr,
						XIICPS_TRANS_SIZE_OFFSET,
						InstancePtr->RecvByteCount);
					InstancePtr->UpdateTxSize = 0;
					ByteCnt = InstancePtr->RecvByteCount;
				}
				XIicPs_EnableInterrupts(BaseAddr,
					(u32)XIICPS_IXR_NACK_MASK | (u32)XIICPS_IXR_DATA_MASK |
					(u32)XIICPS_IXR_RX_OVR_MASK | (u32)XIICPS_IXR_COMP_MASK |
					(u32)XIICPS_IXR_ARB_LOST_MASK);
			}
		}
		InstancePtr->CurrByteCount = ByteCnt;
	}

	if (((!(InstancePtr->IsSend)) != 0) &&
		(0U != (IntrStatusReg & XIICPS_IXR_COMP_MASK))) {
		/*
		 * If all done, tell the application.
		 */
		if (InstancePtr->RecvByteCount == 0){
			if ((!(InstancePtr->IsRepeatedStart)) != 0) {
				XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
						XIicPs_ReadReg(BaseAddr,
						XIICPS_CR_OFFSET) &
						(~XIICPS_CR_HOLD_MASK));
			}
			StatusEvent |= XIICPS_EVENT_COMPLETE_RECV;
		}
	}


	/*
	 * Slave ready interrupt, it is only meaningful for master mode.
	 */
	if (0U != (IntrStatusReg & XIICPS_IXR_SLV_RDY_MASK)) {
		StatusEvent |= XIICPS_EVENT_SLAVE_RDY;
	}

	if (0U != (IntrStatusReg & XIICPS_IXR_NACK_MASK)) {
		if ((!(InstancePtr->IsRepeatedStart)) != 0 ) {
			XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
					XIicPs_ReadReg(BaseAddr,
					XIICPS_CR_OFFSET) &
					(~XIICPS_CR_HOLD_MASK));
		}
		StatusEvent |= XIICPS_EVENT_NACK;
	}

	/*
	 * Arbitration lost interrupt
	 */
	if (0U != (IntrStatusReg & XIICPS_IXR_ARB_LOST_MASK)) {
		StatusEvent |= XIICPS_EVENT_ARB_LOST;
	}

	/*
	 * All other interrupts are treated as error.
	 */
	if (0U != (IntrStatusReg & (XIICPS_IXR_NACK_MASK |
			XIICPS_IXR_RX_UNF_MASK | XIICPS_IXR_TX_OVR_MASK |
			XIICPS_IXR_RX_OVR_MASK))) {
		if ((!(InstancePtr->IsRepeatedStart)) != 0) {
			XIicPs_WriteReg(BaseAddr, XIICPS_CR_OFFSET,
					XIicPs_ReadReg(BaseAddr,
					XIICPS_CR_OFFSET) &
					(~XIICPS_CR_HOLD_MASK));
		}
		StatusEvent |= XIICPS_EVENT_ERROR;
	}

	/*
	 * Signal application if there are any events.
	 */
	if (StatusEvent != 0U) {
		InstancePtr->StatusHandler(InstancePtr->CallBackRef,
					   StatusEvent);
	}

}