Example #1
0
static acpi_status acpi_i2c_add_device(acpi_handle handle, u32 level,
				       void *data, void **return_value)
{
	struct i2c_adapter *adapter = data;
	struct list_head resource_list;
	struct i2c_board_info info;
	struct acpi_device *adev;
	int ret;

	if (acpi_bus_get_device(handle, &adev))
		return AE_OK;
	if (acpi_bus_get_status(adev) || !adev->status.present)
		return AE_OK;

	memset(&info, 0, sizeof(info));
	info.acpi_node.handle = handle;
	info.irq = -1;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list,
				     acpi_i2c_add_resource, &info);
	acpi_dev_free_resource_list(&resource_list);

	if (ret < 0 || !info.addr)
		return AE_OK;

	strlcpy(info.type, dev_name(&adev->dev), sizeof(info.type));
	if (!i2c_new_device(adapter, &info)) {
		dev_err(&adapter->dev,
			"failed to add I2C device %s from ACPI\n",
			dev_name(&adev->dev));
	}

	return AE_OK;
}
Example #2
0
static int acpi_get_rc_addr(struct acpi_device *adev, struct resource *res)
{
	struct device *dev = &adev->dev;
	struct resource_entry *entry;
	struct list_head list;
	unsigned long flags;
	int ret;

	INIT_LIST_HEAD(&list);
	flags = IORESOURCE_MEM;
	ret = acpi_dev_get_resources(adev, &list,
				     acpi_dev_filter_resource_type_cb,
				     (void *) flags);
	if (ret < 0) {
		dev_err(dev, "failed to parse _CRS method, error code %d\n",
			ret);
		return ret;
	}

	if (ret == 0) {
		dev_err(dev, "no IO and memory resources present in _CRS\n");
		return -EINVAL;
	}

	entry = list_first_entry(&list, struct resource_entry, node);
	*res = *entry->res;
	acpi_dev_free_resource_list(&list);
	return 0;
}
Example #3
0
static int inv_mpu_process_acpi_config(struct i2c_client *client,
				       unsigned short *primary_addr,
				       unsigned short *secondary_addr)
{
	const struct acpi_device_id *id;
	struct acpi_device *adev;
	u32 i2c_addr = 0;
	LIST_HEAD(resources);
	int ret;

	id = acpi_match_device(client->dev.driver->acpi_match_table,
			       &client->dev);
	if (!id)
		return -ENODEV;

	adev = ACPI_COMPANION(&client->dev);
	if (!adev)
		return -ENODEV;

	ret = acpi_dev_get_resources(adev, &resources,
				     acpi_i2c_check_resource, &i2c_addr);
	if (ret < 0)
		return ret;

	acpi_dev_free_resource_list(&resources);
	*primary_addr = i2c_addr & 0x0000ffff;
	*secondary_addr = (i2c_addr & 0xffff0000) >> 16;

	return 0;
}
/**
 * acpi_create_platform_device - Create platform device for ACPI device node
 * @adev: ACPI device node to create a platform device for.
 * @id: ACPI device ID used to match @adev.
 *
 * Check if the given @adev can be represented as a platform device and, if
 * that's the case, create and register a platform device, populate its common
 * resources and returns a pointer to it.  Otherwise, return %NULL.
 *
 * Name of the platform device will be the same as @adev's.
 */
int acpi_create_platform_device(struct acpi_device *adev,
				const struct acpi_device_id *id)
{
	struct platform_device *pdev = NULL;
	struct acpi_device *acpi_parent;
	struct platform_device_info pdevinfo;
	struct resource_list_entry *rentry;
	struct list_head resource_list;
	struct resource *resources = NULL;
	int count;

	/* If the ACPI node already has a physical device attached, skip it. */
	if (adev->physical_node_count)
		return 0;

	INIT_LIST_HEAD(&resource_list);
	count = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);

	if (count <= 0) {
		if (!acpi_dev_resource_gpio(adev))
			return 0;
		else
			goto create_dev;
	}

	resources = kmalloc(count * sizeof(struct resource), GFP_KERNEL);
	if (!resources) {
		dev_err(&adev->dev, "No memory for resources\n");
		acpi_dev_free_resource_list(&resource_list);
		return -ENOMEM;
	}
	count = 0;
	list_for_each_entry(rentry, &resource_list, node)
		resources[count++] = rentry->res;

	acpi_dev_free_resource_list(&resource_list);

create_dev:
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	/*
	 * If the ACPI node has a parent and that parent has a physical device
	 * attached to it, that physical device should be the parent of the
	 * platform device we are about to create.
	 */
	pdevinfo.parent = NULL;
	acpi_parent = adev->parent;
	if (acpi_parent) {
		struct acpi_device_physical_node *entry;
		struct list_head *list;

		mutex_lock(&acpi_parent->physical_node_lock);
		list = &acpi_parent->physical_node_list;
		if (!list_empty(list)) {
			entry = list_first_entry(list,
					struct acpi_device_physical_node,
					node);
			pdevinfo.parent = entry->dev;
		}
		mutex_unlock(&acpi_parent->physical_node_lock);
	}
Example #5
0
static void snd_byt_rt5651_mc_add_amp_en_gpio_mapping(struct device *codec)
{
	struct byt_rt5651_acpi_resource_data data = { 0, -1 };
	LIST_HEAD(resources);
	int ret;

	ret = acpi_dev_get_resources(ACPI_COMPANION(codec), &resources,
				     snd_byt_rt5651_acpi_resource, &data);
	if (ret < 0) {
		dev_warn(codec, "Failed to get ACPI resources, not adding external amplifier GPIO mapping\n");
		return;
	}

	/* All info we need is gathered during the walk */
	acpi_dev_free_resource_list(&resources);

	switch (data.gpio_int_idx) {
	case 0:
		devm_acpi_dev_add_driver_gpios(codec, byt_rt5651_amp_en_second);
		break;
	case 1:
		devm_acpi_dev_add_driver_gpios(codec, byt_rt5651_amp_en_first);
		break;
	default:
		dev_warn(codec, "Unknown GpioInt index %d, not adding external amplifier GPIO mapping\n",
			 data.gpio_int_idx);
	}
}
static int acpi_dev_resource_gpio(struct acpi_device *adev)
{
	int count = 0;
	int ret;
	struct list_head resource_list;

	if (!adev->handle)
		return count;

	INIT_LIST_HEAD(&resource_list);
	ret = acpi_dev_get_resources(adev, &resource_list, acpi_dev_gpio,
					&count);
	if (ret < 0)
		goto end;

	acpi_dev_free_resource_list(&resource_list);
end:
	return count;
}
Example #7
0
static void __iomem *crb_map_res(struct device *dev, struct crb_priv *priv,
				 struct resource *io_res, u64 start, u32 size)
{
	struct resource new_res = {
		.start	= start,
		.end	= start + size - 1,
		.flags	= IORESOURCE_MEM,
	};

	/* Detect a 64 bit address on a 32 bit system */
	if (start != new_res.start)
		return (void __iomem *) ERR_PTR(-EINVAL);

	if (!resource_contains(io_res, &new_res))
		return devm_ioremap_resource(dev, &new_res);

	return priv->iobase + (new_res.start - io_res->start);
}

static int crb_map_io(struct acpi_device *device, struct crb_priv *priv,
		      struct acpi_table_tpm2 *buf)
{
	struct list_head resources;
	struct resource io_res;
	struct device *dev = &device->dev;
	u64 cmd_pa;
	u32 cmd_size;
	u64 rsp_pa;
	u32 rsp_size;
	int ret;

	INIT_LIST_HEAD(&resources);
	ret = acpi_dev_get_resources(device, &resources, crb_check_resource,
				     &io_res);
	if (ret < 0)
		return ret;
	acpi_dev_free_resource_list(&resources);

	if (resource_type(&io_res) != IORESOURCE_MEM) {
		dev_err(dev,
			FW_BUG "TPM2 ACPI table does not define a memory resource\n");
		return -EINVAL;
	}

	priv->iobase = devm_ioremap_resource(dev, &io_res);
	if (IS_ERR(priv->iobase))
		return PTR_ERR(priv->iobase);

	priv->cca = crb_map_res(dev, priv, &io_res, buf->control_address,
				sizeof(struct crb_control_area));
	if (IS_ERR(priv->cca))
		return PTR_ERR(priv->cca);

	cmd_pa = ((u64) ioread32(&priv->cca->cmd_pa_high) << 32) |
		  (u64) ioread32(&priv->cca->cmd_pa_low);
	cmd_size = ioread32(&priv->cca->cmd_size);
	priv->cmd = crb_map_res(dev, priv, &io_res, cmd_pa, cmd_size);
	if (IS_ERR(priv->cmd))
		return PTR_ERR(priv->cmd);

	memcpy_fromio(&rsp_pa, &priv->cca->rsp_pa, 8);
	rsp_pa = le64_to_cpu(rsp_pa);
	rsp_size = ioread32(&priv->cca->rsp_size);

	if (cmd_pa != rsp_pa) {
		priv->rsp = crb_map_res(dev, priv, &io_res, rsp_pa, rsp_size);
		return PTR_ERR_OR_ZERO(priv->rsp);
	}

	/* According to the PTP specification, overlapping command and response
	 * buffer sizes must be identical.
	 */
	if (cmd_size != rsp_size) {
		dev_err(dev, FW_BUG "overlapping command and response buffer sizes are not identical");
		return -EINVAL;
	}

	priv->rsp = priv->cmd;
	return 0;
}

static int crb_acpi_add(struct acpi_device *device)
{
	struct acpi_table_tpm2 *buf;
	struct crb_priv *priv;
	struct device *dev = &device->dev;
	acpi_status status;
	u32 sm;
	int rc;

	status = acpi_get_table(ACPI_SIG_TPM2, 1,
				(struct acpi_table_header **) &buf);
	if (ACPI_FAILURE(status) || buf->header.length < sizeof(*buf)) {
		dev_err(dev, FW_BUG "failed to get TPM2 ACPI table\n");
		return -EINVAL;
	}

	/* Should the FIFO driver handle this? */
	sm = buf->start_method;
	if (sm == ACPI_TPM2_MEMORY_MAPPED)
		return -ENODEV;

	priv = devm_kzalloc(dev, sizeof(struct crb_priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	/* The reason for the extra quirk is that the PTT in 4th Gen Core CPUs
	 * report only ACPI start but in practice seems to require both
	 * ACPI start and CRB start.
	 */
	if (sm == ACPI_TPM2_COMMAND_BUFFER || sm == ACPI_TPM2_MEMORY_MAPPED ||
	    !strcmp(acpi_device_hid(device), "MSFT0101"))
		priv->flags |= CRB_FL_CRB_START;

	if (sm == ACPI_TPM2_START_METHOD ||
	    sm == ACPI_TPM2_COMMAND_BUFFER_WITH_START_METHOD)
		priv->flags |= CRB_FL_ACPI_START;

	rc = crb_map_io(device, priv, buf);
	if (rc)
		return rc;

	return crb_init(device, priv);
}

static int crb_acpi_remove(struct acpi_device *device)
{
	struct device *dev = &device->dev;
	struct tpm_chip *chip = dev_get_drvdata(dev);

	tpm_chip_unregister(chip);

	return 0;
}

static struct acpi_device_id crb_device_ids[] = {
	{"MSFT0101", 0},
	{"", 0},
};
MODULE_DEVICE_TABLE(acpi, crb_device_ids);

static struct acpi_driver crb_acpi_driver = {
	.name = "tpm_crb",
	.ids = crb_device_ids,
	.ops = {
		.add = crb_acpi_add,
		.remove = crb_acpi_remove,
	},
	.drv = {
		.pm = &crb_pm,
	},
};
Example #8
0
/**
 * acpi_create_platform_device - Create platform device for ACPI device node
 * @adev: ACPI device node to create a platform device for.
 *
 * Check if the given @adev can be represented as a platform device and, if
 * that's the case, create and register a platform device, populate its common
 * resources and returns a pointer to it.  Otherwise, return %NULL.
 *
 * Name of the platform device will be the same as @adev's.
 */
struct platform_device *acpi_create_platform_device(struct acpi_device *adev)
{
	struct platform_device *pdev = NULL;
	struct platform_device_info pdevinfo;
	struct resource_entry *rentry;
	struct list_head resource_list;
	struct resource *resources = NULL;
	int count;

	/* If the ACPI node already has a physical device attached, skip it. */
	if (adev->physical_node_count)
		return NULL;

	if (!acpi_match_device_ids(adev, forbidden_id_list))
		return ERR_PTR(-EINVAL);

	INIT_LIST_HEAD(&resource_list);
	count = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
	if (count < 0) {
		return NULL;
	} else if (count > 0) {
		resources = kmalloc(count * sizeof(struct resource),
				    GFP_KERNEL);
		if (!resources) {
			dev_err(&adev->dev, "No memory for resources\n");
			acpi_dev_free_resource_list(&resource_list);
			return ERR_PTR(-ENOMEM);
		}
		count = 0;
		list_for_each_entry(rentry, &resource_list, node)
			resources[count++] = *rentry->res;

		acpi_dev_free_resource_list(&resource_list);
	}

	memset(&pdevinfo, 0, sizeof(pdevinfo));
	/*
	 * If the ACPI node has a parent and that parent has a physical device
	 * attached to it, that physical device should be the parent of the
	 * platform device we are about to create.
	 */
	pdevinfo.parent = adev->parent ?
		acpi_get_first_physical_node(adev->parent) : NULL;
	pdevinfo.name = dev_name(&adev->dev);
	pdevinfo.id = -1;
	pdevinfo.res = resources;
	pdevinfo.num_res = count;
	pdevinfo.fwnode = acpi_fwnode_handle(adev);

	if (acpi_dma_supported(adev))
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
	else
		pdevinfo.dma_mask = 0;

	pdev = platform_device_register_full(&pdevinfo);
	if (IS_ERR(pdev))
		dev_err(&adev->dev, "platform device creation failed: %ld\n",
			PTR_ERR(pdev));
	else
		dev_dbg(&adev->dev, "created platform device %s\n",
			dev_name(&pdev->dev));

	kfree(resources);
	return pdev;
}
Example #9
0
static void __iomem *crb_map_res(struct device *dev, struct crb_priv *priv,
				 struct resource *io_res, u64 start, u32 size)
{
	struct resource new_res = {
		.start	= start,
		.end	= start + size - 1,
		.flags	= IORESOURCE_MEM,
	};

	/* Detect a 64 bit address on a 32 bit system */
	if (start != new_res.start)
		return (void __iomem *) ERR_PTR(-EINVAL);

	if (!resource_contains(io_res, &new_res))
		return devm_ioremap_resource(dev, &new_res);

	return priv->iobase + (new_res.start - io_res->start);
}

/*
 * Work around broken BIOSs that return inconsistent values from the ACPI
 * region vs the registers. Trust the ACPI region. Such broken systems
 * probably cannot send large TPM commands since the buffer will be truncated.
 */
static u64 crb_fixup_cmd_size(struct device *dev, struct resource *io_res,
			      u64 start, u64 size)
{
	if (io_res->start > start || io_res->end < start)
		return size;

	if (start + size - 1 <= io_res->end)
		return size;

	dev_err(dev,
		FW_BUG "ACPI region does not cover the entire command/response buffer. %pr vs %llx %llx\n",
		io_res, start, size);

	return io_res->end - start + 1;
}

static int crb_map_io(struct acpi_device *device, struct crb_priv *priv,
		      struct acpi_table_tpm2 *buf)
{
	struct list_head resources;
	struct resource io_res;
	struct device *dev = &device->dev;
	u32 pa_high, pa_low;
	u64 cmd_pa;
	u32 cmd_size;
	__le64 __rsp_pa;
	u64 rsp_pa;
	u32 rsp_size;
	int ret;

	INIT_LIST_HEAD(&resources);
	ret = acpi_dev_get_resources(device, &resources, crb_check_resource,
				     &io_res);
	if (ret < 0)
		return ret;
	acpi_dev_free_resource_list(&resources);

	if (resource_type(&io_res) != IORESOURCE_MEM) {
		dev_err(dev, FW_BUG "TPM2 ACPI table does not define a memory resource\n");
		return -EINVAL;
	}

	priv->iobase = devm_ioremap_resource(dev, &io_res);
	if (IS_ERR(priv->iobase))
		return PTR_ERR(priv->iobase);

	/* The ACPI IO region starts at the head area and continues to include
	 * the control area, as one nice sane region except for some older
	 * stuff that puts the control area outside the ACPI IO region.
	 */
	if ((priv->sm == ACPI_TPM2_COMMAND_BUFFER) ||
	    (priv->sm == ACPI_TPM2_MEMORY_MAPPED)) {
		if (buf->control_address == io_res.start +
		    sizeof(*priv->regs_h))
			priv->regs_h = priv->iobase;
		else
			dev_warn(dev, FW_BUG "Bad ACPI memory layout");
	}

	ret = __crb_request_locality(dev, priv, 0);
	if (ret)
		return ret;

	priv->regs_t = crb_map_res(dev, priv, &io_res, buf->control_address,
				   sizeof(struct crb_regs_tail));
	if (IS_ERR(priv->regs_t))
		return PTR_ERR(priv->regs_t);

	/*
	 * PTT HW bug w/a: wake up the device to access
	 * possibly not retained registers.
	 */
	ret = crb_cmd_ready(dev, priv);
	if (ret)
		return ret;

	pa_high = ioread32(&priv->regs_t->ctrl_cmd_pa_high);
	pa_low  = ioread32(&priv->regs_t->ctrl_cmd_pa_low);
	cmd_pa = ((u64)pa_high << 32) | pa_low;
	cmd_size = crb_fixup_cmd_size(dev, &io_res, cmd_pa,
				      ioread32(&priv->regs_t->ctrl_cmd_size));

	dev_dbg(dev, "cmd_hi = %X cmd_low = %X cmd_size %X\n",
		pa_high, pa_low, cmd_size);

	priv->cmd = crb_map_res(dev, priv, &io_res, cmd_pa, cmd_size);
	if (IS_ERR(priv->cmd)) {
		ret = PTR_ERR(priv->cmd);
		goto out;
	}

	memcpy_fromio(&__rsp_pa, &priv->regs_t->ctrl_rsp_pa, 8);
	rsp_pa = le64_to_cpu(__rsp_pa);
	rsp_size = crb_fixup_cmd_size(dev, &io_res, rsp_pa,
				      ioread32(&priv->regs_t->ctrl_rsp_size));

	if (cmd_pa != rsp_pa) {
		priv->rsp = crb_map_res(dev, priv, &io_res, rsp_pa, rsp_size);
		ret = PTR_ERR_OR_ZERO(priv->rsp);
		goto out;
	}

	/* According to the PTP specification, overlapping command and response
	 * buffer sizes must be identical.
	 */
	if (cmd_size != rsp_size) {
		dev_err(dev, FW_BUG "overlapping command and response buffer sizes are not identical");
		ret = -EINVAL;
		goto out;
	}

	priv->rsp = priv->cmd;

out:
	if (!ret)
		priv->cmd_size = cmd_size;

	crb_go_idle(dev, priv);

	__crb_relinquish_locality(dev, priv, 0);

	return ret;
}

static int crb_acpi_add(struct acpi_device *device)
{
	struct acpi_table_tpm2 *buf;
	struct crb_priv *priv;
	struct tpm_chip *chip;
	struct device *dev = &device->dev;
	struct tpm2_crb_smc *crb_smc;
	acpi_status status;
	u32 sm;
	int rc;

	status = acpi_get_table(ACPI_SIG_TPM2, 1,
				(struct acpi_table_header **) &buf);
	if (ACPI_FAILURE(status) || buf->header.length < sizeof(*buf)) {
		dev_err(dev, FW_BUG "failed to get TPM2 ACPI table\n");
		return -EINVAL;
	}

	/* Should the FIFO driver handle this? */
	sm = buf->start_method;
	if (sm == ACPI_TPM2_MEMORY_MAPPED)
		return -ENODEV;

	priv = devm_kzalloc(dev, sizeof(struct crb_priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	if (sm == ACPI_TPM2_COMMAND_BUFFER_WITH_ARM_SMC) {
		if (buf->header.length < (sizeof(*buf) + sizeof(*crb_smc))) {
			dev_err(dev,
				FW_BUG "TPM2 ACPI table has wrong size %u for start method type %d\n",
				buf->header.length,
				ACPI_TPM2_COMMAND_BUFFER_WITH_ARM_SMC);
			return -EINVAL;
		}
		crb_smc = ACPI_ADD_PTR(struct tpm2_crb_smc, buf, sizeof(*buf));
		priv->smc_func_id = crb_smc->smc_func_id;
	}

	priv->sm = sm;
	priv->hid = acpi_device_hid(device);

	rc = crb_map_io(device, priv, buf);
	if (rc)
		return rc;

	chip = tpmm_chip_alloc(dev, &tpm_crb);
	if (IS_ERR(chip))
		return PTR_ERR(chip);

	dev_set_drvdata(&chip->dev, priv);
	chip->acpi_dev_handle = device->handle;
	chip->flags = TPM_CHIP_FLAG_TPM2;

	rc = __crb_request_locality(dev, priv, 0);
	if (rc)
		return rc;

	rc  = crb_cmd_ready(dev, priv);
	if (rc)
		goto out;

	pm_runtime_get_noresume(dev);
	pm_runtime_set_active(dev);
	pm_runtime_enable(dev);

	rc = tpm_chip_register(chip);
	if (rc) {
		crb_go_idle(dev, priv);
		pm_runtime_put_noidle(dev);
		pm_runtime_disable(dev);
		goto out;
	}

	pm_runtime_put_sync(dev);

out:
	__crb_relinquish_locality(dev, priv, 0);

	return rc;
}

static int crb_acpi_remove(struct acpi_device *device)
{
	struct device *dev = &device->dev;
	struct tpm_chip *chip = dev_get_drvdata(dev);

	tpm_chip_unregister(chip);

	pm_runtime_disable(dev);

	return 0;
}

static int __maybe_unused crb_pm_runtime_suspend(struct device *dev)
{
	struct tpm_chip *chip = dev_get_drvdata(dev);
	struct crb_priv *priv = dev_get_drvdata(&chip->dev);

	return crb_go_idle(dev, priv);
}

static int __maybe_unused crb_pm_runtime_resume(struct device *dev)
{
	struct tpm_chip *chip = dev_get_drvdata(dev);
	struct crb_priv *priv = dev_get_drvdata(&chip->dev);

	return crb_cmd_ready(dev, priv);
}

static int __maybe_unused crb_pm_suspend(struct device *dev)
{
	int ret;

	ret = tpm_pm_suspend(dev);
	if (ret)
		return ret;

	return crb_pm_runtime_suspend(dev);
}