/***************************************************************************
 * Gets ADC data from the channel you pass to the function.
 * Possible channels are CH6 , CH7 , CH14 ,CH15
 ***************************************************************************/
int get_adc_data(char channel)
{
    u16 ADC_data;
    u16 shifted_data;

    ADC_data = XSysMon_GetAdcData(&SysMon, (XSM_CH_AUX_MIN + (channel -1)));
    shifted_data = ADC_data>>6;

    return shifted_data;
}
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
*
* The function does the following tasks:
*	- Initiate the System Monitor/ADC device driver instance
*	- Run self-test on the device
*	- Reset the device
*	- Set up alarm for VCCINT
*	- Set up the configuration registers for single channel continuous mode
*	for VCCINT channel
*	- Setup interrupt system
*	- Enable interrupts
*	- Wait until the VCCINT alarm interrupt occurs
*
* @param	IntcInstancePtr is a pointer to the Interrupt Controller
*		driver Instance.
* @param	SysMonInstPtr is a pointer to the XSysMon driver Instance.
* @param	SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
*		from xparameters.h.
* @param	SysMonIntrId is
*		XPAR_<INTC_instance>_<SYSMON_ADC_instance>_VEC_ID
*		value from xparameters.h
*
* @return
*		- XST_SUCCESS if the example has completed successfully.
*		- XST_FAILURE if the example has failed.
*
* @note		This function may never return if no interrupt occurs.
*
****************************************************************************/
int SysMonSingleChannelIntrExample(XIntc* IntcInstancePtr,
					XSysMon* SysMonInstPtr,
					u16 SysMonDeviceId,
					u16 SysMonIntrId)
{
	int Status;
	XSysMon_Config *ConfigPtr;
	u16 VccintData;
	u32 IntrStatus;

	/*
	 * Initialize the SysMon driver.
	 */
	ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
	if (ConfigPtr == NULL) {
		return XST_FAILURE;
	}
	XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr, ConfigPtr->BaseAddress);

	/*
	 * Self Test the System Monitor/ADC device.
	 */
	Status = XSysMon_SelfTest(SysMonInstPtr);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);

	/*
	 * Set the sequencer in Single channel mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SINGCHAN);

	/*
	 * Set the configuration registers for single channel continuous mode
	 * of operation for the VCCINT channel.
	 */
	Status=  XSysMon_SetSingleChParams(SysMonInstPtr, XSM_CH_VCCINT,
						FALSE, FALSE, FALSE);
	if(Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Disable all the alarms in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);

	/*
	 * Set up Alarm threshold registers for the VCCINT
	 * High limit and lower limit so that the alarm does not occur.
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_LOWER, 0x0);


	/*
	 * Setup the interrupt system.
	 */
	Status = SysMonSetupInterruptSystem(IntcInstancePtr,
					    SysMonInstPtr,
					    SysMonIntrId);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Clear any bits set in the Interrupt Status Register.
	 */
	IntrStatus = XSysMon_IntrGetStatus(SysMonInstPtr);
	XSysMon_IntrClear(SysMonInstPtr, IntrStatus);


	/*
	 * Enable EOC interrupt and Alarm 1 interrupt for on-chip VCCINT.
	 */
	XSysMon_IntrEnable(SysMonInstPtr, XSM_IPIXR_EOC_MASK |
						XSM_IPIXR_VCCINT_MASK);

	/*
	 * Enable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalEnable(SysMonInstPtr);


	/*
	 * Wait till the End of Conversion occurs.
	 */
	EocFlag = FALSE; 		/* Clear the EOC Flag */
	while (EocFlag != TRUE);


	/*
	 * Read the ADC converted Data from the data registers for VCCINT.
	 */
	VccintData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);


	/*
	 * Set up Alarm threshold registers for the VCCINT
	 * High limit and lower limit so that the alarm occurs.
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_UPPER,
						VccintData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_LOWER,
						VccintData - 0x007F);


	VccintIntr = FALSE;	/* Clear the flag */


	/*
	 * Enable Alarm 1 for VCCINT
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, XSM_CFR1_ALM_VCCINT_MASK);

	/*
	 * Wait until an Alarm 1 interrupt occurs.
	 */
	while (1) {

		if (VccintIntr == TRUE) {
			/*
			 * Alarm 1 - VCCINT alarm interrupt has occurred.
			 * The required processing should be put here.
			 */
			break;
		}
	}

	/*
	 * Disable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalDisable(SysMonInstPtr);

	return XST_SUCCESS;
}
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
* This function does the following tasks:
*	- Initiate the System Monitor device driver instance
*	- Run self-test on the device
*	- Setup alarms for on-chip temperature and VCCAUX
*	- Setup the sequence registers to continuously monitor on-chip
*	temperature and VCCAUX
*	- Setup configuration registers to start the sequence
*	- Read latest on-chip temperature and VCCAUX, as well as their maximum
*	 and minimum values. Also check if alarm(s) are set
*
* @param	SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
*		from xparameters.h.
* @param	Temp is an output parameter, it is a pointer through which the
*		current temperature value is returned to the main function.
*
* @return
*		- XST_SUCCESS if the example has completed successfully.
*		- XST_FAILURE if the example has failed.
*
* @note   	None
*
****************************************************************************/
int SysMonPolledExample(u16 SysMonDeviceId, int *Temp)
{
	int Status;
	volatile u32 Value;
	XSysMon_Config *ConfigPtr;
	u16 TempData;
	u16 VccauxData;
	XSysMon *SysMonInstPtr = &SysMonInst;


	/*
	 * Initialize the SysMon driver.
	 */
	ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
	if (ConfigPtr == NULL) {
		return XST_FAILURE;
	}
	XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr,
				ConfigPtr->BaseAddress);

	/*
	 * Self Test the System Monitor/ADC device
	 */
	Status = XSysMon_SelfTest(SysMonInstPtr);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Disable the Channel Sequencer before configuring the Sequence
	 * registers.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);


	/*
	 * Setup the Averaging to be done for the channels in the
	 * Configuration 0 register as 16 samples:
	 */
	XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);

	/*
	 * Setup the Sequence register for 1st Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Bipolar Mode
	 *
	 * Setup the Sequence register for 16th Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Unipolar Mode
	 */
	Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Enable the averaging on the following channels in the Sequencer
	 * registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the following channels in the Sequencer registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);

	/*
	 * Enable the Channel Sequencer in continuous sequencer cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Wait till the End of Sequence occurs
	 */
	XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */
	while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
			XSM_SR_EOS_MASK);

	/*
	 * Disable all the alarms in the Configuration Register 1
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);


	/*
	 * Read the ADC converted Data from the data registers for on-chip
	 * temperature and on-chip VCCAUX
	 */
	TempData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
	VccauxData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);

	/*
	 * Convert the ADC data into temperature
	 */
	*Temp = XSysMon_RawToTemperature(TempData);

	/*
	 * Set up Alarm threshold registers for
	 * On-chip Temperature High limit
	 * On-chip Temperature Low limit
	 * VCCAUX High limit
	 * VCCAUX Low limit
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER,
						VccauxData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER,
						VccauxData + 0x007F);

	/*
	 * Enable Alarm 0 for on-chip temperature and Alarm 2 for on-chip
	 * VCCAUX in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, (XSM_CFR1_ALM_VCCAUX_MASK |
						XSM_CFR1_ALM_TEMP_MASK));

	/*
	 * Enable the Channel Sequencer in continuous cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Read the current value of on-chip Temperature.
	 */
	Value = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);

	/*
	 * Read the Maximum value of on-chip Temperature.
	 */
	Value = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MAX_TEMP);

	/*
	 * Read the Minimum value of on-chip Temperature.
	 */
	Value = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MIN_TEMP);

	/*
	 * Check if alarm for on-chip temperature is set.
	 */
	Value = XSysMon_GetAlarmOutputStatus(SysMonInstPtr) & XSM_AOR_TEMP_MASK;
	if (Value) {
		/*
		 * Alarm for on-chip temperature is set.
		 * The required processing should be put here.
		 */
	}

	/*
	 * Read the current value of on-chip VCCAUX.
	 */
	Value = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);

	/*
	 * Read the Maximum value of on-chip VCCAUX.
	 */
	Value = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MAX_VCCAUX);

	/*
	 * Read the Minimum value of on-chip VCCAUX.
	 */
	Value = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MIN_VCCAUX);

	/*
	 * Check if alarm for on-chip VCCAUX is set.
	 */
	Value = XSysMon_GetAlarmOutputStatus(SysMonInstPtr) &
			XSM_AOR_VCCAUX_MASK;
	if (Value) {
		/*
		 * Alarm for on-chip VCCAUX is set.
		 * The required processing should be put here.
		 */
	}

	return XST_SUCCESS;
}
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
*
* The function does the following tasks:
*	- Initiate the System Monitor/ADC device driver instance
*	- Run self-test on the device
*	- Reset the device
*	- Set up alarms for on-chip temperature and VCCAUX
*	- Set up sequence registers to continuously monitor on-chip temperature
*	and VCCAUX
*	- Setup interrupt system
*	- Enable interrupts
*	- Set up configuration registers to start the sequence
*	- Wait until temperature alarm interrupt or VCCAUX alarm interrupt
*	occurs
*
* @param	IntcInstancePtr is a pointer to the Interrupt Controller
*		driver Instance.
* @param	SysMonInstPtr is a pointer to the XSysMon driver Instance.
* @param	SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
*		from xparameters.h.
* @param	SysMonIntrId is
*		XPAR_<INTC_instance>_<SYSMON_ADC_instance>_VEC_ID value from
*		xparameters.h
* @param	Temp is an output parameter, it is a pointer through which the
*		current temperature value is returned to the main function.
*
* @return
*		- XST_SUCCESS if the example has completed successfully.
*		- XST_FAILURE if the example has failed.
*
* @note		This function may never return if no interrupt occurs.
*
****************************************************************************/
int SysMonIntrExample(XIntc* IntcInstancePtr, XSysMon* SysMonInstPtr,
			u16 SysMonDeviceId, u16 SysMonIntrId, int *Temp)
{
	int Status;
	XSysMon_Config *ConfigPtr;
	u16 TempData;
	u16 VccauxData;
	u32 IntrStatus;

	/*
	 * Initialize the SysMon driver.
	 */
	ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
	if (ConfigPtr == NULL) {
		return XST_FAILURE;
	}
	XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr, ConfigPtr->BaseAddress);

	/*
	 * Self Test the System Monitor/ADC device.
	 */
	Status = XSysMon_SelfTest(SysMonInstPtr);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Disable the Channel Sequencer before configuring the Sequence
	 * registers.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);

	/*
	 * Setup the Averaging to be done for the channels in the
	 * Configuration 0 register as 16 samples:
	 */
	XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);

	/*
	 * Setup the Sequence register for 1st Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Bipolar Mode
	 *
	 * Setup the Sequence register for 16th Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Unipolar Mode
	 */
	Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the averaging on the following channels in the Sequencer
	 * registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the following channels in the Sequencer registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);


	/*
	 * Enable the Channel Sequencer in continuous sequencer cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Wait till the End of Sequence occurs
	 */
	XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */
	while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
			XSM_SR_EOS_MASK);

	/*
	 * Read the ADC converted Data from the data registers for on-chip
	 * temperature and on-chip VCCAUX voltage.
	 */
	TempData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
	VccauxData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);

	/*
	 * Convert the ADC data into temperature
	 */
	*Temp = XSysMon_RawToTemperature(TempData);

	/*
	 * Disable all the alarms in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);


	/*
	 * Set up Alarm threshold registers for the on-chip temperature and
	 * VCCAUX High limit and lower limit so that the alarms DONOT occur.
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER, 0xFFFF);

	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER, 0x0);

	/*
	 * Setup the interrupt system.
	 */
	Status = SysMonSetupInterruptSystem(IntcInstancePtr,
					    SysMonInstPtr,
					    SysMonIntrId);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Clear any bits set in the Interrupt Status Register.
	 */
	IntrStatus = XSysMon_IntrGetStatus(SysMonInstPtr);
	XSysMon_IntrClear(SysMonInstPtr, IntrStatus);


	/*
	 * Enable Alarm 0 interrupt for on-chip temperature and Alarm 2
	 * interrupt for on-chip VCCAUX.
	 */
	XSysMon_IntrEnable(SysMonInstPtr,
				XSM_IPIXR_TEMP_MASK |
				XSM_IPIXR_VCCAUX_MASK);

	/*
	 * Enable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalEnable(SysMonInstPtr);

	/*
	 * Set up Alarm threshold registers for
	 * On-chip Temperature High limit
	 * On-chip Temperature Low limit
	 * VCCAUX High limit
	 * VCCAUX Low limit
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER,
						VccauxData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER,
						VccauxData + 0x007F);


	/*
	 * Enable Alarm 0 for on-chip temperature and Alarm 2 for on-chip
	 * VCCAUX in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, (XSM_CFR1_ALM_VCCAUX_MASK |
						XSM_CFR1_ALM_TEMP_MASK));


	/*
	 * Wait until an Alarm 0 or Alarm 2 interrupt occurs.
	 */
	while (1) {
		if (TemperatureIntr == TRUE) {
			/*
			 * Alarm 0 - Temperature alarm interrupt has occurred.
			 * The required processing should be put here.
			 */
			break;
		}

		if (VccauxIntr == TRUE) {
			/*
			 * Alarm 2 - VCCAUX alarm interrupt has occurred.
			 * The required processing should be put here.
			 */
			break;
		}
	}

	/*
	 * Disable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalDisable(SysMonInstPtr);

	return XST_SUCCESS;
}
Example #5
0
int SysMonIntrExample(XIntc* IntcInstancePtr, XSysMon* SysMonInstPtr,
			u16 SysMonDeviceId, u16 SysMonIntrId, int *Temp)
{
	int Status;
	XSysMon_Config *ConfigPtr;
	u32 TempData;
	u32 VccauxData;
	u32 VccintData;
	u32 IntrStatus;
	int i, j;
	unsigned int whole1, thousandths1;
	unsigned int whole2, thousandths2;
	unsigned int whole3, thousandths3;


	/*
	 * Initialize the SysMon driver.
	 */

	//xil_printf("XSysMon intr example\r\n");
	ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
	if (ConfigPtr == NULL) {
		return XST_FAILURE;
	}
	//xil_printf("XSysMon_CfgInitialize\r\n");
	XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr, ConfigPtr->BaseAddress);

	/*
	 * Self Test the System Monitor/ADC device.
	 */
	//xil_printf("XSysMon_SelfTest\r\n");
	Status = XSysMon_SelfTest(SysMonInstPtr);
	if (Status != XST_SUCCESS) {
		xil_printf("XSysMon_SelfTest failed\r\n");
		return XST_FAILURE;
	}


	/*
	 * Disable the Channel Sequencer before configuring the Sequence
	 * registers.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SINGCHAN);

	/*
	 * Setup the Averaging to be done for the channels in the
	 * Configuration 0 register as 16 samples:
	 */
	XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);

	#if 0
	/*
	 * Setup the Sequence register for 1st Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Bipolar Mode
	 *
	 * Setup the Sequence register for 16th Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Unipolar Mode
	 */
	Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}
	#endif

	/*
	 * Enable the averaging on the following channels in the Sequencer
	 * registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						/* XSM_SEQ_CH_AUX00 | */
						/* XSM_SEQ_CH_AUX15 | */
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX );
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the following channels in the Sequencer registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						/* XSM_SEQ_CH_AUX00 | */
						/* XSM_SEQ_CH_AUX15 | */
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX );
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);


	/*
	 * Enable the Channel Sequencer in continuous sequencer cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Disable all the alarms in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);

	/*
	 * Wait till the End of Sequence occurs
	 */
	XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */

	i = 0;
	while(i < 10)
	{
		if((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
					XSM_SR_EOS_MASK)
			continue;

		/*
		 * Read the ADC converted Data from the data registers for on-chip
		 * temperature and on-chip VCCAUX voltage.
		 */
		TempData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
		VccauxData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
		VccintData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);

		/*
		 * Convert the ADC data into temperature
		 */
		*Temp = XSysMon_RawToTemperature(TempData);

		t    = (float) XSysMon_RawToTemperature(TempData);
		vint = (float) XSysMon_RawToVoltage(VccintData);
		vaux = (float) XSysMon_RawToVoltage(VccauxData);

		whole1 = t;
	    thousandths1 = (t - whole1) * 1000;
		whole2 = vint;
	    thousandths2 = (vint - whole2) * 1000;
		whole3 = vaux;
	    thousandths3 = (vaux - whole3) * 1000;

		//xil_printf("Temperature: 0x%x, Vccint: 0x%x Vccaux: 0x%x  [Exit: press any key]\r\n",
		//		TempData, VccintData, VccauxData);
		printf("Temperature: %d.%3dC, Vccint: %d.%3dV Vccaux: %d.%3dV\r\n",
				whole1, thousandths1, whole2, thousandths2, whole3, thousandths3);

		for(j=0; j<10000;j++);	// some delay

		//if(!XUartNs550_IsReceiveData(STDIN_BASEADDRESS))
		//{
		//	continue;
		//}
		//else
		//{
		//	XUartNs550_ReadReg(STDIN_BASEADDRESS, XUN_RBR_OFFSET);
		//	return 0;
		//}
		i++;
	}

	#if 0
	/*
	 * Set up Alarm threshold registers for the on-chip temperature and
	 * VCCAUX High limit and lower limit so that the alarms DONOT occur.
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER, 0xFFFF);

	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER, 0x0);

	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_UPPER, 0xFFFF);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCINT_LOWER, 0x0);

	/*
	 * Setup the interrupt system.
	 */
	Status = SysMonSetupInterruptSystem(IntcInstancePtr,
					    SysMonInstPtr,
					    SysMonIntrId);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}
	#endif

	/*
	 * Clear any bits set in the Interrupt Status Register.
	 */
	IntrStatus = XSysMon_IntrGetStatus(SysMonInstPtr);
	XSysMon_IntrClear(SysMonInstPtr, IntrStatus);

	#if 0
	/*
	 * Enable Alarm 0 interrupt for on-chip temperature and Alarm 2
	 * interrupt for on-chip VCCAUX.
	 */
	XSysMon_IntrEnable(SysMonInstPtr,
				XSM_IPIXR_TEMP_MASK |
				XSM_IPIXR_VCCAUX_MASK);
	/*
	 * Enable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalEnable(SysMonInstPtr);

	/*
	 * Set up Alarm threshold registers for
	 * On-chip Temperature High limit
	 * On-chip Temperature Low limit
	 * VCCAUX High limit
	 * VCCAUX Low limit
	 */
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_UPPER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_TEMP_LOWER,
						TempData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_UPPER,
						VccauxData - 0x007F);
	XSysMon_SetAlarmThreshold(SysMonInstPtr, XSM_ATR_VCCAUX_LOWER,
						VccauxData + 0x007F);
	/*
	 * Enable Alarm 0 for on-chip temperature and Alarm 2 for on-chip
	 * VCCAUX in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, (XSM_CFR1_ALM_VCCAUX_MASK |
						XSM_CFR1_ALM_TEMP_MASK));

	/*
	 * Wait until an Alarm 0 or Alarm 2 interrupt occurs.
	 */
	while (1) {
		if (TemperatureIntr == TRUE) {
			/*
			 * Alarm 0 - Temperature alarm interrupt has occurred.
			 * The required processing should be put here.
			 */
			break;
		}

		if (VccauxIntr == TRUE) {
			/*
			 * Alarm 2 - VCCAUX alarm interrupt has occurred.
			 * The required processing should be put here.
			 */
			break;
		}
	}
	#endif

	/*
	 * Disable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalDisable(SysMonInstPtr);

	return XST_SUCCESS;
}
Example #6
0
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
*
* The function does the following tasks:
*	- Initiate the System Monitor/ADC device driver instance
*	- Run self-test on the device
*	- Reset the device
*	- Set up alarms for on-chip temperature and VCCAUX
*	- Set up sequence registers to continuously monitor on-chip temperature
*	and VCCAUX
*	- Setup interrupt system
*	- Enable interrupts
*	- Set up configuration registers to start the sequence
*	- Wait until temperature alarm interrupt or VCCAUX alarm interrupt
*	occurs
*
* @param	IntcInstancePtr is a pointer to the Interrupt Controller
*		driver Instance.
* @param	SysMonInstPtr is a pointer to the XSysMon driver Instance.
* @param	SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
*		from xparameters.h.
* @param	SysMonIntrId is
*		XPAR_<INTC_instance>_<SYSMON_ADC_instance>_VEC_ID value from
*		xparameters.h
* @param	Temp is an output parameter, it is a pointer through which the
*		current temperature value is returned to the main function.
*
* @return
*		- XST_SUCCESS if the example has completed successfully.
*		- XST_FAILURE if the example has failed.
*
* @note		This function may never return if no interrupt occurs.
*
****************************************************************************/
int SysMonIntrExample2(XSysMon* SysMonInstPtr,
			u16 SysMonDeviceId, u16 SysMonIntrId, char *adcData, int printable)
{
	int Status;
	u32 TempData;
	u32 VccauxData;
	u32 VccintData;
	u32 IntrStatus;
	int j;
	unsigned int whole1, thousandths1;
	unsigned int whole2, thousandths2;
	unsigned int whole3, thousandths3;

	/*
	 * Initialize the SysMon driver.
	 */

	if(sysmon_init==0)
	{
		//xil_printf("XSysMon intr example\r\n");
		SysMonConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
		if (SysMonConfigPtr == NULL) {
			return XST_FAILURE;
		}
		//xil_printf("XSysMon_CfgInitialize\r\n");
		XSysMon_CfgInitialize(SysMonInstPtr, SysMonConfigPtr, SysMonConfigPtr->BaseAddress);

		/*
		 * Self Test the System Monitor/ADC device.
		 */
		//xil_printf("XSysMon_SelfTest\r\n");
		Status = XSysMon_SelfTest(SysMonInstPtr);
		if (Status != XST_SUCCESS) {
			xil_printf("XSysMon_SelfTest failed\r\n");
			return XST_FAILURE;
		}
		sysmon_init = 1;
	}


	/*
	 * Disable the Channel Sequencer before configuring the Sequence
	 * registers.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);

	/*
	 * Setup the Averaging to be done for the channels in the
	 * Configuration 0 register as 16 samples:
	 */
	XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);

	/*
	 * Enable the averaging on the following channels in the Sequencer
	 * registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						/* XSM_SEQ_CH_AUX00 | */
						/* XSM_SEQ_CH_AUX15 | */
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX );
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the following channels in the Sequencer registers:
	 * 	- On-chip Temperature
	 * 	- On-chip VCCAUX supply sensor
	 * 	- 1st Auxiliary Channel
	 * 	- 16th Auxiliary Channel
	 */
	Status =  XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						/* XSM_SEQ_CH_AUX00 | */
						/* XSM_SEQ_CH_AUX15 | */
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX );
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);


	/*
	 * Enable the Channel Sequencer in continuous sequencer cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Disable all the alarms in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);

	/*
	 * Wait till the End of Sequence occurs
	 */
	XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */

	do
	{
		if((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) ==
					XSM_SR_EOS_MASK)
			break;
	} while(1);

	/*
	 * Read the ADC converted Data from the data registers for on-chip
	 * temperature and on-chip VCCAUX voltage.
	 */
	TempData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
	VccauxData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
	VccintData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);

	/*
	 * Convert the ADC data into temperature
	 */
	//*Temp = XSysMon_RawToTemperature(TempData);

	t    = (float) XSysMon_RawToTemperature(TempData);
	vint = (float) XSysMon_RawToVoltage(VccintData);
	vaux = (float) XSysMon_RawToVoltage(VccauxData);

	whole1 = t;
	thousandths1 = (t - whole1) * 1000;
	whole2 = vint;
	thousandths2 = (vint - whole2) * 1000;
	whole3 = vaux;
	thousandths3 = (vaux - whole3) * 1000;

	//xil_printf("Temperature: 0x%x, Vccint: 0x%x Vccaux: 0x%x  [Exit: press any key]\r\n",
	//		TempData, VccintData, VccauxData);
	if(printable==1)
	{
		// send complete string with units
		sprintf(adcData, "Temperature:%d.%-3dC, Vccint:%d.%-3dV,  Vccaux: %d.%-3dV",
				whole1, thousandths1, whole2, thousandths2, whole3, thousandths3);
	}
	else
	{
		// send ONLY the numbers (used for graph plot by the webserver
		sprintf(adcData, "%d.%-d, %d.%-d, %d.%-d",
				whole1, thousandths1, whole2, thousandths2, whole3, thousandths3);
	}
	//printf("Temperature: %d.%3dC, Vccint: %d.%3dV Vccaux: %d.%3dV\r\n",
	//		whole1, thousandths1, whole2, thousandths2, whole3, thousandths3);

	for(j=0; j<10000;j++);	// some delay

	//if(!XUartNs550_IsReceiveData(STDIN_BASEADDRESS))
	//{
	//	continue;
	//}
	//else
	//{
	//	XUartNs550_ReadReg(STDIN_BASEADDRESS, XUN_RBR_OFFSET);
	//	return 0;
	//}

	/*
	 * Clear any bits set in the Interrupt Status Register.
	 */
	IntrStatus = XSysMon_IntrGetStatus(SysMonInstPtr);
	XSysMon_IntrClear(SysMonInstPtr, IntrStatus);

	/*
	 * Disable global interrupt of System Monitor.
	 */
	XSysMon_IntrGlobalDisable(SysMonInstPtr);

	return XST_SUCCESS;
}
Example #7
0
int main(void)
{
    u32 cmd, data_channels, delay;
    u32 xStatus;
    u8 iop_pins[19];
    int i, log_capacity;
    u32 xadc_raw_value;
    float xadc_voltage;

    // Initialize PMOD and timers
    arduino_init(0,0,0,0);

    // SysMon Initialize
    SysMonConfigPtr = XSysMon_LookupConfig(SYSMON_DEVICE_ID);
    if(SysMonConfigPtr == NULL)
        xil_printf("SysMon LookupConfig failed.\n\r");
    xStatus = XSysMon_CfgInitialize(SysMonInstPtr, SysMonConfigPtr,
                                    SysMonConfigPtr->BaseAddress);
    if(XST_SUCCESS != xStatus)
        xil_printf("SysMon CfgInitialize failed\r\n");
    // Clear the old status
    XSysMon_GetStatus(SysMonInstPtr);

    // Initialize the default switch
    config_arduino_switch(A_GPIO, A_GPIO, A_GPIO, A_GPIO, A_GPIO, A_GPIO,
                          D_GPIO, D_GPIO, D_GPIO, D_GPIO, D_GPIO,
                          D_GPIO, D_GPIO, D_GPIO, D_GPIO,
                          D_GPIO, D_GPIO, D_GPIO, D_GPIO);

    while(1){
        // wait and store valid command
        while((MAILBOX_CMD_ADDR & 0x1)==0);
        cmd = (MAILBOX_CMD_ADDR & 0xF);

        switch(cmd){
            case CONFIG_IOP_SWITCH:
            // Assign default pin configurations
                iop_pins[0] = MAILBOX_DATA(0);
                iop_pins[1] = MAILBOX_DATA(1);
                iop_pins[2] = MAILBOX_DATA(2);
                iop_pins[3] = MAILBOX_DATA(3);
                iop_pins[4] = MAILBOX_DATA(4);
                iop_pins[5] = MAILBOX_DATA(5);
                iop_pins[6] = D_GPIO;
                iop_pins[7] = D_GPIO;
                iop_pins[8] = D_GPIO;
                iop_pins[9] = D_GPIO;
                iop_pins[10] = D_GPIO;
                iop_pins[11] = D_GPIO;
                iop_pins[12] = D_GPIO;
                iop_pins[13] = D_GPIO;
                iop_pins[14] = D_GPIO;
                iop_pins[15] = D_GPIO;
                iop_pins[16] = D_GPIO;
                iop_pins[17] = D_GPIO;
                iop_pins[18] = D_GPIO;
                config_arduino_switch(iop_pins[0], iop_pins[1], iop_pins[2], 
                                      iop_pins[3], iop_pins[4], iop_pins[5], 
                                      iop_pins[6], iop_pins[7],
                                      iop_pins[8], iop_pins[9], 
                                      iop_pins[10], iop_pins[11], 
                                      iop_pins[12], iop_pins[13], 
                                      iop_pins[14], iop_pins[15],
                                      iop_pins[16], iop_pins[17], 
                                      iop_pins[18]);
                MAILBOX_CMD_ADDR = 0x0;
                break;

            case GET_RAW_DATA:
                i=0;
                // Wait for the conversion complete
                while ((XSysMon_GetStatus(SysMonInstPtr) & 
                        XSM_SR_EOS_MASK) != XSM_SR_EOS_MASK);
                data_channels = MAILBOX_CMD_ADDR >> 8;
                if(data_channels & 0x1)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+1);
                if(data_channels & 0x2)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+9);
                if(data_channels & 0x4)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+6);
                if(data_channels & 0x8)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+15);
                if(data_channels & 0x10)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+5);
                if(data_channels & 0x20)
                    MAILBOX_DATA(i++) = XSysMon_GetAdcData(SysMonInstPtr,
                                            XSM_CH_AUX_MIN+13);
                MAILBOX_CMD_ADDR = 0x0;
                break;

            case GET_VOLTAGE:
                i=0;
                // Wait for the conversion complete
                while ((XSysMon_GetStatus(SysMonInstPtr) & 
                        XSM_SR_EOS_MASK) != XSM_SR_EOS_MASK);
                data_channels = MAILBOX_CMD_ADDR >> 8;
                if(data_channels & 0x1)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+1)*V_REF/65536);
                if(data_channels & 0x2)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+9)*V_REF/65536);
                if(data_channels & 0x4)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+6)*V_REF/65536);
                if(data_channels & 0x8)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+15)*V_REF/65536);
                if(data_channels & 0x10)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+5)*V_REF/65536);
                if(data_channels & 0x20)
                    MAILBOX_DATA_FLOAT(i++) = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+13)*V_REF/65536);
                MAILBOX_CMD_ADDR = 0x0;
                break;

            case READ_AND_LOG_RAW:
                // initialize logging variables, reset cmd
                delay = MAILBOX_DATA(1);
                // get channels to be sampled
                data_channels = MAILBOX_CMD_ADDR >> 8;
                // allocate 1000 samples per channel
                log_capacity = 4000 / LOG_INT_SIZE * 
                               count_set_bits(data_channels);
                cb_init(&arduino_log, LOG_BASE_ADDRESS, 
                        log_capacity, LOG_INT_SIZE);
                while(MAILBOX_CMD_ADDR != RESET_ANALOG){
                    // wait for sample conversion
                    while ((XSysMon_GetStatus(SysMonInstPtr) & 
                            XSM_SR_EOS_MASK) != XSM_SR_EOS_MASK);
                            
                    if(data_channels & 0x1) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+1);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    if(data_channels & 0x2) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+9);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    if(data_channels & 0x4) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+6);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    if(data_channels & 0x8) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+15);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    if(data_channels & 0x10) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+5);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    if(data_channels & 0x20) {
                        xadc_raw_value = XSysMon_GetAdcData(SysMonInstPtr,
                                                        XSM_CH_AUX_MIN+13);
                        cb_push_back(&arduino_log, &xadc_raw_value);
                    }
                    delay_ms(delay);
                }
                MAILBOX_CMD_ADDR = 0x0;
                break;

            case READ_AND_LOG_FLOAT:
                // initialize logging variables, reset cmd
                delay = MAILBOX_DATA(1);
                // get channels to be sampled
                data_channels = MAILBOX_CMD_ADDR >> 8;
                // allocate 1000 samples per channel
                log_capacity = 4000 / LOG_FLOAT_SIZE * 
                               count_set_bits(data_channels);
                cb_init(&arduino_log, LOG_BASE_ADDRESS, 
                        log_capacity, LOG_FLOAT_SIZE);
                while(MAILBOX_CMD_ADDR != RESET_ANALOG){
                    // wait for sample conversion
                    while ((XSysMon_GetStatus(SysMonInstPtr) & 
                            XSM_SR_EOS_MASK) != XSM_SR_EOS_MASK);
                            
                    if(data_channels & 0x1) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+1)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    if(data_channels & 0x2) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+9)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    if(data_channels & 0x4) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+6)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    if(data_channels & 0x8) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+15)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    if(data_channels & 0x10) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+5)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    if(data_channels & 0x20) {
                        xadc_voltage = (float)(XSysMon_GetAdcData(
                                SysMonInstPtr,XSM_CH_AUX_MIN+13)*V_REF/65536);
                        cb_push_back_float(&arduino_log, &xadc_voltage);
                    }
                    delay_ms(delay);
                }
                MAILBOX_CMD_ADDR = 0x0;
                break;
            
            case RESET_ANALOG:
                // SysMon Initialize
                SysMonConfigPtr = XSysMon_LookupConfig(SYSMON_DEVICE_ID);
                if(SysMonConfigPtr == NULL)
                    xil_printf("SysMon LookupConfig failed.\n\r");
                xStatus = XSysMon_CfgInitialize(SysMonInstPtr, 
                            SysMonConfigPtr, SysMonConfigPtr->BaseAddress);
                if(XST_SUCCESS != xStatus)
                    xil_printf("SysMon CfgInitialize failed.\r\n");
                // Clear the old status
                XSysMon_GetStatus(SysMonInstPtr);
                MAILBOX_CMD_ADDR = 0x0;
                break;
            
            default:
                MAILBOX_CMD_ADDR = 0x0;
                break;
    }
  }
  return 0;
}
Example #8
0
u16 AdcGet(u8 Channel) {
	return (XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_AUX_MIN + Channel));
}
/**
*
* This function runs a test on the System Monitor/ADC device using the
* driver APIs.
* This function does the following tasks:
*	- Initiate the System Monitor device driver instance
*	- Run self-test on the device
*	- Setup the sequence registers to continuously monitor on-chip
*	temperature, VCCINT and VCCAUX
*	- Setup configuration registers to start the sequence
*	- Read the latest on-chip temperature, VCCINT and VCCAUX
*
* @param	SysMonDeviceId is the XPAR_<SYSMON_ADC_instance>_DEVICE_ID value
*		from xparameters.h.
*
* @return
*		- XST_SUCCESS if the example has completed successfully.
*		- XST_FAILURE if the example has failed.
*
* @note   	None
*
****************************************************************************/
int SysMonPolledPrintfExample(u16 SysMonDeviceId)
{
	int Status;
	XSysMon_Config *ConfigPtr;
	u32 TempRawData;
	u32 VccAuxRawData;
	u32 VccIntRawData;
	float TempData;
	float VccAuxData;
	float VccIntData;
	float MaxData;
	float MinData;
	XSysMon *SysMonInstPtr = &SysMonInst;

	printf("\r\nEntering the SysMon Polled Example. \r\n");

	/*
	 * Initialize the SysMon driver.
	 */
	ConfigPtr = XSysMon_LookupConfig(SysMonDeviceId);
	if (ConfigPtr == NULL) {
		return XST_FAILURE;
	}
	XSysMon_CfgInitialize(SysMonInstPtr, ConfigPtr,
				ConfigPtr->BaseAddress);

	/*
	 * Self Test the System Monitor/ADC device
	 */
	Status = XSysMon_SelfTest(SysMonInstPtr);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Disable the Channel Sequencer before configuring the Sequence
	 * registers.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_SAFE);


	/*
	 * Disable all the alarms in the Configuration Register 1.
	 */
	XSysMon_SetAlarmEnables(SysMonInstPtr, 0x0);


	/*
	 * Setup the Averaging to be done for the channels in the
	 * Configuration 0 register as 16 samples:
	 */
	XSysMon_SetAvg(SysMonInstPtr, XSM_AVG_16_SAMPLES);

	/*
	 * Setup the Sequence register for 1st Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Bipolar Mode
	 *
	 * Setup the Sequence register for 16th Auxiliary channel
	 * Setting is:
	 *	- Add acquisition time by 6 ADCCLK cycles.
	 *	- Unipolar Mode
	 */
	Status = XSysMon_SetSeqInputMode(SysMonInstPtr, XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	Status = XSysMon_SetSeqAcqTime(SysMonInstPtr, XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_AUX00);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Enable the averaging on the following channels in the Sequencer
	 * registers:
	 * 	- On-chip Temperature, VCCINT/VCCAUX  supply sensors
	 * 	- 1st/16th Auxiliary Channels
	  *	- Calibration Channel
	 */
	Status =  XSysMon_SetSeqAvgEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_CALIB);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}

	/*
	 * Enable the following channels in the Sequencer registers:
	 * 	- On-chip Temperature, VCCINT/VCCAUX supply sensors
	 * 	- 1st/16th Auxiliary Channel
	 *	- Calibration Channel
	 */
	Status =  XSysMon_SetSeqChEnables(SysMonInstPtr, XSM_SEQ_CH_TEMP |
						XSM_SEQ_CH_VCCINT |
						XSM_SEQ_CH_VCCAUX |
						XSM_SEQ_CH_AUX00 |
						XSM_SEQ_CH_AUX15 |
						XSM_SEQ_CH_CALIB);
	if (Status != XST_SUCCESS) {
		return XST_FAILURE;
	}


	/*
	 * Set the ADCCLK frequency equal to 1/32 of System clock for the System
	 * Monitor/ADC in the Configuration Register 2.
	 */
	XSysMon_SetAdcClkDivisor(SysMonInstPtr, 32);


	/*
	 * Set the Calibration enables.
	 */
	XSysMon_SetCalibEnables(SysMonInstPtr,
				XSM_CFR1_CAL_PS_GAIN_OFFSET_MASK |
				XSM_CFR1_CAL_ADC_GAIN_OFFSET_MASK);

	/*
	 * Enable the Channel Sequencer in continuous sequencer cycling mode.
	 */
	XSysMon_SetSequencerMode(SysMonInstPtr, XSM_SEQ_MODE_CONTINPASS);

	/*
	 * Wait till the End of Sequence occurs
	 */
	XSysMon_GetStatus(SysMonInstPtr); /* Clear the old status */
	while ((XSysMon_GetStatus(SysMonInstPtr) & XSM_SR_EOS_MASK) !=
			XSM_SR_EOS_MASK);

	/*
	 * Read the on-chip Temperature Data (Current/Maximum/Minimum)
	 * from the ADC data registers.
	 */
	TempRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_TEMP);
	TempData = XSysMon_RawToTemperature(TempRawData);
	printf("\r\nThe Current Temperature is %0d.%03d Centigrades.\r\n",
				(int)(TempData), SysMonFractionToInt(TempData));


	TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MAX_TEMP);
	MaxData = XSysMon_RawToTemperature(TempRawData);
	printf("The Maximum Temperature is %0d.%03d Centigrades. \r\n",
				(int)(MaxData), SysMonFractionToInt(MaxData));

	TempRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr, XSM_MIN_TEMP);
	MinData = XSysMon_RawToTemperature(TempRawData);
	printf("The Minimum Temperature is %0d.%03d Centigrades. \r\n",
				(int)(MinData), SysMonFractionToInt(MinData));

	/*
	 * Read the VccInt Votage Data (Current/Maximum/Minimum) from the
	 * ADC data registers.
	 */
	VccIntRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCINT);
	VccIntData = XSysMon_RawToVoltage(VccIntRawData);
	printf("\r\nThe Current VCCINT is %0d.%03d Volts. \r\n",
			(int)(VccIntData), SysMonFractionToInt(VccIntData));

	VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
							XSM_MAX_VCCINT);
	MaxData = XSysMon_RawToVoltage(VccIntRawData);
	printf("The Maximum VCCINT is %0d.%03d Volts. \r\n",
			(int)(MaxData), SysMonFractionToInt(MaxData));

	VccIntRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
							XSM_MIN_VCCINT);
	MinData = XSysMon_RawToVoltage(VccIntRawData);
	printf("The Minimum VCCINT is %0d.%03d Volts. \r\n",
			(int)(MinData), SysMonFractionToInt(MinData));

	/*
	 * Read the VccAux Votage Data (Current/Maximum/Minimum) from the
	 * ADC data registers.
	 */
	VccAuxRawData = XSysMon_GetAdcData(SysMonInstPtr, XSM_CH_VCCAUX);
	VccAuxData = XSysMon_RawToVoltage(VccAuxRawData);
	printf("\r\nThe Current VCCAUX is %0d.%03d Volts. \r\n",
			(int)(VccAuxData), SysMonFractionToInt(VccAuxData));

	VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
							XSM_MAX_VCCAUX);
	MaxData = XSysMon_RawToVoltage(VccAuxRawData);
	printf("The Maximum VCCAUX is %0d.%03d Volts. \r\n",
				(int)(MaxData), SysMonFractionToInt(MaxData));


	VccAuxRawData = XSysMon_GetMinMaxMeasurement(SysMonInstPtr,
							XSM_MIN_VCCAUX);
	MinData = XSysMon_RawToVoltage(VccAuxRawData);
	printf("The Minimum VCCAUX is %0d.%03d Volts. \r\n\r\n",
				(int)(MinData), SysMonFractionToInt(MinData));

	printf("Exiting the SysMon Polled Example. \r\n");

	return XST_SUCCESS;
}