/** * Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords * whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, * where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all * integer parameters (treated as type "unsigned int") in the order they are provided, plus the value * of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). * * @param K The derived key to be output by the algorithm * @param kLen Desired key length * @param pwd User password * @param pwdlen Password length * @param salt Salt * @param saltlen Salt length * @param timeCost Parameter to determine the processing time (T) * @param nRows Number or rows of the memory matrix (R) * @param nCols Number of columns of the memory matrix (C) * * @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) */ int LYRA2(void *K, uint64_t kLen, const void *pwd, uint64_t pwdlen, const void *salt, uint64_t saltlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols) { //============================= Basic variables ============================// int64_t row = 2; //index of row to be processed int64_t prev = 1; //index of prev (last row ever computed/modified) int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering) int64_t tau; //Time Loop iterator int64_t step = 1; //Visitation step (used during Setup and Wandering phases) int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup) int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1 int64_t i; //auxiliary iteration counter //==========================================================================/ //========== Initializing the Memory Matrix and pointers to it =============// //Tries to allocate enough space for the whole memory matrix i = (int64_t) ((int64_t) nRows * (int64_t) ROW_LEN_BYTES); uint64_t *wholeMatrix = (uint64_t*)malloc(i); if (wholeMatrix == NULL) { return -1; } memset(wholeMatrix, 0, i); //Allocates pointers to each row of the matrix uint64_t **memMatrix = (uint64_t**)malloc(nRows * sizeof (uint64_t*)); if (memMatrix == NULL) { return -1; } //Places the pointers in the correct positions uint64_t *ptrWord = wholeMatrix; for (i = 0; i < nRows; i++) { memMatrix[i] = ptrWord; ptrWord += ROW_LEN_INT64; } //==========================================================================/ //============= Getting the password + salt + basil padded with 10*1 ===============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding uint64_t nBlocksInput = ((saltlen + pwdlen + 6 * sizeof (uint64_t)) / BLOCK_LEN_BLAKE2_SAFE_BYTES) + 1; byte *ptrByte = (byte*) wholeMatrix; memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES); //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &pwdlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &saltlen, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &timeCost, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nRows, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); memcpy(ptrByte, &nCols, sizeof (uint64_t)); ptrByte += sizeof (uint64_t); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //==========================================================================/ //======================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) uint64_t *state = (uint64_t*)malloc(16 * sizeof (uint64_t)); if (state == NULL) { return -1; } initState(state); //==========================================================================/ //================================ Setup Phase =============================// //Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits ptrWord = wholeMatrix; for (i = 0; i < nBlocksInput; i++) { absorbBlockBlake2Safe(state, ptrWord); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN_BLAKE2_SAFE_BYTES; //goes to next block of pad(pwd || salt || basil) } //Initializes M[0] and M[1] reducedSqueezeRow0(state, memMatrix[0]); //The locally copied password is most likely overwritten here reducedDuplexRow1(state, memMatrix[0], memMatrix[1]); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); //updates the value of row* (deterministically picked during Setup)) rowa = (rowa + step) & (window - 1); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed row++; //Checks if all rows in the window where visited. if (rowa == 0) { step = window + gap; //changes the step: approximately doubles its value window *= 2; //doubles the size of the re-visitation window gap = -gap; //inverts the modifier to the step } } while (row < nRows); //==========================================================================/ //============================ Wandering Phase =============================// row = 0; //Resets the visitation to the first row of the memory matrix for (tau = 1; tau <= timeCost; tau++) { //Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1 step = (tau % 2 == 0) ? -1 : nRows / 2 - 1; do { //Selects a pseudorandom index row* //------------------------------------------------------------------------------------------ //rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); //update prev: it now points to the last row ever computed prev = row; //updates row: goes to the next row to be computed //------------------------------------------------------------------------------------------ //row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2) row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //------------------------------------------------------------------------------------------ } while (row != 0); } //==========================================================================/ //============================ Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, memMatrix[rowa]); //Squeezes the key squeeze(state, (unsigned char*)K, kLen); //==========================================================================/ //========================= Freeing the memory =============================// free(memMatrix); free(wholeMatrix); //Wiping out the sponge's internal state before freeing it memset(state, 0, 16 * sizeof (uint64_t)); free(state); //==========================================================================/ return 0; }
/** * Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords * whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits, * where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all * integer parameters, in the order they are provided (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols). * * @param K The derived key to be output by the algorithm * @param kLen Desired key length * @param pwd User password * @param pwdlen Password length * @param salt Salt * @param saltlen Salt length * @param timeCost Parameter to determine the processing time (T) * @param nRows Number or rows of the memory matrix (R) * @param nCols Number of columns of the memory matrix (C) * * @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation) */ int LYRA2(unsigned char *K, int kLen, const unsigned char *pwd, int pwdlen, const unsigned char *salt, int saltlen, int timeCost, int nRows, int nCols) { //============================= Basic variables ============================// int row = 2; //index of row to be processed int prev = 1; //index of prev (last row ever computed/modified) int rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked during Wandering) int tau; //Time Loop iterator int i; //auxiliary iteration counter //==========================================================================/ if (nRows < 3) return -1; //========== Initializing the Memory Matrix and pointers to it =============// //Allocates enough space for the whole memory matrix uint64_t *wholeMatrix = malloc(nRows * ROW_LEN_BYTES); if (wholeMatrix == NULL) { return -1; } //Allocates pointers to each row of the matrix uint64_t **memMatrix = malloc(nRows * sizeof (uint64_t*)); if (memMatrix == NULL) { return -1; } //Places the pointers in the correct positions uint64_t *ptrWord = wholeMatrix; for (i = 0; i < nRows; i++) { memMatrix[i] = ptrWord; ptrWord += ROW_LEN_INT64; } //==========================================================================/ //============= Getting the password + salt + basil padded with 10*1 ===============// //OBS.:The memory matrix will temporarily hold the password: not for saving memory, //but this ensures that the password copied locally will be overwritten as soon as possible //First, we clean enough blocks for the password, salt, basil and padding int nBlocksInput = ((saltlen + pwdlen + 6*sizeof(int)) / BLOCK_LEN_BYTES) + 1; byte *ptrByte = (byte*) wholeMatrix; memset(ptrByte, 0, nBlocksInput * BLOCK_LEN_BYTES); //Prepends the password memcpy(ptrByte, pwd, pwdlen); ptrByte += pwdlen; //Concatenates the salt memcpy(ptrByte, salt, saltlen); ptrByte += saltlen; //Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface memcpy(ptrByte, &kLen, sizeof(int)); ptrByte += sizeof(int); memcpy(ptrByte, &pwdlen, sizeof(int)); ptrByte += sizeof(int); memcpy(ptrByte, &saltlen, sizeof(int)); ptrByte += sizeof(int); memcpy(ptrByte, &timeCost, sizeof(int)); ptrByte += sizeof(int); memcpy(ptrByte, &nRows, sizeof(int)); ptrByte += sizeof(int); memcpy(ptrByte, &nCols, sizeof(int)); ptrByte += sizeof(int); //Now comes the padding *ptrByte = 0x80; //first byte of padding: right after the password ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix ptrByte += nBlocksInput * BLOCK_LEN_BYTES - 1; //sets the pointer to the correct position: end of incomplete block *ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block //==========================================================================/ //======================= Initializing the Sponge State ====================// //Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c) uint64_t *state = malloc(16 * sizeof (uint64_t)); if (state == NULL) { return -1; } initState(state); //==========================================================================/ //================================ Setup Phase =============================// //Absorbing salt, password and basil ptrWord = wholeMatrix; for (i = 0; i < nBlocksInput; i++) { absorbBlock(state, ptrWord); //absorbs each block of pad(pwd || salt || basil) ptrWord += BLOCK_LEN_INT64; //goes to next block of pad(pwd || salt || basil) } //Initializes M[0] and M[1] reducedSqueezeRow(state, memMatrix[0]); //The locally copied password is most likely overwritten here reducedSqueezeRow(state, memMatrix[1]); do { //M[row] = rand; //M[row*] = M[row*] XOR rotW(rand) reducedDuplexRowSetup(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); //updates the value of row* (deterministically picked during Setup)) rowa--; if (rowa < 0) { rowa = prev; } //update prev: it now points to the last row ever computed prev = row; //updates row: does to the next row to be computed row++; } while (row < nRows); //==========================================================================/ //============================ Wandering Phase =============================// int maxIndex = nRows - 1; for (tau = 1; tau <= timeCost; tau++) { //========= Iterations for an odd tau ========== row = maxIndex; //Odd iterations of the Wandering phase start with the last row ever computed prev = 0; //The companion "prev" is 0 do { //Selects a pseudorandom index row* //rowa = ((unsigned int)state[0] ^ prev) & maxIndex; //(USE THIS IF nRows IS A POWER OF 2) rowa = ((unsigned int) (state[0] ^ prev)) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); //Goes to the next row (inverse order) prev = row; row--; } while (row >= 0); if (++tau > timeCost) { break; //end of the Wandering phase } //========= Iterations for an even tau ========== row = 0; //Even iterations of the Wandering phase start with row = 0 prev = maxIndex; //The companion "prev" is the last row in the memory matrix do { //rowa = ((unsigned int)state[0] ^ prev) & maxIndex; //(USE THIS IF nRows IS A POWER OF 2) rowa = ((unsigned int) (state[0] ^ prev)) % nRows; //(USE THIS FOR THE "GENERIC" CASE) //Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row] reducedDuplexRow(state, memMatrix[prev], memMatrix[rowa], memMatrix[row]); //Goes to the next row (direct order) prev = row; row++; } while (row <= maxIndex); } //==========================================================================/ //============================ Wrap-up Phase ===============================// //Absorbs the last block of the memory matrix absorbBlock(state, memMatrix[rowa]); //Squeezes the key squeeze(state, K, kLen); //==========================================================================/ //========================= Freeing the memory =============================// free(memMatrix); free(wholeMatrix); //Wiping out the sponge's internal state before freeing it memset(state, 0, 16 * sizeof (uint64_t)); free(state); //==========================================================================/ return 0; }