void Shuffle16Elems(__m128 &io_data0, __m128 &io_data1, __m128 &io_data2,
		__m128 &io_data3)
	{
		__m128 ccdd1 = _mm_unpackhi_ps(io_data0, io_data1);
		__m128 ccdd2 = _mm_unpackhi_ps(io_data2, io_data3);
		__m128 aabb1 = _mm_unpacklo_ps(io_data0, io_data1);
		__m128 aabb2 = _mm_unpacklo_ps(io_data2, io_data3);

		io_data0 = 
			_mm_castpd_ps(_mm_unpacklo_pd(_mm_castps_pd(aabb1), _mm_castps_pd(aabb2)));
		io_data1 =
			_mm_castpd_ps(_mm_unpackhi_pd(_mm_castps_pd(aabb1), _mm_castps_pd(aabb2)));
		io_data2 =
			_mm_castpd_ps(_mm_unpacklo_pd(_mm_castps_pd(ccdd1), _mm_castps_pd(ccdd2)));
		io_data3 = 
			_mm_castpd_ps(_mm_unpackhi_pd(_mm_castps_pd(ccdd1), _mm_castps_pd(ccdd2)));
	}
double bst_compute_123_m128_unaligned8_maskstore( void*_bst_obj, double* p, double* q, size_t nn ) {
    segments_t* mem = (segments_t*) _bst_obj;
    int n, i, r, l_end, j, l_end_pre;
    double t, e_tmp;
    double* e = mem->e, *w = mem->w;
    int* root = mem->r;
    __m128d v_tmp;
    __m128d v00, v01, v02, v03;
    __m128d v10, v11, v12, v13;
    __m128d v20, v21, v22, v23;
    __m128d v30, v31, v32, v33;
    __m128i v_cur_roots;
    __m128 v_rootmask0, v_rootmask1;
    // initialization
    // mem->n = nn;
    n = nn; // subtractions with n potentially negative. say hello to all the bugs

    int idx1, idx2, idx3;
    
    idx1 = IDX(n,n);
    e[idx1] = q[n];
    idx1++;
    for (i = n-1; i >= 0; --i) {
        idx1 -= 2*(n-i)+1;
        idx2 = idx1 + 1;
        e[idx1] = q[i];
        w[idx1] = q[i];
        for (j = i+1; j < n+1; ++j,++idx2) {
            e[idx2] = INFINITY;
            w[idx2] = w[idx2-1] + p[j-1] + q[j];
        }
        idx3 = idx1; 
        for (r = i; r < n; ++r) {
            // idx2 = IDX(r+1, r+1);
            idx1 = idx3;
            l_end = idx2 + (n-r);
            // l_end points to the first entry after the current row
            e_tmp = e[idx1++];
            // calculate until a multiple of 8 doubles is left
            // 8 = 4 * 2 128-bit vectors
            l_end_pre = idx2 + ((n-r)&7);
            for( ; (idx2 < l_end_pre) && (idx2 < l_end); ++idx2 ) {
                t = e_tmp + e[idx2] + w[idx1];
                if (t < e[idx1]) {
                    e[idx1] = t;
                    root[idx1] = r;
                }
                idx1++;
            }
            
            v_tmp = _mm_set_pd( e_tmp, e_tmp );
            // execute the shit for 4 vectors of size 2
            v_cur_roots = _mm_set_epi32(r, r, r, r);
            for( ; idx2 < l_end; idx2 += 8 ) {
                v01 = _mm_loadu_pd( &w[idx1  ] );
                v11 = _mm_loadu_pd( &w[idx1+2] );
                v21 = _mm_loadu_pd( &w[idx1+4] );
                v31 = _mm_loadu_pd( &w[idx1+6] );

                v00 = _mm_loadu_pd( &e[idx2  ] );
                v01 = _mm_add_pd( v01, v_tmp ); 
                v10 = _mm_loadu_pd( &e[idx2+2] );
                v11 = _mm_add_pd( v11, v_tmp );
                v20 = _mm_loadu_pd( &e[idx2+4] );
                v21 = _mm_add_pd( v21, v_tmp );
                v30 = _mm_loadu_pd( &e[idx2+6] );
                v31 = _mm_add_pd( v31, v_tmp );

                v01 = _mm_add_pd( v01, v00 );
                v03 = _mm_loadu_pd( &e[idx1  ] );
                v11 = _mm_add_pd( v11, v10 );
                v13 = _mm_loadu_pd( &e[idx1+2] );
                v21 = _mm_add_pd( v21, v20 );
                v23 = _mm_loadu_pd( &e[idx1+4] );
                v31 = _mm_add_pd( v31, v30 );
                v33 = _mm_loadu_pd( &e[idx1+6] );

                v02 = _mm_cmplt_pd( v01, v03 );
                v12 = _mm_cmplt_pd( v11, v13 );
                v22 = _mm_cmplt_pd( v21, v23 );
                v32 = _mm_cmplt_pd( v31, v33 );

                _mm_maskstore_pd( &e[idx1  ],
                        _mm_castpd_si128( v02 ), v01 );
                _mm_maskstore_pd( &e[idx1+2],
                        _mm_castpd_si128( v12 ), v11 );
                _mm_maskstore_pd( &e[idx1+4],
                        _mm_castpd_si128( v22 ), v21 );
                _mm_maskstore_pd( &e[idx1+6], 
                        _mm_castpd_si128( v32 ), v31 );

                v_rootmask0 = _mm_shuffle_ps(
                        _mm_castpd_ps( v02 ),
                        _mm_castpd_ps( v12 ),
                        _MM_SHUFFLE(0,2,0,2) );
                v_rootmask1 = _mm_shuffle_ps(
                        _mm_castpd_ps( v12 ),
                        _mm_castpd_ps( v22 ),
                        _MM_SHUFFLE(0,2,0,2) );

                _mm_maskstore_ps( &root[idx1],
                        _mm_castps_si128( v_rootmask0 ),
                        _mm_castsi128_ps( v_cur_roots ) );
                _mm_maskstore_ps( &root[idx1+4],
                        _mm_castps_si128( v_rootmask1 ),
                        _mm_castsi128_ps( v_cur_roots ) );
                
                idx1 += 8;
            }
            idx3++;
        }
    }


    return e[IDX(0,n)];
}
Example #3
0
static inline void   sacEvaluateModelSPRT(PROSAC_HEST* p){
	unsigned i;
	unsigned isInlier;
	double   lambda       = 1.0;
	double   lambdaReject = ((1.0 - p->delta) / (1.0 - p->epsilon));
	double   lambdaAccept = ((   p->delta   ) / (    p->epsilon  ));
	float    distSq = p->maxD*p->maxD;
	float*   src = (float*)p->src;
	float*   dst = (float*)p->dst;
	float*   H   = p->H;
	
	
	p->inl      = 0;
	p->N_tested = 0;
	p->good     = 1;
	
	
	/* VECTOR */
	const __m128 distSqV=_mm_set1_ps(distSq);
	
	const __m128 H00=_mm_set1_ps(H[0]);
	const __m128 H01=_mm_set1_ps(H[1]);
	const __m128 H02=_mm_set1_ps(H[2]);
	const __m128 H10=_mm_set1_ps(H[4]);
	const __m128 H11=_mm_set1_ps(H[5]);
	const __m128 H12=_mm_set1_ps(H[6]);
	const __m128 H20=_mm_set1_ps(H[8]);
	const __m128 H21=_mm_set1_ps(H[9]);
	const __m128 H22=_mm_set1_ps(H[10]);
	
	for(i=0;i<(p->N-3) && p->good;i+=4){
		/* Backproject */
		__m128 x, y, X, Y, inter0, inter1, inter2, inter3;
		x=_mm_load_ps(src+2*i);
		y=_mm_load_ps(src+2*i+4);
		X=_mm_load_ps(dst+2*i);
		Y=_mm_load_ps(dst+2*i+4);
		
		inter0=_mm_unpacklo_ps(x,y);// y1 y0 x1 x0
		inter1=_mm_unpackhi_ps(x,y);// y3 y2 x3 x2
		inter2=_mm_unpacklo_ps(X,Y);// Y1 Y0 X1 X0
		inter3=_mm_unpackhi_ps(X,Y);// Y3 Y2 X3 X2
		
		x=_mm_castpd_ps(_mm_unpacklo_pd(_mm_castps_pd(inter0), _mm_castps_pd(inter1)));
		y=_mm_castpd_ps(_mm_unpackhi_pd(_mm_castps_pd(inter0), _mm_castps_pd(inter1)));
		X=_mm_castpd_ps(_mm_unpacklo_pd(_mm_castps_pd(inter2), _mm_castps_pd(inter3)));
		Y=_mm_castpd_ps(_mm_unpackhi_pd(_mm_castps_pd(inter2), _mm_castps_pd(inter3)));
		
		__m128 reprojX = _mm_add_ps(_mm_add_ps(_mm_mul_ps(H00, x), _mm_mul_ps(H01, y)), H02);
		__m128 reprojY = _mm_add_ps(_mm_add_ps(_mm_mul_ps(H10, x), _mm_mul_ps(H11, y)), H12);
		__m128 reprojZ = _mm_add_ps(_mm_add_ps(_mm_mul_ps(H20, x), _mm_mul_ps(H21, y)), H22);
		
		__m128 recipZ = _mm_rcp_ps(reprojZ);
		reprojX = _mm_mul_ps(reprojX, recipZ);
		reprojY = _mm_mul_ps(reprojY, recipZ);
		//reprojX = _mm_div_ps(reprojX, reprojZ);
		//reprojY = _mm_div_ps(reprojY, reprojZ);
		
		reprojX = _mm_sub_ps(reprojX, X);
		reprojY = _mm_sub_ps(reprojY, Y);
		
		reprojX = _mm_mul_ps(reprojX, reprojX);
		reprojY = _mm_mul_ps(reprojY, reprojY);
		
		__m128 reprojDistV = _mm_add_ps(reprojX, reprojY);
		
		__m128 cmp = _mm_cmple_ps(reprojDistV, distSqV);
		int msk = _mm_movemask_ps(cmp);
		
		/* ... */
		/*                   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15*/
		unsigned bitCnt[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
		p->inl     += bitCnt[msk];
		
		
		/* SPRT */
		lambda *= p->lambdaTBL[msk];
		p->good = lambda <= p->A;
		/* If !p->good, the threshold A was exceeded, so we're rejecting */
	}
	
	/* SCALAR */
	for(;i<p->N && p->good;i++){
		/* Backproject */
		float x=src[i*2],y=src[i*2+1];
		float X=dst[i*2],Y=dst[i*2+1];
		
		float reprojX=H[0]*x+H[1]*y+H[2]; //  ( X_1 )     ( H_11 H_12    H_13  ) (x_1)
		float reprojY=H[4]*x+H[5]*y+H[6]; //  ( X_2 )  =  ( H_21 H_22    H_23  ) (x_2)
		float reprojZ=H[8]*x+H[9]*y+H[10];//  ( X_3 )     ( H_31 H_32 H_33=1.0 ) (x_3 = 1.0)
		
		//reproj is in homogeneous coordinates. To bring back to "regular" coordinates, divide by Z.
		reprojX/=reprojZ;
		reprojY/=reprojZ;
		
		//Compute distance
		reprojX-=X;
		reprojY-=Y;
		reprojX*=reprojX;
		reprojY*=reprojY;
		float reprojDist = reprojX+reprojY;
		
		/* ... */
		isInlier    = reprojDist <= distSq;
		p->inl     += isInlier;
		
		
		/* SPRT */
		lambda *= isInlier ? lambdaAccept : lambdaReject;
		p->good = lambda <= p->A;
		/* If !p->good, the threshold A was exceeded, so we're rejecting */
	}
	
	
	p->N_tested = i;
}
Example #4
0
double bst_compute_121_m128_aligned4( void*_bst_obj, double* p, double* q, size_t nn ) {
    segments_t* mem = (segments_t*) _bst_obj;
    int n, i, r, l_end, l_end_pre, j;
    double t, e_tmp;
    double* e = mem->e, *w = mem->w;
    int* root = mem->r;
    __m128d v_tmp;
    __m128d v00, v01, v02, v03;
    __m128d v10, v11, v12, v13;
    __m128i v_cur_roots, v_old_roots, v_new_roots;
    __m128 v_rootmask;
    // initialization
    // mem->n = nn;
    n = nn; // subtractions with n potentially negative. say hello to all the bugs

    int idx1, idx2, idx3, pad, pad_r;
    
    idx1 = (n+1)*(n+2)/2 + n/2;
    e[idx1] = q[n];
    idx1++;
    pad = 1;
    // pad contains the padding for row i+1
    // for row n it's always 1
    for (i = n-1; i >= 0; --i) {
        idx1 -= 2*(n-i)+1 + pad;
        idx2 = idx1 + 1;
        e[idx1] = q[i];
        w[idx1] = q[i];
        for (j = i+1; j < n+1; ++j,++idx2) {
            e[idx2] = INFINITY;
            w[idx2] = w[idx2-1] + p[j-1] + q[j];
        }
        // idx2 now points to the beginning of the next line.
        idx2 += pad; // padding of line i+1

        idx3 = idx1;
        pad_r = pad; // padding of line r
        for (r = i; r < n; ++r) {
            pad_r = !pad_r; // padding of line r+1
            // idx2 = IDX(r+1, r+1);
            idx1 = idx3;
            l_end = idx2 + (n-r);
            e_tmp = e[idx1++];
            // calculate until a multiple of 8 doubles is left
            // 8 = 4 * 2 128-bit vectors
            l_end_pre = idx2 + ((n-r)&3);
            for( ; (idx2 < l_end_pre) && (idx2 < l_end); ++idx2 ) {
                t = e_tmp + e[idx2] + w[idx1];
                if (t < e[idx1]) {
                    e[idx1] = t;
                    root[idx1] = r;
                }
                idx1++;
            }

            v_tmp = _mm_set_pd( e_tmp, e_tmp );
            // execute the shit for 4 vectors of size 2
            v_cur_roots = _mm_set_epi32(r, r, r, r);
            for( ; idx2 < l_end; idx2 += 4 ) {
                v01 = _mm_load_pd( &w[idx1  ] );
                v11 = _mm_load_pd( &w[idx1+2] );

                v00 = _mm_load_pd( &e[idx2  ] );
                v01 = _mm_add_pd( v01, v_tmp ); // supoptimal for raw-dependency
                v10 = _mm_load_pd( &e[idx2+2] );
                v11 = _mm_add_pd( v11, v_tmp );

                v01 = _mm_add_pd( v01, v00 );
                v03 = _mm_load_pd( &e[idx1  ] );
                v11 = _mm_add_pd( v11, v10 );
                v13 = _mm_load_pd( &e[idx1+2] );

                v02 = _mm_cmplt_pd( v01, v03 );
                v12 = _mm_cmplt_pd( v11, v13 );

                v00 = _mm_or_pd( _mm_and_pd( v02, v01 ), _mm_andnot_pd( v02, v03 ));
                v10 = _mm_or_pd( _mm_and_pd( v12, v11 ), _mm_andnot_pd( v12, v13 ));

                _mm_store_pd( &e[idx1  ], v00 );
                _mm_store_pd( &e[idx1+2], v10 );

                v_rootmask = _mm_shuffle_ps(
                        _mm_castpd_ps( v02 ),
                        _mm_castpd_ps( v12 ),
                        _MM_SHUFFLE(0,2,0,2) );

                v_old_roots = _mm_lddqu_si128( &root[idx1] );
                v_new_roots = _mm_or_si128(
                        _mm_and_si128(    v_cur_roots, 
                            _mm_castps_si128( v_rootmask ) ),
                        _mm_andnot_si128( v_old_roots,
                            _mm_castps_si128( v_rootmask ) )
                        );
                _mm_storeu_si128( &root[idx1], v_new_roots );

                idx1 += 4;
            }

            idx2 += pad_r;
            idx3++;
        }
        pad = !pad;
        // every other line as padding 0, or 1, respectively
    }

    // if n is even, the total number of entries in the first
    // row of the table is odd, so we need padding
    return e[n + !(n&1)];
}