void arm_negate_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ q7_t in; #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t input; /* Input values1-4 */ q31_t zero = 0x00000000; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = -A */ /* Read four inputs */ input = *__SIMD32(pSrc)++; /* Store the Negated results in the destination buffer in a single cycle by packing the results */ *__SIMD32(pDst)++ = __QSUB8(zero, input); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* C = -A */ /* Negate and then store the results in the destination buffer. */ \ in = *pSrc++; *pDst++ = (in == (q7_t) 0x80) ? 0x7f : -in; /* Decrement the loop counter */ blkCnt--; } }
void arm_abs_q7( q7_t * pSrc, q7_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ q7_t in; /* Input value1 */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in1, in2, in3, in4; /* temporary input variables */ q31_t out1, out2, out3, out4; /* temporary output variables */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = |A| */ /* Read inputs */ in1 = (q31_t) * pSrc; in2 = (q31_t) * (pSrc + 1); in3 = (q31_t) * (pSrc + 2); /* find absolute value */ out1 = (in1 > 0) ? in1 : (q31_t)__QSUB8(0, in1); /* read input */ in4 = (q31_t) * (pSrc + 3); /* find absolute value */ out2 = (in2 > 0) ? in2 : (q31_t)__QSUB8(0, in2); /* store result to destination */ *pDst = (q7_t) out1; /* find absolute value */ out3 = (in3 > 0) ? in3 : (q31_t)__QSUB8(0, in3); /* find absolute value */ out4 = (in4 > 0) ? in4 : (q31_t)__QSUB8(0, in4); /* store result to destination */ *(pDst + 1) = (q7_t) out2; /* store result to destination */ *(pDst + 2) = (q7_t) out3; /* store result to destination */ *(pDst + 3) = (q7_t) out4; /* update pointers to process next samples */ pSrc += 4u; pDst += 4u; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ blkCnt = blockSize; #endif // #define ARM_MATH_CM0_FAMILY while(blkCnt > 0u) { /* C = |A| */ /* Read the input */ in = *pSrc++; /* Store the Absolute result in the destination buffer */ *pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? 0x7f : -in); /* Decrement the loop counter */ blkCnt--; } }
void arm_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the results in the destination buffer 4 samples at a time. */ *__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the result in the destination buffer. */ *pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the result in the destination buffer. */ *pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ }
void arm_sub_q7( q7_t * pSrcA, q7_t * pSrcB, q7_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ q31_t inA1, inB1, inA2, inB2; /* temporary input variabels */ q7_t inA, inB; /* temporary variables */ q31_t out1, out2, out3, out4; /* temporary output variables */ /*loop Unrolling */ blkCnt = blockSize >> 4u; /* First part of the processing with loop unrolling. Compute 16 outputs at a time. ** a second loop below computes the remaining 1 to 15 samples. */ while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the results in the destination buffer 4 samples at a time. */ /* read 4 samples at a time from sourceA */ inA1 = _SIMD32_OFFSET(pSrcA); /* read 4 samples at a time from sourceB */ inB1 = _SIMD32_OFFSET(pSrcB); /* read 4 samples at a time from sourceA */ inA2 = _SIMD32_OFFSET(pSrcA + 4); /* out = saturate(sourceA - sourceB) four samples at a time */ out1 = __QSUB8(inA1, inB1); /* read 4 samples at a time from sourceB */ inB2 = _SIMD32_OFFSET(pSrcB + 4); /* store result to destination four samples at a time */ _SIMD32_OFFSET(pDst) = out1; /* out = saturate(sourceA - sourceB) four samples at a time */ out2 = __QSUB8(inA2, inB2); /* read 4 samples at a time from sourceA */ inA1 = _SIMD32_OFFSET(pSrcA + 8); /* read 4 samples at a time from sourceB */ inB1 = _SIMD32_OFFSET(pSrcB + 8); /* read 4 samples at a time from sourceA */ inA2 = _SIMD32_OFFSET(pSrcA + 12); /* out = saturate(sourceA - sourceB) four samples at a time */ out3 = __QSUB8(inA1, inB1); /* read 4 samples at a time from sourceB */ inB2 = _SIMD32_OFFSET(pSrcB + 12); /* increment sourceA pointer by 16 to process next samples */ pSrcA += 16u; /* store result to destination four samples at a time */ _SIMD32_OFFSET(pDst + 4) = out2; /* out = saturate(sourceA - sourceB) four samples at a time */ out4 = __QSUB8(inA2, inB2); /* store result to destination four samples at a time */ _SIMD32_OFFSET(pDst + 8) = out3; /* Update source pointer to process next sampels */ pSrcB += 16u; /* store result to destination four samples at a time */ _SIMD32_OFFSET(pDst + 12) = out4; /* Update destination pointer to process next sampels */ pDst += 16u; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 16, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x10u; while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the result in the destination buffer. */ inA = *pSrcA++; inB = *pSrcB++; #ifdef CCS *pDst++ = __SSATA(inA - inB, 0, 8); #else *pDst++ = __SSAT(inA - inB, 8); #endif //#ifdef CCS /* Decrement the loop counter */ blkCnt--; } }
/** \brief Test case: TC_CoreSimd_ParAddSub8 \details - Check Parallel 8-bit addition and subtraction: __SADD8 S Signed __SSUB8 Q Signed Saturating __SHADD8 SH Signed Halving __SHSUB8 U Unsigned __QADD8 UQ Unsigned Saturating __QSUB8 UH Unsigned Halving __UADD8 __USUB8 __UHADD8 __UHSUB8 __UQADD8 __UQSUB8 */ void TC_CoreSimd_ParAddSub8 (void) { #if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) ) volatile uint32_t op1_u32, op2_u32; volatile uint32_t res_u32; volatile int32_t op1_s32, op2_s32; volatile int32_t res_s32; /* --- __SADD8 Test ---------------------------------------------- */ op1_s32 = (int32_t)0x87858381; op2_s32 = (int32_t)0x08060402; res_s32 = __SADD8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x8F8B8783); /* --- __SSUB8 Test ---------------------------------------------- */ op1_s32 = (int32_t)0x8F8B8783; op2_s32 = (int32_t)0x08060402; res_s32 = __SSUB8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x87858381); /* --- __SHADD8 Test ---------------------------------------------- */ op1_s32 = 0x07050302; op2_s32 = 0x08060402; res_s32 = __SHADD8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == 0x07050302); /* --- __SHSUB8 Test ---------------------------------------------- */ op1_s32 = (int32_t)0x8F8B8783; op2_s32 = 0x08060402; res_s32 = __SHSUB8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0xC3C2C1C0); /* --- __QADD8 Test ---------------------------------------------- */ op1_s32 = (int32_t)0x8085837F; op2_s32 = (int32_t)0xFF060402; res_s32 = __QADD8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x808B877F); /* --- __QSUB8 Test ---------------------------------------------- */ op1_s32 = (int32_t)0x808B8783; op2_s32 = (int32_t)0x08060402; res_s32 = __QSUB8(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x80858381); /* --- __UADD8 Test ---------------------------------------------- */ op1_u32 = 0x07050301; op2_u32 = 0x08060402; res_u32 = __UADD8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0x0F0B0703); /* --- __USUB8 Test ---------------------------------------------- */ op1_u32 = 0x0F0B0703; op2_u32 = 0x08060402; res_u32 = __USUB8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0x07050301); /* --- __UHADD8 Test ---------------------------------------------- */ op1_u32 = 0x07050302; op2_u32 = 0x08060402; res_u32 = __UHADD8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0x07050302); /* --- __UHSUB8 Test ---------------------------------------------- */ op1_u32 = 0x0F0B0703; op2_u32 = 0x08060402; res_u32 = __UHSUB8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0x03020100); /* --- __UQADD8 Test ---------------------------------------------- */ op1_u32 = 0xFF050301; op2_u32 = 0x08060402; res_u32 = __UQADD8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0xFF0B0703); /* --- __UQSUB8 Test ---------------------------------------------- */ op1_u32 = 0x080B0702; op2_u32 = 0x0F060408; res_u32 = __UQSUB8(op1_u32, op2_u32); ASSERT_TRUE(res_u32 == 0x00050300); #endif }