Example #1
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   -----------------------------
   test the SubMtx_solve() method.

   created -- 98apr15, cca
   -----------------------------
*/
{
SubMtx   *mtxA, *mtxB, *mtxX ;
double   idot, rdot, t1, t2 ;
double   *entB, *entX ;
Drand    *drand ;
FILE     *msgFile ;
int      inc1, inc2, mode, msglvl, ncolA, nentA, nrowA, 
         ncolB, nrowB, ncolX, nrowX, seed, type ;

if ( argc != 9 ) {
   fprintf(stdout, 
       "\n\n usage : %s msglvl msgFile type mode nrowA nentA ncolB seed"
       "\n    msglvl  -- message level"
       "\n    msgFile -- message file"
       "\n    type    -- type of matrix A"
       "\n       1 -- real"
       "\n       2 -- complex"
       "\n    mode    -- mode of matrix A"
       "\n       2 -- sparse stored by rows"
       "\n       3 -- sparse stored by columns"
       "\n       5 -- sparse stored by subrows"
       "\n       6 -- sparse stored by subcolumns"
       "\n       7 -- diagonal"
       "\n       8 -- block diagonal symmetric"
       "\n       9 -- block diagonal hermitian"
       "\n    nrowA   -- # of rows in matrix A"
       "\n    nentA   -- # of entries in matrix A"
       "\n    ncolB   -- # of columns in matrix B"
       "\n    seed    -- random number seed"
       "\n", argv[0]) ;
   return(0) ;
}
if ( (msglvl = atoi(argv[1])) < 0 ) {
   fprintf(stderr, "\n message level must be positive\n") ;
   spoolesFatal();
}
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s\n", argv[2]) ;
   return(-1) ;
}
type  = atoi(argv[3]) ;
mode  = atoi(argv[4]) ;
nrowA = atoi(argv[5]) ;
nentA = atoi(argv[6]) ;
ncolB = atoi(argv[7]) ;
seed  = atoi(argv[8]) ;
fprintf(msgFile, "\n %% %s:"
        "\n %% msglvl  = %d"
        "\n %% msgFile = %s"
        "\n %% type    = %d"
        "\n %% mode    = %d"
        "\n %% nrowA   = %d"
        "\n %% nentA   = %d"
        "\n %% ncolB   = %d"
        "\n %% seed    = %d",
        argv[0], msglvl, argv[2], type, mode, 
        nrowA, nentA, ncolB, seed) ;
ncolA = nrowA ;
nrowB = nrowA ;
nrowX = nrowA ;
ncolX = ncolB ;
/*
   -----------------------------
   check for errors in the input
   -----------------------------
*/
if ( nrowA <= 0 || nentA <= 0 || ncolB <= 0 ) {
   fprintf(stderr, "\n invalid input\n") ;
   spoolesFatal();
}
switch ( type ) {
case SPOOLES_REAL :
   switch ( mode ) {
   case SUBMTX_DENSE_SUBROWS :
   case SUBMTX_SPARSE_ROWS :
   case SUBMTX_DENSE_SUBCOLUMNS :
   case SUBMTX_SPARSE_COLUMNS :
   case SUBMTX_DIAGONAL :
   case SUBMTX_BLOCK_DIAGONAL_SYM :
      break ;
   default :
      fprintf(stderr, "\n invalid mode %d\n", mode) ;
      spoolesFatal();
   }
   break ;
case SPOOLES_COMPLEX :
   switch ( mode ) {
   case SUBMTX_DENSE_SUBROWS :
   case SUBMTX_SPARSE_ROWS :
   case SUBMTX_DENSE_SUBCOLUMNS :
   case SUBMTX_SPARSE_COLUMNS :
   case SUBMTX_DIAGONAL :
   case SUBMTX_BLOCK_DIAGONAL_SYM :
   case SUBMTX_BLOCK_DIAGONAL_HERM :
      break ;
   default :
      fprintf(stderr, "\n invalid mode %d\n", mode) ;
      spoolesFatal();
   }
   break ;
default :
   fprintf(stderr, "\n invalid type %d\n", type) ;
   spoolesFatal();
   break ;
}
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
drand = Drand_new() ;
Drand_init(drand) ;
Drand_setSeed(drand, seed) ;
Drand_setNormal(drand, 0.0, 1.0) ;
/*
   ------------------------------
   initialize the X SubMtx object
   ------------------------------
*/
MARKTIME(t1) ;
mtxX = SubMtx_new() ;
SubMtx_initRandom(mtxX, type, SUBMTX_DENSE_COLUMNS, 0, 0, 
                  nrowX, ncolX, nrowX*ncolX, ++seed) ;
SubMtx_denseInfo(mtxX, &nrowX, &ncolX, &inc1, &inc2, &entX) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize X SubMtx object",
        t2 - t1) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% X SubMtx object") ;
   fprintf(msgFile, "\n X = zeros(%d,%d) ;", nrowX, ncolX) ;
   SubMtx_writeForMatlab(mtxX, "X", msgFile) ;
   fflush(msgFile) ;
}
/*
   ------------------------------
   initialize the B SubMtx object
   ------------------------------
*/
MARKTIME(t1) ;
mtxB = SubMtx_new() ;
SubMtx_init(mtxB, type,
            SUBMTX_DENSE_COLUMNS, 0, 0, nrowB, ncolB, nrowB*ncolB) ;
SubMtx_denseInfo(mtxB, &nrowB, &ncolB, &inc1, &inc2, &entB) ;
switch ( mode ) {
case SUBMTX_DENSE_SUBROWS :
case SUBMTX_SPARSE_ROWS :
case SUBMTX_DENSE_SUBCOLUMNS :
case SUBMTX_SPARSE_COLUMNS :
   if ( SUBMTX_IS_REAL(mtxX) ) {
      DVcopy(nrowB*ncolB, entB, entX) ;
   } else if ( SUBMTX_IS_COMPLEX(mtxX) ) {
      ZVcopy(nrowB*ncolB, entB, entX) ;
   }
   break ;
default :
   if ( SUBMTX_IS_REAL(mtxX) ) {
      DVzero(nrowB*ncolB, entB) ;
   } else if ( SUBMTX_IS_COMPLEX(mtxX) ) {
      DVzero(2*nrowB*ncolB, entB) ;
   }
   break ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n %% CPU : %.3f to initialize B SubMtx object",
        t2 - t1) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% B SubMtx object") ;
   fprintf(msgFile, "\n B = zeros(%d,%d) ;", nrowB, ncolB) ;
   SubMtx_writeForMatlab(mtxB, "B", msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------------------------
   initialize the A matrix SubMtx object
   -------------------------------------
*/
seed++ ;
mtxA = SubMtx_new() ;
switch ( mode ) {
case SUBMTX_DENSE_SUBROWS :
case SUBMTX_SPARSE_ROWS :
   SubMtx_initRandomLowerTriangle(mtxA, type, mode, 0, 0, 
                                  nrowA, ncolA, nentA, seed, 1) ;
   break ;
case SUBMTX_DENSE_SUBCOLUMNS :
case SUBMTX_SPARSE_COLUMNS :
   SubMtx_initRandomUpperTriangle(mtxA, type, mode, 0, 0, 
                                  nrowA, ncolA, nentA, seed, 1) ;
   break ;
case SUBMTX_DIAGONAL :
case SUBMTX_BLOCK_DIAGONAL_SYM :
case SUBMTX_BLOCK_DIAGONAL_HERM :
   SubMtx_initRandom(mtxA, type, mode, 0, 0,
                     nrowA, ncolA, nentA, seed) ;
   break ;
default :
   fprintf(stderr, "\n fatal error in test_solve"
           "\n invalid mode = %d", mode) ;
   spoolesFatal();
}
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% A SubMtx object") ;
   fprintf(msgFile, "\n A = zeros(%d,%d) ;", nrowA, ncolA) ;
   SubMtx_writeForMatlab(mtxA, "A", msgFile) ;
   fflush(msgFile) ;
}
/*
   --------------------------------------------------------
   compute B = A * X (for diagonal and block diagonal)
     or    B = (I + A) * X (for lower and upper triangular)
   --------------------------------------------------------
*/
if ( SUBMTX_IS_REAL(mtxA) ) {
   DV       *colDV, *rowDV ;
   double   value, *colX, *rowA, *pBij, *pXij ;
   int      irowA, jcolX ;

   colDV = DV_new() ;
   DV_init(colDV, nrowA, NULL) ;
   colX = DV_entries(colDV) ;
   rowDV = DV_new() ;
   DV_init(rowDV, nrowA, NULL) ;
   rowA = DV_entries(rowDV) ;
   for ( jcolX = 0 ; jcolX < ncolB ; jcolX++ ) {
      SubMtx_fillColumnDV(mtxX, jcolX, colDV) ;
      for ( irowA = 0 ; irowA < nrowA ; irowA++ ) {
         SubMtx_fillRowDV(mtxA, irowA, rowDV) ;
         SubMtx_locationOfRealEntry(mtxX, irowA, jcolX, &pXij) ;
         SubMtx_locationOfRealEntry(mtxB, irowA, jcolX, &pBij) ;
         value = DVdot(nrowA, rowA, colX) ;
         switch ( mode ) {
         case SUBMTX_DENSE_SUBROWS :
         case SUBMTX_SPARSE_ROWS :
         case SUBMTX_DENSE_SUBCOLUMNS :
         case SUBMTX_SPARSE_COLUMNS :
            *pBij = *pXij + value ;
            break ;
         case SUBMTX_DIAGONAL :
         case SUBMTX_BLOCK_DIAGONAL_SYM :
            *pBij = value ;
            break ;
         }
      }
   }
   DV_free(colDV) ;
   DV_free(rowDV) ;
} else if ( SUBMTX_IS_COMPLEX(mtxA) ) {
   ZV       *colZV, *rowZV ;
   double   *colX, *rowA, *pBIij, *pBRij, *pXIij, *pXRij ;
   int      irowA, jcolX ;

   colZV = ZV_new() ;
   ZV_init(colZV, nrowA, NULL) ;
   colX = ZV_entries(colZV) ;
   rowZV = ZV_new() ;
   ZV_init(rowZV, nrowA, NULL) ;
   rowA = ZV_entries(rowZV) ;
   for ( jcolX = 0 ; jcolX < ncolB ; jcolX++ ) {
      SubMtx_fillColumnZV(mtxX, jcolX, colZV) ;
      for ( irowA = 0 ; irowA < nrowA ; irowA++ ) {
         SubMtx_fillRowZV(mtxA, irowA, rowZV) ;
         SubMtx_locationOfComplexEntry(mtxX, 
                                       irowA, jcolX, &pXRij, &pXIij) ;
         SubMtx_locationOfComplexEntry(mtxB, 
                                       irowA, jcolX, &pBRij, &pBIij) ;
         ZVdotU(nrowA, rowA, colX, &rdot, &idot) ;
         switch ( mode ) {
         case SUBMTX_DENSE_SUBROWS :
         case SUBMTX_SPARSE_ROWS :
         case SUBMTX_DENSE_SUBCOLUMNS :
         case SUBMTX_SPARSE_COLUMNS :
            *pBRij = *pXRij + rdot ;
            *pBIij = *pXIij + idot ;
            break ;
         case SUBMTX_DIAGONAL :
         case SUBMTX_BLOCK_DIAGONAL_SYM :
         case SUBMTX_BLOCK_DIAGONAL_HERM :
            *pBRij = rdot ;
            *pBIij = idot ;
            break ;
         }
      }
   }
   ZV_free(colZV) ;
   ZV_free(rowZV) ;
}
/*
   ----------------------
   print out the matrices
   ----------------------
*/
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% X SubMtx object") ;
   fprintf(msgFile, "\n X = zeros(%d,%d) ;", nrowX, ncolX) ;
   SubMtx_writeForMatlab(mtxX, "X", msgFile) ;
   fprintf(msgFile, "\n\n %% A SubMtx object") ;
   fprintf(msgFile, "\n A = zeros(%d,%d) ;", nrowA, ncolA) ;
   SubMtx_writeForMatlab(mtxA, "A", msgFile) ;
   fprintf(msgFile, "\n\n %% B SubMtx object") ;
   fprintf(msgFile, "\n B = zeros(%d,%d) ;", nrowB, ncolB) ;
   SubMtx_writeForMatlab(mtxB, "B", msgFile) ;
   fflush(msgFile) ;
}
/*
   -----------------
   check with matlab
   -----------------
*/
if ( msglvl > 1 ) {
   switch ( mode ) {
   case SUBMTX_DENSE_SUBROWS :
   case SUBMTX_SPARSE_ROWS :
   case SUBMTX_DENSE_SUBCOLUMNS :
   case SUBMTX_SPARSE_COLUMNS :
      fprintf(msgFile,
              "\n\n emtx   = abs(B - X - A*X) ;"
              "\n\n condA = cond(eye(%d,%d) + A)"
              "\n\n maxabsZ = max(max(abs(emtx))) ", nrowA, nrowA) ;
      fflush(msgFile) ;
      break ;
   case SUBMTX_DIAGONAL :
   case SUBMTX_BLOCK_DIAGONAL_SYM :
   case SUBMTX_BLOCK_DIAGONAL_HERM :
      fprintf(msgFile,
              "\n\n emtx   = abs(B - A*X) ;"
              "\n\n condA = cond(A)"
              "\n\n maxabsZ = max(max(abs(emtx))) ") ;
      fflush(msgFile) ;
      break ;
   }
}
/*
   ----------------------------------------
   compute the solve DY = B or (I + A)Y = B
   ----------------------------------------
*/
SubMtx_solve(mtxA, mtxB) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% Y SubMtx object") ;
   fprintf(msgFile, "\n Y = zeros(%d,%d) ;", nrowB, ncolB) ;
   SubMtx_writeForMatlab(mtxB, "Y", msgFile) ;
   fprintf(msgFile,
           "\n\n %% solerror   = abs(Y - X) ;"
           "\n\n solerror   = abs(Y - X) ;"
           "\n\n maxabserror = max(max(solerror)) ") ;
   fflush(msgFile) ;
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
SubMtx_free(mtxA) ;
SubMtx_free(mtxX) ;
SubMtx_free(mtxB) ;
Drand_free(drand) ;

fprintf(msgFile, "\n") ;

return(1) ; }
Example #2
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ------------------------------------------
   test the SubMtx_scale{1,2,3}vec() methods.

   created -- 98may02, cca
   ------------------------------------------
*/
{
SubMtx   *mtxA ;
double   t1, t2 ;
double   *x0, *x1, *x2, *y0, *y1, *y2 ;
Drand    *drand ;
DV       *xdv0, *xdv1, *xdv2, *ydv0, *ydv1, *ydv2 ;
ZV       *xzv0, *xzv1, *xzv2, *yzv0, *yzv1, *yzv2 ;
FILE     *msgFile ;
int      mode, msglvl, nrowA, seed, type ;

if ( argc != 7 ) {
   fprintf(stdout, 
           "\n\n usage : %s msglvl msgFile type nrowA seed"
           "\n    msglvl  -- message level"
           "\n    msgFile -- message file"
           "\n    type -- type of matrix A"
           "\n       1 -- real"
           "\n       2 -- complex"
           "\n    mode -- mode of matrix A"
           "\n       7 -- diagonal"
           "\n       8 -- block diagonal symmetric"
           "\n       9 -- block diagonal hermitian (complex only)"
           "\n    nrowA -- # of rows in matrix A"
           "\n    seed  -- random number seed"
           "\n", argv[0]) ;
   return(0) ;
}
if ( (msglvl = atoi(argv[1])) < 0 ) {
   fprintf(stderr, "\n message level must be positive\n") ;
   exit(-1) ;
}
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n unable to open file %s\n", argv[2]) ;
   return(-1) ;
}
type  = atoi(argv[3]) ;
mode  = atoi(argv[4]) ;
nrowA = atoi(argv[5]) ;
seed  = atoi(argv[6]) ;
fprintf(msgFile, "\n %% %s:"
        "\n %% msglvl  = %d"
        "\n %% msgFile = %s"
        "\n %% type    = %d"
        "\n %% mode    = %d"
        "\n %% nrowA   = %d"
        "\n %% seed    = %d",
        argv[0], msglvl, argv[2], type, mode, nrowA, seed) ;
/*
   -----------------------------
   check for errors in the input
   -----------------------------
*/
if ( nrowA <= 0 ) {
   fprintf(stderr, "\n invalid input\n") ;
   exit(-1) ;
}
/*
   --------------------------------------
   initialize the random number generator
   --------------------------------------
*/
drand = Drand_new() ;
Drand_init(drand) ;
Drand_setSeed(drand, seed) ;
Drand_setNormal(drand, 0.0, 1.0) ;
/*
   ----------------------------
   initialize the X ZV objects
   ----------------------------
*/
MARKTIME(t1) ;
if ( type == SPOOLES_REAL ) {
   xdv0 = DV_new() ;
   DV_init(xdv0, nrowA, NULL) ;
   x0 = DV_entries(xdv0) ;
   Drand_fillDvector(drand, nrowA, x0) ;
   xdv1 = DV_new() ;
   DV_init(xdv1, nrowA, NULL) ;
   x1 = DV_entries(xdv1) ;
   Drand_fillDvector(drand, nrowA, x1) ;
   xdv2 = DV_new() ;
   DV_init(xdv2, nrowA, NULL) ;
   x2 = DV_entries(xdv2) ;
   Drand_fillDvector(drand, nrowA, x2) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n %% CPU : %.3f to initialize X ZV objects",
           t2 - t1) ;
   if ( msglvl > 1 ) {
      fprintf(msgFile, "\n\n %% X DV objects") ;
      fprintf(msgFile, "\n X0 = zeros(%d,1) ;", nrowA) ;
      DV_writeForMatlab(xdv0, "X0", msgFile) ;
      fprintf(msgFile, "\n X1 = zeros(%d,1) ;", nrowA) ;
      DV_writeForMatlab(xdv1, "X1", msgFile) ;
      fprintf(msgFile, "\n X2 = zeros(%d,1) ;", nrowA) ;
      DV_writeForMatlab(xdv2, "X2", msgFile) ;
      fflush(msgFile) ;
   }
} else if ( type == SPOOLES_COMPLEX ) {
   xzv0 = ZV_new() ;
   ZV_init(xzv0, nrowA, NULL) ;
   x0 = ZV_entries(xzv0) ;
   Drand_fillDvector(drand, 2*nrowA, x0) ;
   xzv1 = ZV_new() ;
   ZV_init(xzv1, nrowA, NULL) ;
   x1 = ZV_entries(xzv1) ;
   Drand_fillDvector(drand, 2*nrowA, x1) ;
   xzv2 = ZV_new() ;
   ZV_init(xzv2, nrowA, NULL) ;
   x2 = ZV_entries(xzv2) ;
   Drand_fillDvector(drand, 2*nrowA, x2) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n %% CPU : %.3f to initialize X ZV objects",
           t2 - t1) ;
   if ( msglvl > 1 ) {
      fprintf(msgFile, "\n\n %% X ZV objects") ;
      fprintf(msgFile, "\n X0 = zeros(%d,1) ;", nrowA) ;
      ZV_writeForMatlab(xzv0, "X0", msgFile) ;
      fprintf(msgFile, "\n X1 = zeros(%d,1) ;", nrowA) ;
      ZV_writeForMatlab(xzv1, "X1", msgFile) ;
      fprintf(msgFile, "\n X2 = zeros(%d,1) ;", nrowA) ;
      ZV_writeForMatlab(xzv2, "X2", msgFile) ;
      fflush(msgFile) ;
   }
}
/*
   ---------------------------------
   initialize the Y DV or ZV objects
   ---------------------------------
*/
MARKTIME(t1) ;
if ( type == SPOOLES_REAL ) {
   ydv0 = DV_new() ;
   DV_init(ydv0, nrowA, NULL) ;
   y0 = DV_entries(ydv0) ;
   ydv1 = DV_new() ;
   DV_init(ydv1, nrowA, NULL) ;
   y1 = DV_entries(ydv1) ;
   ydv2 = DV_new() ;
   DV_init(ydv2, nrowA, NULL) ;
   y2 = DV_entries(ydv2) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n %% CPU : %.3f to initialize Y DV objects",
           t2 - t1) ;
} else if ( type == SPOOLES_COMPLEX ) {
   yzv0 = ZV_new() ;
   ZV_init(yzv0, nrowA, NULL) ;
   y0 = ZV_entries(yzv0) ;
   yzv1 = ZV_new() ;
   ZV_init(yzv1, nrowA, NULL) ;
   y1 = ZV_entries(yzv1) ;
   yzv2 = ZV_new() ;
   ZV_init(yzv2, nrowA, NULL) ;
   y2 = ZV_entries(yzv2) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n %% CPU : %.3f to initialize Y ZV objects",
           t2 - t1) ;
}
/*
   -----------------------------------
   initialize the A matrix SubMtx object
   -----------------------------------
*/
seed++ ;
mtxA = SubMtx_new() ;
switch ( mode ) {
case SUBMTX_DIAGONAL :
case SUBMTX_BLOCK_DIAGONAL_SYM :
case SUBMTX_BLOCK_DIAGONAL_HERM :
   SubMtx_initRandom(mtxA, type, mode, 0, 0, nrowA, nrowA, 0, seed) ;
   break ;
default :
   fprintf(stderr, "\n fatal error in test_solve"
           "\n invalid mode = %d", mode) ;
   exit(-1) ;
}
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n %% A SubMtx object") ;
   fprintf(msgFile, "\n A = zeros(%d,%d) ;", nrowA, nrowA) ;
   SubMtx_writeForMatlab(mtxA, "A", msgFile) ;
   fflush(msgFile) ;
}
/*
   -------------------
   compute Y0 = A * X0
   -------------------
*/
if ( type == SPOOLES_REAL ) {
   DVzero(nrowA, y0) ;
} else if ( type == SPOOLES_COMPLEX ) {
   DVzero(2*nrowA, y0) ;
}
SubMtx_scale1vec(mtxA, y0, x0) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n Z0 = zeros(%d,1) ;", nrowA) ;
   if ( type == SPOOLES_REAL ) {
      DV_writeForMatlab(ydv0, "Z0", msgFile) ;
   } else if ( type == SPOOLES_COMPLEX ) {
      ZV_writeForMatlab(yzv0, "Z0", msgFile) ;
   }
   fprintf(msgFile, "\n err0 = Z0 - A*X0 ;") ;
   fprintf(msgFile, "\n error0 = max(abs(err0))") ;
   fflush(msgFile) ;
}
if ( type == SPOOLES_REAL ) {
   DVzero(nrowA, y0) ;
   DVzero(nrowA, y1) ;
} else if ( type == SPOOLES_COMPLEX ) {
   DVzero(2*nrowA, y0) ;
   DVzero(2*nrowA, y1) ;
}
SubMtx_scale2vec(mtxA, y0, y1, x0, x1) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n Z0 = zeros(%d,1) ;", nrowA) ;
   fprintf(msgFile, "\n\n Z1 = zeros(%d,1) ;", nrowA) ;
   if ( type == SPOOLES_REAL ) {
      DV_writeForMatlab(ydv0, "Z0", msgFile) ;
      DV_writeForMatlab(ydv1, "Z1", msgFile) ;
   } else if ( type == SPOOLES_COMPLEX ) {
      ZV_writeForMatlab(yzv0, "Z0", msgFile) ;
      ZV_writeForMatlab(yzv1, "Z1", msgFile) ;
   }
   fprintf(msgFile, "\n err1 = [Z0 Z1] - A*[X0 X1] ;") ;
   fprintf(msgFile, "\n error1 = max(abs(err1))") ;
   fflush(msgFile) ;
}
if ( type == SPOOLES_REAL ) {
   DVzero(nrowA, y0) ;
   DVzero(nrowA, y1) ;
   DVzero(nrowA, y2) ;
} else if ( type == SPOOLES_COMPLEX ) {
   DVzero(2*nrowA, y0) ;
   DVzero(2*nrowA, y1) ;
   DVzero(2*nrowA, y2) ;
}
SubMtx_scale3vec(mtxA, y0, y1, y2, x0, x1, x2) ;
if ( msglvl > 1 ) {
   fprintf(msgFile, "\n\n Z0 = zeros(%d,1) ;", nrowA) ;
   fprintf(msgFile, "\n\n Z1 = zeros(%d,1) ;", nrowA) ;
   fprintf(msgFile, "\n\n Z2 = zeros(%d,1) ;", nrowA) ;
   if ( type == SPOOLES_REAL ) {
      DV_writeForMatlab(ydv0, "Z0", msgFile) ;
      DV_writeForMatlab(ydv1, "Z1", msgFile) ;
      DV_writeForMatlab(ydv2, "Z2", msgFile) ;
   } else if ( type == SPOOLES_COMPLEX ) {
      ZV_writeForMatlab(yzv0, "Z0", msgFile) ;
      ZV_writeForMatlab(yzv1, "Z1", msgFile) ;
      ZV_writeForMatlab(yzv2, "Z2", msgFile) ;
   }
   fprintf(msgFile, "\n err2 = [Z0 Z1 Z2] - A*[X0 X1 X2] ;") ;
   fprintf(msgFile, "\n error3 = max(abs(err2))") ;
   fflush(msgFile) ;
}
/*
   ------------------------
   free the working storage
   ------------------------
*/
SubMtx_free(mtxA) ;
if ( type == SPOOLES_REAL ) {
   DV_free(xdv0) ;
   DV_free(xdv1) ;
   DV_free(xdv2) ;
   DV_free(ydv0) ;
   DV_free(ydv1) ;
   DV_free(ydv2) ;
} else if ( type == SPOOLES_COMPLEX ) {
   ZV_free(xzv0) ;
   ZV_free(xzv1) ;
   ZV_free(xzv2) ;
   ZV_free(yzv0) ;
   ZV_free(yzv1) ;
   ZV_free(yzv2) ;
}
Drand_free(drand) ;

fprintf(msgFile, "\n") ;

return(1) ; }
Example #3
0
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
   ----------------------------------------------
   test ZV_readFromFile and ZV_writeToFile,
   useful for translating between formatted *.zvf
   and binary *.zvb files.

   created -- 98jun02, cca
   ----------------------------------------------
*/
{
char     *inZVFileName, *outZVFileName ;
double   t1, t2 ;
int      msglvl, rc ;
ZV       *zvobj ;
FILE     *msgFile ;

if ( argc != 5 ) {
   fprintf(stdout, 
      "\n\n usage : %s msglvl msgFile inFile outFile"
      "\n    msglvl   -- message level"
      "\n    msgFile  -- message file"
      "\n    inFile   -- input file, must be *.zvf or *.zvb"
      "\n    outFile  -- output file, must be *.zvf or *.zvb"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
inZVFileName  = argv[3] ;
outZVFileName = argv[4] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl   -- %d" 
        "\n msgFile  -- %s" 
        "\n inFile   -- %s" 
        "\n outFile  -- %s" 
        "\n",
        argv[0], msglvl, argv[2], inZVFileName, outZVFileName) ;
fflush(msgFile) ;
/*
   ---------------------
   read in the ZV object
   ---------------------
*/
if ( strcmp(inZVFileName, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
zvobj = ZV_new() ;
MARKTIME(t1) ;
rc = ZV_readFromFile(zvobj, inZVFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %9.5f : read in iv from file %s",
        t2 - t1, inZVFileName) ;
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ZV_readFromFile(%p,%s)",
           rc, zvobj, inZVFileName) ;
   exit(-1) ;
}
fprintf(msgFile, "\n\n after reading ZV object from file %s",
        inZVFileName) ;
if ( msglvl > 2 ) {
   ZV_writeForHumanEye(zvobj, msgFile) ;
} else {
   ZV_writeStats(zvobj, msgFile) ;
}
fflush(msgFile) ;
/*
   -----------------------
   write out the ZV object
   -----------------------
*/
if ( strcmp(outZVFileName, "none") != 0 ) {
   MARKTIME(t1) ;
   rc = ZV_writeToFile(zvobj, outZVFileName) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %9.5f : write iv to file %s",
           t2 - t1, outZVFileName) ;
}
if ( rc != 1 ) {
   fprintf(msgFile, "\n return value %d from ZV_writeToFile(%p,%s)",
           rc, zvobj, outZVFileName) ;
}
/*
   ------------------
   free the ZV object
   ------------------
*/
ZV_free(zvobj) ;

fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return(1) ; }