/** * tipc_msg_build - create buffer chain containing specified header and data * @mhdr: Message header, to be prepended to data * @m: User message * @offset: Posision in iov to start copying from * @dsz: Total length of user data * @pktmax: Max packet size that can be used * @list: Buffer or chain of buffers to be returned to caller * * Returns message data size or errno: -ENOMEM, -EFAULT */ int tipc_msg_build(struct tipc_msg *mhdr, struct msghdr *m, int offset, int dsz, int pktmax, struct sk_buff_head *list) { int mhsz = msg_hdr_sz(mhdr); int msz = mhsz + dsz; int pktno = 1; int pktsz; int pktrem = pktmax; int drem = dsz; struct tipc_msg pkthdr; struct sk_buff *skb; char *pktpos; int rc; msg_set_size(mhdr, msz); /* No fragmentation needed? */ if (likely(msz <= pktmax)) { skb = tipc_buf_acquire(msz); if (unlikely(!skb)) return -ENOMEM; __skb_queue_tail(list, skb); skb_copy_to_linear_data(skb, mhdr, mhsz); pktpos = skb->data + mhsz; if (!dsz || !memcpy_fromiovecend(pktpos, m->msg_iter.iov, offset, dsz)) return dsz; rc = -EFAULT; goto error; } /* Prepare reusable fragment header */ tipc_msg_init(&pkthdr, MSG_FRAGMENTER, FIRST_FRAGMENT, INT_H_SIZE, msg_destnode(mhdr)); msg_set_size(&pkthdr, pktmax); msg_set_fragm_no(&pkthdr, pktno); /* Prepare first fragment */ skb = tipc_buf_acquire(pktmax); if (!skb) return -ENOMEM; __skb_queue_tail(list, skb); pktpos = skb->data; skb_copy_to_linear_data(skb, &pkthdr, INT_H_SIZE); pktpos += INT_H_SIZE; pktrem -= INT_H_SIZE; skb_copy_to_linear_data_offset(skb, INT_H_SIZE, mhdr, mhsz); pktpos += mhsz; pktrem -= mhsz; do { if (drem < pktrem) pktrem = drem; if (memcpy_fromiovecend(pktpos, m->msg_iter.iov, offset, pktrem)) { rc = -EFAULT; goto error; } drem -= pktrem; offset += pktrem; if (!drem) break; /* Prepare new fragment: */ if (drem < (pktmax - INT_H_SIZE)) pktsz = drem + INT_H_SIZE; else pktsz = pktmax; skb = tipc_buf_acquire(pktsz); if (!skb) { rc = -ENOMEM; goto error; } __skb_queue_tail(list, skb); msg_set_type(&pkthdr, FRAGMENT); msg_set_size(&pkthdr, pktsz); msg_set_fragm_no(&pkthdr, ++pktno); skb_copy_to_linear_data(skb, &pkthdr, INT_H_SIZE); pktpos = skb->data + INT_H_SIZE; pktrem = pktsz - INT_H_SIZE; } while (1); msg_set_type(buf_msg(skb), LAST_FRAGMENT); return dsz; error: __skb_queue_purge(list); __skb_queue_head_init(list); return rc; }
/** * release - destroy a TIPC socket * @sock: socket to destroy * * This routine cleans up any messages that are still queued on the socket. * For DGRAM and RDM socket types, all queued messages are rejected. * For SEQPACKET and STREAM socket types, the first message is rejected * and any others are discarded. (If the first message on a STREAM socket * is partially-read, it is discarded and the next one is rejected instead.) * * NOTE: Rejected messages are not necessarily returned to the sender! They * are returned or discarded according to the "destination droppable" setting * specified for the message by the sender. * * Returns 0 on success, errno otherwise */ static int release(struct socket *sock) { struct sock *sk = sock->sk; struct tipc_port *tport; struct sk_buff *buf; int res; /* * Exit if socket isn't fully initialized (occurs when a failed accept() * releases a pre-allocated child socket that was never used) */ if (sk == NULL) return 0; tport = tipc_sk_port(sk); lock_sock(sk); /* * Reject all unreceived messages, except on an active connection * (which disconnects locally & sends a 'FIN+' to peer) */ while (sock->state != SS_DISCONNECTING) { buf = __skb_dequeue(&sk->sk_receive_queue); if (buf == NULL) break; if (TIPC_SKB_CB(buf)->handle != 0) kfree_skb(buf); else { if ((sock->state == SS_CONNECTING) || (sock->state == SS_CONNECTED)) { sock->state = SS_DISCONNECTING; tipc_disconnect(tport->ref); } tipc_reject_msg(buf, TIPC_ERR_NO_PORT); } } /* * Delete TIPC port; this ensures no more messages are queued * (also disconnects an active connection & sends a 'FIN-' to peer) */ res = tipc_deleteport(tport->ref); /* Discard any remaining (connection-based) messages in receive queue */ __skb_queue_purge(&sk->sk_receive_queue); /* Reject any messages that accumulated in backlog queue */ sock->state = SS_DISCONNECTING; release_sock(sk); sock_put(sk); sock->sk = NULL; return res; }
void sk_stream_kill_queues(struct sock *sk) { /* First the read buffer. */ __skb_queue_purge(&sk->sk_receive_queue); /* Next, the error queue. */ __skb_queue_purge(&sk->sk_error_queue); /* Next, the write queue. */ WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); /* Account for returned memory. */ sk_mem_reclaim(sk); WARN_ON(sk->sk_wmem_queued); WARN_ON(sk->sk_forward_alloc); /* It is _impossible_ for the backlog to contain anything * when we get here. All user references to this socket * have gone away, only the net layer knows can touch it. */ }
void sk_stream_kill_queues(struct sock *sk) { /* */ __skb_queue_purge(&sk->sk_receive_queue); /* */ __skb_queue_purge(&sk->sk_error_queue); /* */ WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); /* */ sk_mem_reclaim(sk); WARN_ON(sk->sk_wmem_queued); WARN_ON(sk->sk_forward_alloc); /* */ }
/** * shutdown - shutdown socket connection * @sock: socket structure * @how: direction to close (must be SHUT_RDWR) * * Terminates connection (if necessary), then purges socket's receive queue. * * Returns 0 on success, errno otherwise */ static int shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct tipc_port *tport = tipc_sk_port(sk); struct sk_buff *buf; int res; if (how != SHUT_RDWR) return -EINVAL; lock_sock(sk); switch (sock->state) { case SS_CONNECTING: case SS_CONNECTED: restart: /* Disconnect and send a 'FIN+' or 'FIN-' message to peer */ buf = __skb_dequeue(&sk->sk_receive_queue); if (buf) { if (TIPC_SKB_CB(buf)->handle != 0) { kfree_skb(buf); goto restart; } tipc_disconnect(tport->ref); tipc_reject_msg(buf, TIPC_CONN_SHUTDOWN); } else { tipc_shutdown(tport->ref); } sock->state = SS_DISCONNECTING; /* fall through */ case SS_DISCONNECTING: /* Discard any unreceived messages */ __skb_queue_purge(&sk->sk_receive_queue); /* Wake up anyone sleeping in poll */ sk->sk_state_change(sk); res = 0; break; default: res = -ENOTCONN; } release_sock(sk); return res; }
int dccp_disconnect(struct sock *sk, int flags) { struct inet_connection_sock *icsk = inet_csk(sk); struct inet_sock *inet = inet_sk(sk); int err = 0; const int old_state = sk->sk_state; if (old_state != DCCP_CLOSED) dccp_set_state(sk, DCCP_CLOSED); /* * This corresponds to the ABORT function of RFC793, sec. 3.8 * TCP uses a RST segment, DCCP a Reset packet with Code 2, "Aborted". */ if (old_state == DCCP_LISTEN) { inet_csk_listen_stop(sk); } else if (dccp_need_reset(old_state)) { dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED); sk->sk_err = ECONNRESET; } else if (old_state == DCCP_REQUESTING) sk->sk_err = ECONNRESET; dccp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); if (sk->sk_send_head != NULL) { __kfree_skb(sk->sk_send_head); sk->sk_send_head = NULL; } inet->dport = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); sk->sk_shutdown = 0; sock_reset_flag(sk, SOCK_DONE); icsk->icsk_backoff = 0; inet_csk_delack_init(sk); __sk_dst_reset(sk); BUG_TRAP(!inet->num || icsk->icsk_bind_hash); sk->sk_error_report(sk); return err; }
/* tipc_bearer_xmit() -send buffer to destination over bearer */ void tipc_bearer_xmit(struct net *net, u32 bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr *dst) { struct tipc_net *tn = net_generic(net, tipc_net_id); struct tipc_bearer *b; struct sk_buff *skb, *tmp; if (skb_queue_empty(xmitq)) return; rcu_read_lock(); b = rcu_dereference_rtnl(tn->bearer_list[bearer_id]); if (unlikely(!b)) __skb_queue_purge(xmitq); skb_queue_walk_safe(xmitq, skb, tmp) { __skb_dequeue(xmitq); b->media->send_msg(net, skb, b, dst); }
int dccp_disconnect(struct sock *sk, int flags) { struct inet_connection_sock *icsk = inet_csk(sk); struct inet_sock *inet = inet_sk(sk); int err = 0; const int old_state = sk->sk_state; if (old_state != DCCP_CLOSED) dccp_set_state(sk, DCCP_CLOSED); /* ABORT function of RFC793 */ if (old_state == DCCP_LISTEN) { inet_csk_listen_stop(sk); /* FIXME: do the active reset thing */ } else if (old_state == DCCP_REQUESTING) sk->sk_err = ECONNRESET; dccp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); if (sk->sk_send_head != NULL) { __kfree_skb(sk->sk_send_head); sk->sk_send_head = NULL; } inet->dport = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); sk->sk_shutdown = 0; sock_reset_flag(sk, SOCK_DONE); icsk->icsk_backoff = 0; inet_csk_delack_init(sk); __sk_dst_reset(sk); BUG_TRAP(!inet->num || icsk->icsk_bind_hash); sk->sk_error_report(sk); return err; }
/* tipc_bearer_xmit() -send buffer to destination over bearer */ void tipc_bearer_xmit(struct net *net, u32 bearer_id, struct sk_buff_head *xmitq, struct tipc_media_addr *dst) { struct tipc_bearer *b; struct sk_buff *skb, *tmp; if (skb_queue_empty(xmitq)) return; rcu_read_lock(); b = bearer_get(net, bearer_id); if (unlikely(!b)) __skb_queue_purge(xmitq); skb_queue_walk_safe(xmitq, skb, tmp) { __skb_dequeue(xmitq); if (likely(test_bit(0, &b->up) || msg_is_reset(buf_msg(skb)))) b->media->send_msg(net, skb, b, dst); else kfree_skb(skb); }
static int l2cap_sock_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct l2cap_pinfo *pi = l2cap_pi(sk); struct sk_buff *skb; struct sk_buff_head seg_queue; int err; u8 amp_id; BT_DBG("sock %p, sk %p", sock, sk); err = sock_error(sk); if (err) return err; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; lock_sock(sk); if (sk->sk_state != BT_CONNECTED) { err = -ENOTCONN; goto done; } /* Connectionless channel */ if (sk->sk_type == SOCK_DGRAM) { skb = l2cap_create_connless_pdu(sk, msg, len); if (IS_ERR(skb)) { err = PTR_ERR(skb); } else { l2cap_do_send(sk, skb); err = len; } goto done; } switch (pi->mode) { case L2CAP_MODE_BASIC: /* Check outgoing MTU */ if (len > pi->omtu) { err = -EMSGSIZE; goto done; } /* Create a basic PDU */ skb = l2cap_create_basic_pdu(sk, msg, len); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto done; } l2cap_do_send(sk, skb); err = len; break; case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: /* Check outgoing MTU */ if (len > pi->omtu) { err = -EMSGSIZE; goto done; } __skb_queue_head_init(&seg_queue); /* Do segmentation before calling in to the state machine, * since it's possible to block while waiting for memory * allocation. */ amp_id = pi->amp_id; err = l2cap_segment_sdu(sk, &seg_queue, msg, len, 0); /* The socket lock is released while segmenting, so check * that the socket is still connected */ if (sk->sk_state != BT_CONNECTED) { __skb_queue_purge(&seg_queue); err = -ENOTCONN; } if (err) { BT_DBG("Error %d, sk_sndbuf %d, sk_wmem_alloc %d", err, sk->sk_sndbuf, atomic_read(&sk->sk_wmem_alloc)); break; } if (pi->amp_id != amp_id) { /* Channel moved while unlocked. Resegment. */ err = l2cap_resegment_queue(sk, &seg_queue); if (err) break; } if (pi->mode != L2CAP_MODE_STREAMING) err = l2cap_ertm_tx(sk, 0, &seg_queue, L2CAP_ERTM_EVENT_DATA_REQUEST); else err = l2cap_strm_tx(sk, &seg_queue); if (!err) err = len; /* If the skbs were not queued for sending, they'll still be in * seg_queue and need to be purged. */ __skb_queue_purge(&seg_queue); break; default: BT_DBG("bad state %1.1x", pi->mode); err = -EBADFD; } done: release_sock(sk); return err; }
void dccp_close(struct sock *sk, long timeout) { struct dccp_sock *dp = dccp_sk(sk); struct sk_buff *skb; u32 data_was_unread = 0; int state; lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; if (sk->sk_state == DCCP_LISTEN) { dccp_set_state(sk, DCCP_CLOSED); /* Special case. */ inet_csk_listen_stop(sk); goto adjudge_to_death; } sk_stop_timer(sk, &dp->dccps_xmit_timer); /* * We need to flush the recv. buffs. We do this only on the * descriptor close, not protocol-sourced closes, because the *reader process may not have drained the data yet! */ while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { data_was_unread += skb->len; __kfree_skb(skb); } if (data_was_unread) { /* Unread data was tossed, send an appropriate Reset Code */ DCCP_WARN("ABORT with %u bytes unread\n", data_was_unread); dccp_send_reset(sk, DCCP_RESET_CODE_ABORTED); dccp_set_state(sk, DCCP_CLOSED); } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { /* Check zero linger _after_ checking for unread data. */ sk->sk_prot->disconnect(sk, 0); } else if (sk->sk_state != DCCP_CLOSED) { /* * Normal connection termination. May need to wait if there are * still packets in the TX queue that are delayed by the CCID. */ dccp_flush_write_queue(sk, &timeout); dccp_terminate_connection(sk); } /* * Flush write queue. This may be necessary in several cases: * - we have been closed by the peer but still have application data; * - abortive termination (unread data or zero linger time), * - normal termination but queue could not be flushed within time limit */ __skb_queue_purge(&sk->sk_write_queue); sk_stream_wait_close(sk, timeout); adjudge_to_death: state = sk->sk_state; sock_hold(sk); sock_orphan(sk); /* * It is the last release_sock in its life. It will remove backlog. */ release_sock(sk); /* * Now socket is owned by kernel and we acquire BH lock * to finish close. No need to check for user refs. */ local_bh_disable(); bh_lock_sock(sk); WARN_ON(sock_owned_by_user(sk)); percpu_counter_inc(sk->sk_prot->orphan_count); /* Have we already been destroyed by a softirq or backlog? */ if (state != DCCP_CLOSED && sk->sk_state == DCCP_CLOSED) goto out; if (sk->sk_state == DCCP_CLOSED) inet_csk_destroy_sock(sk); /* Otherwise, socket is reprieved until protocol close. */ out: bh_unlock_sock(sk); local_bh_enable(); sock_put(sk); }
static int l2cap_sock_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct l2cap_pinfo *pi = l2cap_pi(sk); struct sk_buff *skb; struct sk_buff_head seg_queue; int err; u8 amp_id; BT_DBG("sock %p, sk %p", sock, sk); err = sock_error(sk); if (err) return err; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; lock_sock(sk); if (sk->sk_state != BT_CONNECTED) { err = -ENOTCONN; goto done; } if (sk->sk_type == SOCK_DGRAM) { skb = l2cap_create_connless_pdu(sk, msg, len); if (IS_ERR(skb)) { err = PTR_ERR(skb); } else { l2cap_do_send(sk, skb); err = len; } goto done; } switch (pi->mode) { case L2CAP_MODE_BASIC: if (len > pi->omtu) { err = -EMSGSIZE; goto done; } skb = l2cap_create_basic_pdu(sk, msg, len); if (IS_ERR(skb)) { err = PTR_ERR(skb); goto done; } l2cap_do_send(sk, skb); err = len; break; case L2CAP_MODE_ERTM: case L2CAP_MODE_STREAMING: if (len > pi->omtu) { err = -EMSGSIZE; goto done; } __skb_queue_head_init(&seg_queue); amp_id = pi->amp_id; err = l2cap_segment_sdu(sk, &seg_queue, msg, len, 0); if (sk->sk_state != BT_CONNECTED) { __skb_queue_purge(&seg_queue); err = -ENOTCONN; } if (err) { BT_DBG("Error %d, sk_sndbuf %d, sk_wmem_alloc %d", err, sk->sk_sndbuf, atomic_read(&sk->sk_wmem_alloc)); break; } if (pi->amp_id != amp_id) { err = l2cap_resegment_queue(sk, &seg_queue); if (err) break; } if (pi->mode != L2CAP_MODE_STREAMING) err = l2cap_ertm_tx(sk, 0, &seg_queue, L2CAP_ERTM_EVENT_DATA_REQUEST); else err = l2cap_strm_tx(sk, &seg_queue); if (!err) err = len; __skb_queue_purge(&seg_queue); break; default: BT_DBG("bad state %1.1x", pi->mode); err = -EBADFD; } done: release_sock(sk); return err; }