extern void VS_FREQ_setProfile(VS_FREQ_Handle handle,
							float_t LowFreq, float_t HighFreq,
                            float_t VoltMin, float_t VoltMax)

{
  VS_FREQ_Obj *obj = (VS_FREQ_Obj *)handle;

  obj->LowFreq = _IQ(LowFreq/obj->iqFullScaleFreq_Hz);
  obj->HighFreq = _IQ(HighFreq/obj->iqFullScaleFreq_Hz);

  obj->VoltMin = _IQ(VoltMin/obj->iqFullScaleVoltage_V);
  obj->VoltMax = _IQ(VoltMax/obj->iqFullScaleVoltage_V);

  obj->VfSlope = _IQdiv((obj->VoltMax - obj->VoltMin), (obj->HighFreq - obj->LowFreq));

  obj->Vdq_gain.value[0] = _IQ(0.3);
  obj->Vdq_gain.value[1] = _IQsqrt(_IQ(obj->maxVsMag_pu*obj->maxVsMag_pu) - _IQmpy(obj->Vdq_gain.value[0], obj->Vdq_gain.value[0]));

  return;
} // end of VS_FREQ_setProfile() function
void updateGlobalVariables_motor(CTRL_Handle handle)
{
  CTRL_Obj *obj = (CTRL_Obj *)handle;
  int32_t tmp;

  // get the speed estimate
  gMotorVars.Speed_krpm = EST_getSpeed_krpm(obj->estHandle);

  // get the real time speed reference coming out of the speed trajectory generator
  gMotorVars.SpeedTraj_krpm = _IQmpy(CTRL_getSpd_int_ref_pu(handle),EST_get_pu_to_krpm_sf(obj->estHandle));

  // get the torque estimate
  gMotorVars.Torque_Nm = USER_computeTorque_Nm(handle, gTorque_Flux_Iq_pu_to_Nm_sf, gTorque_Ls_Id_Iq_pu_to_Nm_sf);

  // when calling EST_ functions that return a float, and fpu32 is enabled, an integer is needed as a return
  // so that the compiler reads the returned value from the accumulator instead of fpu32 registers
  // get the magnetizing current
  tmp = EST_getIdRated(obj->estHandle);
  gMotorVars.MagnCurr_A = *((float_t *)&tmp);

  // get the rotor resistance
  tmp = EST_getRr_Ohm(obj->estHandle);
  gMotorVars.Rr_Ohm = *((float_t *)&tmp);

  // get the stator resistance
  tmp = EST_getRs_Ohm(obj->estHandle);
  gMotorVars.Rs_Ohm = *((float_t *)&tmp);

  // get the stator inductance in the direct coordinate direction
  tmp = EST_getLs_d_H(obj->estHandle);
  gMotorVars.Lsd_H = *((float_t *)&tmp);

  // get the stator inductance in the quadrature coordinate direction
  tmp = EST_getLs_q_H(obj->estHandle);
  gMotorVars.Lsq_H = *((float_t *)&tmp);

  // get the flux in V/Hz in floating point
  tmp = EST_getFlux_VpHz(obj->estHandle);
  gMotorVars.Flux_VpHz = *((float_t *)&tmp);

  // get the flux in Wb in fixed point
  gMotorVars.Flux_Wb = USER_computeFlux(handle, gFlux_pu_to_Wb_sf);

  // get the controller state
  gMotorVars.CtrlState = CTRL_getState(handle);

  // get the estimator state
  gMotorVars.EstState = EST_getState(obj->estHandle);

  // read Vd and Vq vectors per units
  gMotorVars.Vd = CTRL_getVd_out_pu(ctrlHandle);
  gMotorVars.Vq = CTRL_getVq_out_pu(ctrlHandle);

  // calculate vector Vs in per units
  gMotorVars.Vs = _IQsqrt(_IQmpy(gMotorVars.Vd, gMotorVars.Vd) + _IQmpy(gMotorVars.Vq, gMotorVars.Vq));

  // read Id and Iq vectors in amps
  gMotorVars.Id_A = _IQmpy(CTRL_getId_in_pu(ctrlHandle), _IQ(USER_IQ_FULL_SCALE_CURRENT_A));
  gMotorVars.Iq_A = _IQmpy(CTRL_getIq_in_pu(ctrlHandle), _IQ(USER_IQ_FULL_SCALE_CURRENT_A));

  // calculate vector Is in amps
  gMotorVars.Is_A = _IQsqrt(_IQmpy(gMotorVars.Id_A, gMotorVars.Id_A) + _IQmpy(gMotorVars.Iq_A, gMotorVars.Iq_A));

  // Get the DC buss voltage
  gMotorVars.VdcBus_kV = _IQmpy(gAdcData.dcBus,_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/1000.0));

  return;
} // end of updateGlobalVariables_motor() function
void main(void)
{
  uint_least8_t estNumber = 0;

#ifdef FAST_ROM_V1p6
  uint_least8_t ctrlNumber = 0;
#endif

  // Only used if running from FLASH
  // Note that the variable FLASH is defined by the project
  #ifdef FLASH
  // Copy time critical code and Flash setup code to RAM
  // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
  // symbols are created by the linker. Refer to the linker files.
  memCopy((uint16_t *)&RamfuncsLoadStart,(uint16_t *)&RamfuncsLoadEnd,(uint16_t *)&RamfuncsRunStart);
  #endif

  // initialize the hardware abstraction layer
  halHandle = HAL_init(&hal,sizeof(hal));


  // check for errors in user parameters
  USER_checkForErrors(&gUserParams);


  // store user parameter error in global variable
  gMotorVars.UserErrorCode = USER_getErrorCode(&gUserParams);


  // do not allow code execution if there is a user parameter error
  if(gMotorVars.UserErrorCode != USER_ErrorCode_NoError)
    {
      for(;;)
        {
          gMotorVars.Flag_enableSys = false;
        }
    }


  // initialize the user parameters
  USER_setParams(&gUserParams);


  // set the hardware abstraction layer parameters
  HAL_setParams(halHandle,&gUserParams);


  // initialize the controller
#ifdef FAST_ROM_V1p6
  ctrlHandle = CTRL_initCtrl(ctrlNumber, estNumber);  		//v1p6 format (06xF and 06xM devices)
  controller_obj = (CTRL_Obj *)ctrlHandle;
#else
  ctrlHandle = CTRL_initCtrl(estNumber,&ctrl,sizeof(ctrl));	//v1p7 format default
#endif


  {
    CTRL_Version version;

    // get the version number
    CTRL_getVersion(ctrlHandle,&version);

    gMotorVars.CtrlVersion = version;
  }


  // set the default controller parameters
  CTRL_setParams(ctrlHandle,&gUserParams);


  // Initialize field weakening
  fwHandle = FW_init(&fw,sizeof(fw));


  // Disable field weakening
  FW_setFlag_enableFw(fwHandle, false);


  // Clear field weakening counter
  FW_clearCounter(fwHandle);


  // Set the number of ISR per field weakening ticks
  FW_setNumIsrTicksPerFwTick(fwHandle, FW_NUM_ISR_TICKS_PER_CTRL_TICK);


  // Set the deltas of field weakening
  FW_setDeltas(fwHandle, FW_INC_DELTA, FW_DEC_DELTA);


  // Set initial output of field weakening to zero
  FW_setOutput(fwHandle, _IQ(0.0));


  // Set the field weakening controller limits
  FW_setMinMax(fwHandle,_IQ(USER_MAX_NEGATIVE_ID_REF_CURRENT_A/USER_IQ_FULL_SCALE_CURRENT_A),_IQ(0.0));


  // setup faults
  HAL_setupFaults(halHandle);


  // initialize the interrupt vector table
  HAL_initIntVectorTable(halHandle);


  // enable the ADC interrupts
  HAL_enableAdcInts(halHandle);


  // enable global interrupts
  HAL_enableGlobalInts(halHandle);


  // enable debug interrupts
  HAL_enableDebugInt(halHandle);


  // disable the PWM
  HAL_disablePwm(halHandle);


#ifdef DRV8301_SPI
  // turn on the DRV8301 if present
  HAL_enableDrv(halHandle);
  // initialize the DRV8301 interface
  HAL_setupDrvSpi(halHandle,&gDrvSpi8301Vars);
#endif


  // enable DC bus compensation
  CTRL_setFlag_enableDcBusComp(ctrlHandle, true);


  // compute scaling factors for flux and torque calculations
  gFlux_pu_to_Wb_sf = USER_computeFlux_pu_to_Wb_sf();
  gFlux_pu_to_VpHz_sf = USER_computeFlux_pu_to_VpHz_sf();
  gTorque_Ls_Id_Iq_pu_to_Nm_sf = USER_computeTorque_Ls_Id_Iq_pu_to_Nm_sf();
  gTorque_Flux_Iq_pu_to_Nm_sf = USER_computeTorque_Flux_Iq_pu_to_Nm_sf();


  for(;;)
  {
    // Waiting for enable system flag to be set
    while(!(gMotorVars.Flag_enableSys));

    Flag_Latch_softwareUpdate = true;

    // Enable the Library internal PI.  Iq is referenced by the speed PI now
    CTRL_setFlag_enableSpeedCtrl(ctrlHandle, true);

    // loop while the enable system flag is true
    while(gMotorVars.Flag_enableSys)
      {
        CTRL_Obj *obj = (CTRL_Obj *)ctrlHandle;

        // increment counters
        gCounter_updateGlobals++;

        // enable/disable the use of motor parameters being loaded from user.h
        CTRL_setFlag_enableUserMotorParams(ctrlHandle,gMotorVars.Flag_enableUserParams);

        // enable/disable Rs recalibration during motor startup
        EST_setFlag_enableRsRecalc(obj->estHandle,gMotorVars.Flag_enableRsRecalc);

        // enable/disable automatic calculation of bias values
        CTRL_setFlag_enableOffset(ctrlHandle,gMotorVars.Flag_enableOffsetcalc);


        if(CTRL_isError(ctrlHandle))
          {
            // set the enable controller flag to false
            CTRL_setFlag_enableCtrl(ctrlHandle,false);

            // set the enable system flag to false
            gMotorVars.Flag_enableSys = false;

            // disable the PWM
            HAL_disablePwm(halHandle);
          }
        else
          {
            // update the controller state
            bool flag_ctrlStateChanged = CTRL_updateState(ctrlHandle);

            // enable or disable the control
            CTRL_setFlag_enableCtrl(ctrlHandle, gMotorVars.Flag_Run_Identify);

            if(flag_ctrlStateChanged)
              {
                CTRL_State_e ctrlState = CTRL_getState(ctrlHandle);

                if(ctrlState == CTRL_State_OffLine)
                  {
                    // enable the PWM
                    HAL_enablePwm(halHandle);
                  }
                else if(ctrlState == CTRL_State_OnLine)
                  {
                    if(gMotorVars.Flag_enableOffsetcalc == true)
                    {
                      // update the ADC bias values
                      HAL_updateAdcBias(halHandle);
                    }
                    else
                    {
                      // set the current bias
                      HAL_setBias(halHandle,HAL_SensorType_Current,0,_IQ(I_A_offset));
                      HAL_setBias(halHandle,HAL_SensorType_Current,1,_IQ(I_B_offset));
                      HAL_setBias(halHandle,HAL_SensorType_Current,2,_IQ(I_C_offset));

                      // set the voltage bias
                      HAL_setBias(halHandle,HAL_SensorType_Voltage,0,_IQ(V_A_offset));
                      HAL_setBias(halHandle,HAL_SensorType_Voltage,1,_IQ(V_B_offset));
                      HAL_setBias(halHandle,HAL_SensorType_Voltage,2,_IQ(V_C_offset));
                    }

                    // Return the bias value for currents
                    gMotorVars.I_bias.value[0] = HAL_getBias(halHandle,HAL_SensorType_Current,0);
                    gMotorVars.I_bias.value[1] = HAL_getBias(halHandle,HAL_SensorType_Current,1);
                    gMotorVars.I_bias.value[2] = HAL_getBias(halHandle,HAL_SensorType_Current,2);

                    // Return the bias value for voltages
                    gMotorVars.V_bias.value[0] = HAL_getBias(halHandle,HAL_SensorType_Voltage,0);
                    gMotorVars.V_bias.value[1] = HAL_getBias(halHandle,HAL_SensorType_Voltage,1);
                    gMotorVars.V_bias.value[2] = HAL_getBias(halHandle,HAL_SensorType_Voltage,2);

                    // enable the PWM
                    HAL_enablePwm(halHandle);
                  }
                else if(ctrlState == CTRL_State_Idle)
                  {
                    // disable the PWM
                    HAL_disablePwm(halHandle);
                    gMotorVars.Flag_Run_Identify = false;
                  }

                if((CTRL_getFlag_enableUserMotorParams(ctrlHandle) == true) &&
                  (ctrlState > CTRL_State_Idle) &&
                  (gMotorVars.CtrlVersion.minor == 6))
                  {
                    // call this function to fix 1p6
                    USER_softwareUpdate1p6(ctrlHandle);
                  }

              }
          }


        if(EST_isMotorIdentified(obj->estHandle))
          {
            _iq Is_Max_squared_pu = _IQ((USER_MOTOR_MAX_CURRENT*USER_MOTOR_MAX_CURRENT)/  \
    	      			  (USER_IQ_FULL_SCALE_CURRENT_A*USER_IQ_FULL_SCALE_CURRENT_A));
            _iq Id_squared_pu = _IQmpy(CTRL_getId_ref_pu(ctrlHandle),CTRL_getId_ref_pu(ctrlHandle));

            // Take into consideration that Iq^2+Id^2 = Is^2
            Iq_Max_pu = _IQsqrt(Is_Max_squared_pu-Id_squared_pu);

            //Set new max trajectory
            CTRL_setSpdMax(ctrlHandle, Iq_Max_pu);

            // set the current ramp
            EST_setMaxCurrentSlope_pu(obj->estHandle,gMaxCurrentSlope);
            gMotorVars.Flag_MotorIdentified = true;

            // set the speed reference
            CTRL_setSpd_ref_krpm(ctrlHandle,gMotorVars.SpeedRef_krpm);

            // set the speed acceleration
            CTRL_setMaxAccel_pu(ctrlHandle,_IQmpy(MAX_ACCEL_KRPMPS_SF,gMotorVars.MaxAccel_krpmps));

            if(Flag_Latch_softwareUpdate)
            {
              Flag_Latch_softwareUpdate = false;

              USER_calcPIgains(ctrlHandle);

              // initialize the watch window kp and ki current values with pre-calculated values
              gMotorVars.Kp_Idq = CTRL_getKp(ctrlHandle,CTRL_Type_PID_Id);
              gMotorVars.Ki_Idq = CTRL_getKi(ctrlHandle,CTRL_Type_PID_Id);
            }

          }
        else
          {
            Flag_Latch_softwareUpdate = true;

            // initialize the watch window kp and ki values with pre-calculated values
            gMotorVars.Kp_spd = CTRL_getKp(ctrlHandle,CTRL_Type_PID_spd);
            gMotorVars.Ki_spd = CTRL_getKi(ctrlHandle,CTRL_Type_PID_spd);


            // the estimator sets the maximum current slope during identification
            gMaxCurrentSlope = EST_getMaxCurrentSlope_pu(obj->estHandle);
          }


        // when appropriate, update the global variables
        if(gCounter_updateGlobals >= NUM_MAIN_TICKS_FOR_GLOBAL_VARIABLE_UPDATE)
          {
            // reset the counter
            gCounter_updateGlobals = 0;

            updateGlobalVariables_motor(ctrlHandle);
          }


        // update Kp and Ki gains
        updateKpKiGains(ctrlHandle);

        // set field weakening enable flag depending on user's input
        FW_setFlag_enableFw(fwHandle,gMotorVars.Flag_enableFieldWeakening);

        // enable/disable the forced angle
        EST_setFlag_enableForceAngle(obj->estHandle,gMotorVars.Flag_enableForceAngle);

        // enable or disable power warp
        CTRL_setFlag_enablePowerWarp(ctrlHandle,gMotorVars.Flag_enablePowerWarp);

#ifdef DRV8301_SPI
        HAL_writeDrvData(halHandle,&gDrvSpi8301Vars);

        HAL_readDrvData(halHandle,&gDrvSpi8301Vars);
#endif

      } // end of while(gFlag_enableSys) loop


    // disable the PWM
    HAL_disablePwm(halHandle);

    // set the default controller parameters (Reset the control to re-identify the motor)
    CTRL_setParams(ctrlHandle,&gUserParams);
    gMotorVars.Flag_Run_Identify = false;

  } // end of for(;;) loop

} // end of main() function
void updateGlobalVariables_motor(CTRL_Handle handle, ST_Handle sthandle)
{
  CTRL_Obj *obj = (CTRL_Obj *)handle;
  ST_Obj *stObj = (ST_Obj *)sthandle;


  // get the speed estimate
  gMotorVars.Speed_krpm = EST_getSpeed_krpm(obj->estHandle);

  // get the real time speed reference coming out of the speed trajectory generator
  gMotorVars.SpeedTraj_krpm = _IQmpy(STVELMOVE_getVelocityReference(stObj->velMoveHandle),EST_get_pu_to_krpm_sf(obj->estHandle));

  // get the torque estimate
  gMotorVars.Torque_Nm = USER_computeTorque_Nm(handle, gTorque_Flux_Iq_pu_to_Nm_sf, gTorque_Ls_Id_Iq_pu_to_Nm_sf);

  // get the magnetizing current
  gMotorVars.MagnCurr_A = EST_getIdRated(obj->estHandle);

  // get the rotor resistance
  gMotorVars.Rr_Ohm = EST_getRr_Ohm(obj->estHandle);

  // get the stator resistance
  gMotorVars.Rs_Ohm = EST_getRs_Ohm(obj->estHandle);

  // get the stator inductance in the direct coordinate direction
  gMotorVars.Lsd_H = EST_getLs_d_H(obj->estHandle);

  // get the stator inductance in the quadrature coordinate direction
  gMotorVars.Lsq_H = EST_getLs_q_H(obj->estHandle);

  // get the flux in V/Hz in floating point
  gMotorVars.Flux_VpHz = EST_getFlux_VpHz(obj->estHandle);

  // get the flux in Wb in fixed point
  gMotorVars.Flux_Wb = USER_computeFlux(handle, gFlux_pu_to_Wb_sf);

  // get the controller state
  gMotorVars.CtrlState = CTRL_getState(handle);

  // get the estimator state
  gMotorVars.EstState = EST_getState(obj->estHandle);

  // Get the DC buss voltage
  gMotorVars.VdcBus_kV = _IQmpy(gAdcData.dcBus,_IQ(USER_IQ_FULL_SCALE_VOLTAGE_V/1000.0));

  // get the Iq reference from the speed controller
  gMotorVars.IqRef_A = _IQmpy(STVELCTL_getTorqueReference(stObj->velCtlHandle), _IQ(USER_IQ_FULL_SCALE_CURRENT_A));

  // gets the Velocity Controller status
  gMotorVars.SpinTAC.VelCtlStatus = STVELCTL_getStatus(stObj->velCtlHandle);

  // get the inertia setting
  gMotorVars.SpinTAC.InertiaEstimate_Aperkrpm = _IQmpy(STVELCTL_getInertia(stObj->velCtlHandle), _IQ(ST_SPEED_PU_PER_KRPM * USER_IQ_FULL_SCALE_CURRENT_A));

  // get the friction setting
  gMotorVars.SpinTAC.FrictionEstimate_Aperkrpm = _IQmpy(STVELCTL_getFriction(stObj->velCtlHandle), _IQ(ST_SPEED_PU_PER_KRPM * USER_IQ_FULL_SCALE_CURRENT_A));

  // get the Velocity Controller error
  gMotorVars.SpinTAC.VelCtlErrorID = STVELCTL_getErrorID(stObj->velCtlHandle);

  // get the Velocity Move status
  gMotorVars.SpinTAC.VelMoveStatus = STVELMOVE_getStatus(stObj->velMoveHandle);

  // get the Velocity Move profile time
  gMotorVars.SpinTAC.VelMoveTime_ticks = STVELMOVE_getProfileTime_tick(stObj->velMoveHandle);

  // get the Velocity Move error
  gMotorVars.SpinTAC.VelMoveErrorID = STVELMOVE_getErrorID(stObj->velMoveHandle);

  // read Vd and Vq vectors per units
  gMotorVars.Vd = CTRL_getVd_out_pu(ctrlHandle);
  gMotorVars.Vq = CTRL_getVq_out_pu(ctrlHandle);

  // calculate vector Vs in per units
  gMotorVars.Vs = _IQsqrt(_IQmpy(gMotorVars.Vd, gMotorVars.Vd) + _IQmpy(gMotorVars.Vq, gMotorVars.Vq));

  // read Id and Iq vectors in amps
  gMotorVars.Id_A = _IQmpy(CTRL_getId_in_pu(ctrlHandle), _IQ(USER_IQ_FULL_SCALE_CURRENT_A));
  gMotorVars.Iq_A = _IQmpy(CTRL_getIq_in_pu(ctrlHandle), _IQ(USER_IQ_FULL_SCALE_CURRENT_A));

  // calculate vector Is in amps
  gMotorVars.Is_A = _IQsqrt(_IQmpy(gMotorVars.Id_A, gMotorVars.Id_A) + _IQmpy(gMotorVars.Iq_A, gMotorVars.Iq_A));

  return;
} // end of updateGlobalVariables_motor() function