void __libc_init_common(KernelArgumentBlock& args) {
  // Initialize various globals.
  environ = args.envp;
  errno = 0;
  __progname = args.argv[0] ? args.argv[0] : "<unknown>";
  __abort_message_ptr = args.abort_message_ptr;

  // Get the main thread from TLS and add it to the thread list.
  pthread_internal_t* main_thread = __get_thread();
  __pthread_internal_add(main_thread);

  __system_properties_init(); // Requires 'environ'.
}
void __libc_init_common(KernelArgumentBlock& args) {
  // Initialize various globals.
  environ = args.envp;
  errno = 0;
  __progname = args.argv[0] ? args.argv[0] : "<unknown>";
  __abort_message_ptr = args.abort_message_ptr;

  // AT_RANDOM is a pointer to 16 bytes of randomness on the stack.
  __stack_chk_guard = *reinterpret_cast<uintptr_t*>(getauxval(AT_RANDOM));

  // Get the main thread from TLS and add it to the thread list.
  pthread_internal_t* main_thread = __get_thread();
  __pthread_internal_add(main_thread);

  __system_properties_init(); // Requires 'environ'.
}
int pthread_create(pthread_t* thread_out, pthread_attr_t const* attr,
                   void* (*start_routine)(void*), void* arg) {
  ErrnoRestorer errno_restorer;

  // Inform the rest of the C library that at least one thread was created.
  __isthreaded = 1;

  pthread_attr_t thread_attr;
  if (attr == NULL) {
    pthread_attr_init(&thread_attr);
  } else {
    thread_attr = *attr;
    attr = NULL; // Prevent misuse below.
  }

  pthread_internal_t* thread = NULL;
  void* child_stack = NULL;
  int result = __allocate_thread(&thread_attr, &thread, &child_stack);
  if (result != 0) {
    return result;
  }

  // Create a lock for the thread to wait on once it starts so we can keep
  // it from doing anything until after we notify the debugger about it
  //
  // This also provides the memory barrier we need to ensure that all
  // memory accesses previously performed by this thread are visible to
  // the new thread.
  thread->startup_handshake_lock.init(false);
  thread->startup_handshake_lock.lock();

  thread->start_routine = start_routine;
  thread->start_routine_arg = arg;

  thread->set_cached_pid(getpid());

  int flags = CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM |
      CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID;
  void* tls = reinterpret_cast<void*>(thread->tls);
#if defined(__i386__)
  // On x86 (but not x86-64), CLONE_SETTLS takes a pointer to a struct user_desc rather than
  // a pointer to the TLS itself.
  user_desc tls_descriptor;
  __init_user_desc(&tls_descriptor, false, tls);
  tls = &tls_descriptor;
#endif
  int rc = clone(__pthread_start, child_stack, flags, thread, &(thread->tid), tls, &(thread->tid));
  if (rc == -1) {
    int clone_errno = errno;
    // We don't have to unlock the mutex at all because clone(2) failed so there's no child waiting to
    // be unblocked, but we're about to unmap the memory the mutex is stored in, so this serves as a
    // reminder that you can't rewrite this function to use a ScopedPthreadMutexLocker.
    thread->startup_handshake_lock.unlock();
    if (thread->mmap_size != 0) {
      munmap(thread->attr.stack_base, thread->mmap_size);
    }
    __libc_format_log(ANDROID_LOG_WARN, "libc", "pthread_create failed: clone failed: %s", strerror(errno));
    return clone_errno;
  }

  int init_errno = __init_thread(thread);
  if (init_errno != 0) {
    // Mark the thread detached and replace its start_routine with a no-op.
    // Letting the thread run is the easiest way to clean up its resources.
    atomic_store(&thread->join_state, THREAD_DETACHED);
    __pthread_internal_add(thread);
    thread->start_routine = __do_nothing;
    thread->startup_handshake_lock.unlock();
    return init_errno;
  }

  // Publish the pthread_t and unlock the mutex to let the new thread start running.
  *thread_out = __pthread_internal_add(thread);
  thread->startup_handshake_lock.unlock();

  return 0;
}