AD::SXMatrix CasadiSystem::cost_platt(const std::vector<AD::SXMatrix>& X, const std::vector<AD::SXMatrix>& U, const std::vector<AD::SXMatrix>& P) { std::vector<AD::SXMatrix> X_prop(T); X_prop[0] = X[0]; for(int t=0; t < T-1; ++t) { X_prop[t+1] = this->dynfunc(X[t], U[t]); } std::vector<AD::SXMatrix> H(M, AD::SXMatrix(T*(Z_DIM),1)); for(int m=0; m < M; ++m) { int index = 0; for(int t=0; t < T; ++t) { AD::SXMatrix Hm = this->obsfunc(X_prop[t], P[m]); for(int i=0; i < Z_DIM; ++i) { H[m](index++,0) = Hm(i,0); } } } AD::SXMatrix platt(1,1); for(int m=1; m < M; ++m) { AD::SXMatrix diff = H[m] - H[0]; platt(0,0) += (1/float(M-1))*exp(-mul(trans(diff), diff)); } return platt; }
AD::SXMatrix CasadiSystem::cost_entropy(const std::vector<AD::SXMatrix>& X, const std::vector<AD::SXMatrix>& U, const std::vector<AD::SXMatrix>& P) { AD::SXMatrix entropy(1,1); std::vector<AD::SXMatrix> X_prop(T); std::vector<std::vector<AD::SXMatrix> > H(T, std::vector<AD::SXMatrix>(M)); std::vector<std::vector<std::vector<AD::SXMatrix> > > GL_H(T, std::vector<std::vector<AD::SXMatrix> >(M, std::vector<AD::SXMatrix>(M))); for(int t=0; t < T-1; ++t) { X_prop[t+1] = this->dynfunc(X[t], U[t]); for(int m=0; m < M; ++m) { H[t+1][m] = this->obsfunc(X_prop[t+1], P[m]); } } for(int t=1; t < T; ++t) { for(int m=0; m < M; ++m) { for(int p=m; p < M; ++p) { GL_H[t][m][p] = this->gauss_likelihood(H[t][m] - H[t][p]); } } } std::vector<std::vector<AD::SXMatrix> > W(T, std::vector<AD::SXMatrix>(M, AD::SXMatrix(1,1))); for(int m=0; m < M; ++m) { W[0][m](0,0) = 1/float(M); } for(int t=1; t < T; ++t) { AD::SXMatrix W_sum(1,1); for(int m=0; m < M; ++m) { for(int p=0; p < M; ++p) { int a = MIN(m,p); int b = MAX(m,p); W[t][m] += GL_H[t][a][b]; } W_sum += W[t][m]; } for(int m=0; m < M; ++m) { W[t][m] = W[t][m] / W_sum; } // use skoglar version AD::SXMatrix entropy_t(1,1); for(int m=0; m < M; ++m) { entropy_t += -W[t][m]*log(W[t][m]); } // simplifies because zero particle dynamics for(int m=0; m < M; ++m) { entropy_t += -W[t][m]*log(W[t-1][m]); } AD::SXMatrix sum_cross_time_weights(1,1); for(int m=0; m < M; ++m) { sum_cross_time_weights += W[t-1][m]*W[t][m]; } entropy_t += log(sum_cross_time_weights); entropy += entropy_t; } // for(int t=0; t < T-2; ++t) { // entropy += Constants::alpha_control_smooth*(mul(trans(U[t+1]-U[t]),(U[t+1]-U[t]))); // } // // for(int t=0; t < T-1; ++t) { // entropy += Constants::alpha_control_norm*mul(trans(U[t]),U[t]); // } // // for(int t=1; t < T; ++t) { // for(int n=0; n < N; ++n) { // AD::SXMatrix x_t_n = X_prop[t](AD::Slice(n*X_DIM,(n+1)*X_DIM)); // for(int n_other=0; n_other < N; n_other++) { // AD::SXMatrix x_t_n_other = X_prop[t](AD::Slice(n_other*X_DIM,(n_other+1)*X_DIM)); // entropy += Constants::alpha_separation*mul(trans(x_t_n-x_t_n_other), x_t_n-x_t_n_other); // } // } // } return entropy; }
inline bool de_prmm_int(arma::vec& init_out_vals, std::function<double (const arma::vec& vals_inp, arma::vec* grad_out, void* opt_data)> opt_objfn, void* opt_data, algo_settings_t* settings_inp) { bool success = false; const size_t n_vals = init_out_vals.n_elem; // // DE settings algo_settings_t settings; if (settings_inp) { settings = *settings_inp; } const uint_t conv_failure_switch = settings.conv_failure_switch; const double err_tol = settings.err_tol; size_t n_pop = settings.de_n_pop; // const size_t check_freq = settings.de_check_freq; const double par_initial_F = settings.de_par_F; const double par_initial_CR = settings.de_par_CR; const arma::vec par_initial_lb = (settings.de_initial_lb.n_elem == n_vals) ? settings.de_initial_lb : init_out_vals - 0.5; const arma::vec par_initial_ub = (settings.de_initial_ub.n_elem == n_vals) ? settings.de_initial_ub : init_out_vals + 0.5; const double F_l = settings.de_par_F_l; const double F_u = settings.de_par_F_u; const double tau_F = settings.de_par_tau_F; const double tau_CR = settings.de_par_tau_CR; arma::vec F_vec(n_pop), CR_vec(n_pop); F_vec.fill(par_initial_F); CR_vec.fill(par_initial_CR); const uint_t max_fn_eval = settings.de_max_fn_eval; const uint_t pmax = settings.de_pmax; const size_t n_pop_best = settings.de_n_pop_best; const double d_eps = 0.5; size_t n_gen = std::ceil(max_fn_eval / (pmax*n_pop)); const bool vals_bound = settings.vals_bound; const arma::vec lower_bounds = settings.lower_bounds; const arma::vec upper_bounds = settings.upper_bounds; const arma::uvec bounds_type = determine_bounds_type(vals_bound, n_vals, lower_bounds, upper_bounds); // lambda function for box constraints std::function<double (const arma::vec& vals_inp, arma::vec* grad_out, void* box_data)> box_objfn \ = [opt_objfn, vals_bound, bounds_type, lower_bounds, upper_bounds] (const arma::vec& vals_inp, arma::vec* grad_out, void* opt_data) \ -> double { if (vals_bound) { arma::vec vals_inv_trans = inv_transform(vals_inp, bounds_type, lower_bounds, upper_bounds); return opt_objfn(vals_inv_trans,nullptr,opt_data); } else { return opt_objfn(vals_inp,nullptr,opt_data); } }; // // setup arma::vec objfn_vals(n_pop); arma::mat X(n_pop,n_vals), X_next(n_pop,n_vals); #ifdef OPTIM_USE_OMP #pragma omp parallel for #endif for (size_t i=0; i < n_pop; i++) { X_next.row(i) = par_initial_lb.t() + (par_initial_ub.t() - par_initial_lb.t())%arma::randu(1,n_vals); double prop_objfn_val = opt_objfn(X_next.row(i).t(),nullptr,opt_data); if (!std::isfinite(prop_objfn_val)) { prop_objfn_val = inf; } objfn_vals(i) = prop_objfn_val; if (vals_bound) { X_next.row(i) = arma::trans( transform(X_next.row(i).t(), bounds_type, lower_bounds, upper_bounds) ); } } double best_objfn_val_running = objfn_vals.min(); // double best_objfn_val_check = best_objfn_val_running; double best_val_main = best_objfn_val_running; double best_val_best = best_objfn_val_running; arma::rowvec best_sol_running = X_next.row( objfn_vals.index_min() ); arma::rowvec best_vec_main = best_sol_running; arma::rowvec best_vec_best = best_sol_running; arma::rowvec xchg_vec = best_sol_running; // uint_t n_reset = 1; uint_t iter = 0; double err = 2*err_tol; while (err > err_tol && iter < n_gen + 1) { iter++; // // population reduction step if (iter == n_gen && n_reset < 4) { size_t n_pop_temp = n_pop/2; arma::vec objfn_vals_reset(n_pop_temp); arma::mat X_reset(n_pop_temp,n_vals); #ifdef OPTIM_USE_OMP #pragma omp parallel for #endif for (size_t j=0; j < n_pop_temp; j++) { if (objfn_vals(j) < objfn_vals(j + n_pop_temp)) { X_reset.row(j) = X_next.row(j); objfn_vals_reset(j) = objfn_vals(j); } else { X_reset.row(j) = X_next.row(j + n_pop_temp); objfn_vals_reset(j) = objfn_vals(j + n_pop_temp); } } objfn_vals = objfn_vals_reset; X_next = X_reset; n_pop /= 2; n_gen *= 2; iter = 1; n_reset++; } X = X_next; // // first population: n_pop - n_pop_best #ifdef OPTIM_USE_OMP #pragma omp parallel for #endif for (size_t i=0; i < n_pop - n_pop_best; i++) { arma::vec rand_pars = arma::randu(4); if (rand_pars(0) < tau_F) { F_vec(i) = F_l + (F_u-F_l)*rand_pars(1); } if (rand_pars(2) < tau_CR) { CR_vec(i) = rand_pars(3); } // uint_t c_1, c_2, c_3; do { c_1 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1))); } while(c_1==i); do { c_2 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1))); } while(c_2==i || c_2==c_1); do { c_3 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1))); } while(c_3==i || c_3==c_1 || c_3==c_2); // size_t j = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_vals-1))); arma::vec rand_unif = arma::randu(n_vals); arma::rowvec X_prop(n_vals); for (size_t k=0; k < n_vals; k++) { if ( rand_unif(k) < CR_vec(i) || k == j ) { double r_s = arma::as_scalar(arma::randu(1)); if ( r_s < 0.75 || n_pop >= 100 ) { X_prop(k) = X(c_3,k) + F_vec(i)*(X(c_1,k) - X(c_2,k)); } else { X_prop(k) = best_vec_main(k) + F_vec(i)*(X(c_1,k) - X(c_2,k)); } } else { X_prop(k) = X(i,k); } } // double prop_objfn_val = box_objfn(X_prop.t(),nullptr,opt_data); if (prop_objfn_val <= objfn_vals(i)) { X_next.row(i) = X_prop; objfn_vals(i) = prop_objfn_val; } else { X_next.row(i) = X.row(i); } } best_val_main = objfn_vals.rows(0,n_pop - n_pop_best - 1).min(); best_vec_main = X_next.rows(0,n_pop - n_pop_best - 1).row( objfn_vals.rows(0,n_pop - n_pop_best - 1).index_min() ); if (best_val_main < best_val_best) { xchg_vec = best_vec_main; } // // second population for (size_t i = n_pop - n_pop_best; i < n_pop; i++) { arma::vec rand_pars = arma::randu(4); if (rand_pars(0) < tau_F) { F_vec(i) = F_l + (F_u-F_l)*rand_pars(1); } if (rand_pars(2) < tau_CR) { CR_vec(i) = rand_pars(3); } // uint_t c_1, c_2; do { c_1 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1))); } while(c_1==i); do { c_2 = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_pop-1))); } while(c_2==i || c_2==c_1); // size_t j = arma::as_scalar(arma::randi(1, arma::distr_param(0, n_vals-1))); arma::vec rand_unif = arma::randu(n_vals); arma::rowvec X_prop(n_vals); for (size_t k=0; k < n_vals; k++) { if ( rand_unif(k) < CR_vec(i) || k == j ) { X_prop(k) = best_vec_best(k) + F_vec(i)*(X(c_1,k) - X(c_2,k)); } else { X_prop(k) = X(i,k); } } // double prop_objfn_val = box_objfn(X_prop.t(),nullptr,opt_data); if (prop_objfn_val <= objfn_vals(i)) { X_next.row(i) = X_prop; objfn_vals(i) = prop_objfn_val; } else { X_next.row(i) = X.row(i); } } best_val_best = objfn_vals.rows(n_pop - n_pop_best, n_pop - 1).min(); best_vec_best = X_next.rows(n_pop - n_pop_best, n_pop - 1).row( objfn_vals.rows(n_pop - n_pop_best, n_pop - 1).index_min() ); if (best_val_best < best_val_main) { double the_sum = 0; for (size_t j=0; j < n_vals; j++) { double min_val = X.col(j).min(); the_sum += (best_vec_best(j) - min_val) / (xchg_vec(j) - min_val); } the_sum /= static_cast<double>(n_vals); if (std::abs(the_sum - 1.0) > d_eps) { best_vec_main = best_vec_best; } else { best_vec_best = best_vec_main; } } else { best_vec_best = best_vec_main; } // // assign running global minimum if (objfn_vals.min() < best_objfn_val_running) { best_objfn_val_running = objfn_vals.min(); best_sol_running = X_next.row( objfn_vals.index_min() ); } // if (iter%check_freq == 0) { // // err = std::abs(objfn_vals.min() - best_objfn_val) / (std::abs(best_objfn_val) + 1E-08); // err = std::abs(best_objfn_val_running - best_objfn_val_check); // // best_objfn_val_check = objfn_vals.min(); // if (best_objfn_val_running < best_objfn_val_check) { // best_objfn_val_check = best_objfn_val_running; // } // } } // if (vals_bound) { best_sol_running = arma::trans( inv_transform(best_sol_running.t(), bounds_type, lower_bounds, upper_bounds) ); } error_reporting(init_out_vals,best_sol_running.t(),opt_objfn,opt_data,success,err,err_tol,iter,n_gen,conv_failure_switch,settings_inp); // return true; }