Example #1
0
static EjsArray *makeUnion(Ejs *ejs, EjsArray *lhs, EjsArray *rhs)
{
    EjsArray    *result;
    EjsObj      **l, **r;
    int         i;

    result = ejsCreateArray(ejs, 0);
    l = lhs->data;
    r = rhs->data;

    for (i = 0; i < lhs->length; i++) {
        addUnique(ejs, result, l[i]);
    }
    for (i = 0; i < rhs->length; i++) {
        addUnique(ejs, result, r[i]);
    }
    return result;
}
Example #2
0
/// @par
/// 
/// See the #rcConfig documentation for more information on the configuration parameters.
/// 
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
							  const int borderSize, const int walkableHeight,
							  rcHeightfieldLayerSet& lset)
{
	rcAssert(ctx);
	
	rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
	
	const int w = chf.width;
	const int h = chf.height;
	
	rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
	if (!srcReg)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
		return false;
	}
	memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
	
	const int nsweeps = chf.width;
	rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
	if (!sweeps)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
		return false;
	}
	
	
	// Partition walkable area into monotone regions.
	int prevCount[256];
	unsigned char regId = 0;

	for (int y = borderSize; y < h-borderSize; ++y)
	{
		memset(prevCount,0,sizeof(int)*regId);
		unsigned char sweepId = 0;
		
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;

				unsigned char sid = 0xff;

				// -x
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
						sid = srcReg[ai];
				}
				
				if (sid == 0xff)
				{
					sid = sweepId++;
					sweeps[sid].nei = 0xff;
					sweeps[sid].ns = 0;
				}
				
				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					const unsigned char nr = srcReg[ai];
					if (nr != 0xff)
					{
						// Set neighbour when first valid neighbour is encoutered.
						if (sweeps[sid].ns == 0)
							sweeps[sid].nei = nr;
						
						if (sweeps[sid].nei == nr)
						{
							// Update existing neighbour
							sweeps[sid].ns++;
							prevCount[nr]++;
						}
						else
						{
							// This is hit if there is nore than one neighbour.
							// Invalidate the neighbour.
							sweeps[sid].nei = 0xff;
						}
					}
				}
				
				srcReg[i] = sid;
			}
		}
		
		// Create unique ID.
		for (int i = 0; i < sweepId; ++i)
		{
			// If the neighbour is set and there is only one continuous connection to it,
			// the sweep will be merged with the previous one, else new region is created.
			if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				if (regId == 255)
				{
					ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
					return false;
				}
				sweeps[i].id = regId++;
			}
		}
		
		// Remap local sweep ids to region ids.
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] != 0xff)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	// Allocate and init layer regions.
	const int nregs = (int)regId;
	rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
	if (!regs)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
		return false;
	}
	memset(regs, 0, sizeof(rcLayerRegion)*nregs);
	for (int i = 0; i < nregs; ++i)
	{
		regs[i].layerId = 0xff;
		regs[i].ymin = 0xffff;
		regs[i].ymax = 0;
	}
	
	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			
			unsigned char lregs[RC_MAX_LAYERS];
			int nlregs = 0;
			
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned char ri = srcReg[i];
				if (ri == 0xff) continue;
				
				regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
				regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
				
				// Collect all region layers.
				if (nlregs < RC_MAX_LAYERS)
					lregs[nlregs++] = ri;
				
				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned char rai = srcReg[ai];
						if (rai != 0xff && rai != ri)
						{
							// Don't check return value -- if we cannot add the neighbor
							// it will just cause a few more regions to be created, which
							// is fine.
							addUnique(regs[ri].neis, regs[ri].nneis, RC_MAX_NEIS, rai);
						}
					}
				}
				
			}
			
			// Update overlapping regions.
			for (int i = 0; i < nlregs-1; ++i)
			{
				for (int j = i+1; j < nlregs; ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcLayerRegion& ri = regs[lregs[i]];
						rcLayerRegion& rj = regs[lregs[j]];

						if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, lregs[j]) ||
							!addUnique(rj.layers, rj.nlayers, RC_MAX_LAYERS, lregs[i]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}
				}
			}
			
		}
	}
	
	// Create 2D layers from regions.
	unsigned char layerId = 0;
	
	static const int MAX_STACK = 64;
	unsigned char stack[MAX_STACK];
	int nstack = 0;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& root = regs[i];
		// Skip already visited.
		if (root.layerId != 0xff)
			continue;

		// Start search.
		root.layerId = layerId;
		root.base = 1;
		
		nstack = 0;
		stack[nstack++] = (unsigned char)i;
		
		while (nstack)
		{
			// Pop front
			rcLayerRegion& reg = regs[stack[0]];
			nstack--;
			for (int j = 0; j < nstack; ++j)
				stack[j] = stack[j+1];
			
			const int nneis = (int)reg.nneis;
			for (int j = 0; j < nneis; ++j)
			{
				const unsigned char nei = reg.neis[j];
				rcLayerRegion& regn = regs[nei];
				// Skip already visited.
				if (regn.layerId != 0xff)
					continue;
				// Skip if the neighbour is overlapping root region.
				if (contains(root.layers, root.nlayers, nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(root.ymin, regn.ymin);
				const int ymax = rcMax(root.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					 continue;

				if (nstack < MAX_STACK)
				{
					// Deepen
					stack[nstack++] = (unsigned char)nei;
					
					// Mark layer id
					regn.layerId = layerId;
					// Merge current layers to root.
					for (int k = 0; k < regn.nlayers; ++k)
					{
						if (!addUnique(root.layers, root.nlayers, RC_MAX_LAYERS, regn.layers[k]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}
					root.ymin = rcMin(root.ymin, regn.ymin);
					root.ymax = rcMax(root.ymax, regn.ymax);
				}
			}
		}
		
		layerId++;
	}
	
	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
	
	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegion& ri = regs[i];
		if (!ri.base) continue;
		
		unsigned char newId = ri.layerId;
		
		for (;;)
		{
			unsigned char oldId = 0xff;
			
			for (int j = 0; j < nregs; ++j)
			{
				if (i == j) continue;
				rcLayerRegion& rj = regs[j];
				if (!rj.base) continue;
				
				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMax(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
				  continue;
						  
				// Make sure that there is no overlap when merging 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nregs; ++k)
				{
					if (regs[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (contains(ri.layers,ri.nlayers, (unsigned char)k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;
				
				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}
			
			// Could not find anything to merge with, stop.
			if (oldId == 0xff)
				break;
			
			// Merge
			for (int j = 0; j < nregs; ++j)
			{
				rcLayerRegion& rj = regs[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.nlayers; ++k)
					{
						if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, rj.layers[k]))
						{
							ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
							return false;
						}
					}

					// Update height bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}
	
	// Compact layerIds
	unsigned char remap[256];
	memset(remap, 0, 256);

	// Find number of unique layers.
	layerId = 0;
	for (int i = 0; i < nregs; ++i)
		remap[regs[i].layerId] = 1;
	for (int i = 0; i < 256; ++i)
	{
		if (remap[i])
			remap[i] = layerId++;
		else
			remap[i] = 0xff;
	}
	// Remap ids.
	for (int i = 0; i < nregs; ++i)
		regs[i].layerId = remap[regs[i].layerId];
	
	// No layers, return empty.
	if (layerId == 0)
		return true;
	
	// Create layers.
	rcAssert(lset.layers == 0);
	
	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;
	
	lset.nlayers = (int)layerId;
	
	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);

	
	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned char curId = (unsigned char)i;

		rcHeightfieldLayer* layer = &lset.layers[i];

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);
		
		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nregs; ++j)
		{
			if (regs[j].base && regs[j].layerId == curId)
			{
				hmin = (int)regs[j].ymin;
				hmax = (int)regs[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;
		
		// Adjust the bbox to fit the heightfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;
		
		// Copy height and area from compact heightfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0xff)
						continue;
					// Skip of does nto belong to current layer.
					unsigned char lid = regs[srcReg[j]].layerId;
					if (lid != curId)
						continue;
					
					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);
					
					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];
					
					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
									con |= (unsigned char)(1<<dir);
							}
						}
					}
					
					layer->cons[idx] = (portal << 4) | con;
				}
			}
		}
		
		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}
	
	return true;
}
Example #3
0
static bool CollectLayerRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, const int borderSize,
										unsigned short* srcReg, rcLayerRegionMonotone*& regs, int& nregs)
{
	const int w = chf.width;
	const int h = chf.height;

	const int nsweeps = chf.width;
	rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
	if (!sweeps)
	{
		ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
		return false;
	}

	// Partition walkable area into monotone regions.
	rcIntArray prev(256);
	unsigned short regId = 0;

	for (int y = borderSize; y < h-borderSize; ++y)
	{
		prev.resize(regId+1);
		memset(&prev[0],0,sizeof(int)*regId);
		unsigned short sweepId = 0;

		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];

			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				if (chf.areas[i] == RC_NULL_AREA) continue;

				unsigned short sid = 0xffff;

				// -x
				if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(0);
					const int ay = y + rcGetDirOffsetY(0);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
					if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xffff)
						sid = srcReg[ai];
				}

				if (sid == 0xffff)
				{
					sid = sweepId++;
					sweeps[sid].nei = 0xffff;
					sweeps[sid].ns = 0;
				}

				// -y
				if (rcGetCon(s,3) != RC_NOT_CONNECTED)
				{
					const int ax = x + rcGetDirOffsetX(3);
					const int ay = y + rcGetDirOffsetY(3);
					const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
					const unsigned short nr = srcReg[ai];
					if (nr != 0xffff)
					{
						// Set neighbour when first valid neighbour is encoutered.
						if (sweeps[sid].ns == 0)
							sweeps[sid].nei = nr;

						if (sweeps[sid].nei == nr)
						{
							// Update existing neighbour
							sweeps[sid].ns++;
							prev[nr]++;
						}
						else
						{
							// This is hit if there is nore than one neighbour.
							// Invalidate the neighbour.
							sweeps[sid].nei = 0xffff;
						}
					}
				}

				srcReg[i] = sid;
			}
		}

		// Create unique ID.
		for (int i = 0; i < sweepId; ++i)
		{
			// If the neighbour is set and there is only one continuous connection to it,
			// the sweep will be merged with the previous one, else new region is created.
			if (sweeps[i].nei != 0xffff && prev[sweeps[i].nei] == sweeps[i].ns)
			{
				sweeps[i].id = sweeps[i].nei;
			}
			else
			{
				sweeps[i].id = regId++;
			}
		}

		// Remap local sweep ids to region ids.
		for (int x = borderSize; x < w-borderSize; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				if (srcReg[i] != 0xffff)
					srcReg[i] = sweeps[srcReg[i]].id;
			}
		}
	}

	// Allocate and init layer regions.
	nregs = (int)regId;
	regs = (rcLayerRegionMonotone*)rcAlloc(sizeof(rcLayerRegionMonotone)*nregs, RC_ALLOC_TEMP);
	if (!regs)
	{
		ctx->log(RC_LOG_ERROR, "CollectLayerRegionsMonotone: Out of memory 'regs' (%d).", nregs);
		return false;
	}
	memset(regs, 0, sizeof(rcLayerRegionMonotone)*nregs);
	for (int i = 0; i < nregs; ++i)
	{
		regs[i].layerId = 0xffff;
		regs[i].ymin = 0xffff;
		regs[i].ymax = 0;
	}

	rcIntArray lregs(64);

	// Find region neighbours and overlapping regions.
	for (int y = 0; y < h; ++y)
	{
		for (int x = 0; x < w; ++x)
		{
			const rcCompactCell& c = chf.cells[x+y*w];
			lregs.resize(0);

			for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
			{
				const rcCompactSpan& s = chf.spans[i];
				const unsigned short ri = srcReg[i];
				if (ri == 0xffff) continue;

				regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
				regs[ri].ymax = rcMax(regs[ri].ymax, s.y);

				// Collect all region layers.
				lregs.push(ri);

				// Update neighbours
				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
					{
						const int ax = x + rcGetDirOffsetX(dir);
						const int ay = y + rcGetDirOffsetY(dir);
						const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
						const unsigned short rai = srcReg[ai];
						if (rai != 0xffff && rai != ri)
							addUnique(regs[ri].neis, rai);
					}
				}

			}

			// Update overlapping regions.
			const int nlregs = lregs.size();
			for (int i = 0; i < nlregs-1; ++i)
			{
				for (int j = i+1; j < nlregs; ++j)
				{
					if (lregs[i] != lregs[j])
					{
						rcLayerRegionMonotone& ri = regs[lregs[i]];
						rcLayerRegionMonotone& rj = regs[lregs[j]];
						addUnique(ri.layers, lregs[j]);
						addUnique(rj.layers, lregs[i]);
					}
				}
			}
		}
	}

	return true;
}
Example #4
0
static bool SplitAndStoreLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
									  const int borderSize, const int walkableHeight,
									  unsigned short* srcReg, rcLayerRegionMonotone* regs, const int nregs,
									  rcHeightfieldLayerSet& lset)
{
	// Create 2D layers from regions.
	unsigned short layerId = 0;

	rcIntArray stack(64);
	stack.resize(0);

	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegionMonotone& root = regs[i];
		// Skip already visited.
		if (root.layerId != 0xffff)
			continue;

		// Start search.
		root.layerId = layerId;
		root.base = 1;
		stack.push(i);

		while (stack.size())
		{
			// Pop front
			rcLayerRegionMonotone& reg = regs[stack[0]];
			for (int j = 1; j < stack.size(); ++j)
				stack[j - 1] = stack[j];
			stack.pop();

			const int nneis = (int)reg.neis.size();
			for (int j = 0; j < nneis; ++j)
			{
				const int nei = reg.neis[j];
				rcLayerRegionMonotone& regn = regs[nei];
				// Skip already visited.
				if (regn.layerId != 0xffff)
					continue;
				// Skip if the neighbour is overlapping root region.
				if (root.layers.contains(nei))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(root.ymin, regn.ymin);
				const int ymax = rcMin(root.ymax, regn.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// Deepen
				stack.push(nei);

				// Mark layer id
				regn.layerId = layerId;
				// Merge current layers to root.
				for (int k = 0; k < regn.layers.size(); ++k)
					addUnique(root.layers, regn.layers[k]);
				root.ymin = rcMin(root.ymin, regn.ymin);
				root.ymax = rcMax(root.ymax, regn.ymax);
			}
		}

		layerId++;
	}

	// Merge non-overlapping regions that are close in height.
	const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;

	for (int i = 0; i < nregs; ++i)
	{
		rcLayerRegionMonotone& ri = regs[i];
		if (!ri.base) continue;

		unsigned short newId = ri.layerId;

		for (;;)
		{
			unsigned short oldId = 0xffff;

			for (int j = 0; j < nregs; ++j)
			{
				if (i == j) continue;
				rcLayerRegionMonotone& rj = regs[j];
				if (!rj.base) continue;

				// Skip if the regions are not close to each other.
				if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
					continue;
				// Skip if the height range would become too large.
				const int ymin = rcMin(ri.ymin, rj.ymin);
				const int ymax = rcMin(ri.ymax, rj.ymax);
				if ((ymax - ymin) >= 255)
					continue;

				// Make sure that there is no overlap when mergin 'ri' and 'rj'.
				bool overlap = false;
				// Iterate over all regions which have the same layerId as 'rj'
				for (int k = 0; k < nregs; ++k)
				{
					if (regs[k].layerId != rj.layerId)
						continue;
					// Check if region 'k' is overlapping region 'ri'
					// Index to 'regs' is the same as region id.
					if (ri.layers.contains(k))
					{
						overlap = true;
						break;
					}
				}
				// Cannot merge of regions overlap.
				if (overlap)
					continue;

				// Can merge i and j.
				oldId = rj.layerId;
				break;
			}

			// Could not find anything to merge with, stop.
			if (oldId == 0xffff)
				break;

			// Merge
			for (int j = 0; j < nregs; ++j)
			{
				rcLayerRegionMonotone& rj = regs[j];
				if (rj.layerId == oldId)
				{
					rj.base = 0;
					// Remap layerIds.
					rj.layerId = newId;
					// Add overlaid layers from 'rj' to 'ri'.
					for (int k = 0; k < rj.layers.size(); ++k)
						addUnique(ri.layers, rj.layers[k]);
					// Update heigh bounds.
					ri.ymin = rcMin(ri.ymin, rj.ymin);
					ri.ymax = rcMax(ri.ymax, rj.ymax);
				}
			}
		}
	}

	// Compact layerIds
	layerId = 0;
	if (nregs < 256)
	{
		// Compact ids.
		unsigned short remap[256];
		memset(remap, 0, sizeof(unsigned short)*256);
		// Find number of unique regions.
		for (int i = 0; i < nregs; ++i)
			remap[regs[i].layerId] = 1;
		for (int i = 0; i < 256; ++i)
			if (remap[i])
				remap[i] = layerId++;
		// Remap ids.
		for (int i = 0; i < nregs; ++i)
			regs[i].layerId = remap[regs[i].layerId];
	}
	else
	{
		for (int i = 0; i < nregs; ++i)
			regs[i].remap = true;

		for (int i = 0; i < nregs; ++i)
		{
			if (!regs[i].remap)
				continue;
			unsigned short oldId = regs[i].layerId;
			unsigned short newId = ++layerId;
			for (int j = i; j < nregs; ++j)
			{
				if (regs[j].layerId == oldId)
				{
					regs[j].layerId = newId;
					regs[j].remap = false;
				}
			}
		}
	}

	// No layers, return empty.
	if (layerId == 0)
	{
		ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
		return true;
	}

	// Create layers.
	rcAssert(lset.layers == 0);

	const int w = chf.width;
	const int h = chf.height;
	const int lw = w - borderSize*2;
	const int lh = h - borderSize*2;

	// Build contracted bbox for layers.
	float bmin[3], bmax[3];
	rcVcopy(bmin, chf.bmin);
	rcVcopy(bmax, chf.bmax);
	bmin[0] += borderSize*chf.cs;
	bmin[2] += borderSize*chf.cs;
	bmax[0] -= borderSize*chf.cs;
	bmax[2] -= borderSize*chf.cs;

	lset.nlayers = (int)layerId;

	lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
	if (!lset.layers)
	{
		ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'layers' (%d).", lset.nlayers);
		return false;
	}
	memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);


	// Store layers.
	for (int i = 0; i < lset.nlayers; ++i)
	{
		unsigned short curId = (unsigned short)i;

		// Allocate memory for the current layer.
		rcHeightfieldLayer* layer = &lset.layers[i];
		memset(layer, 0, sizeof(rcHeightfieldLayer));

		const int gridSize = sizeof(unsigned char)*lw*lh;

		layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->heights)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'heights' (%d).", gridSize);
			return false;
		}
		memset(layer->heights, 0xff, gridSize);

		layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->areas)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'areas' (%d).", gridSize);
			return false;
		}
		memset(layer->areas, 0, gridSize);

		layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
		if (!layer->cons)
		{
			ctx->log(RC_LOG_ERROR, "SplitAndStoreLayerRegions: Out of memory 'cons' (%d).", gridSize);
			return false;
		}
		memset(layer->cons, 0, gridSize);

		// Find layer height bounds.
		int hmin = 0, hmax = 0;
		for (int j = 0; j < nregs; ++j)
		{
			if (regs[j].base && regs[j].layerId == curId)
			{
				hmin = (int)regs[j].ymin;
				hmax = (int)regs[j].ymax;
			}
		}

		layer->width = lw;
		layer->height = lh;
		layer->cs = chf.cs;
		layer->ch = chf.ch;

		// Adjust the bbox to fit the heighfield.
		rcVcopy(layer->bmin, bmin);
		rcVcopy(layer->bmax, bmax);
		layer->bmin[1] = bmin[1] + hmin*chf.ch;
		layer->bmax[1] = bmin[1] + hmax*chf.ch;
		layer->hmin = hmin;
		layer->hmax = hmax;

		// Update usable data region.
		layer->minx = layer->width;
		layer->maxx = 0;
		layer->miny = layer->height;
		layer->maxy = 0;

		// Copy height and area from compact heighfield. 
		for (int y = 0; y < lh; ++y)
		{
			for (int x = 0; x < lw; ++x)
			{
				const int cx = borderSize+x;
				const int cy = borderSize+y;
				const rcCompactCell& c = chf.cells[cx+cy*w];
				for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
				{
					const rcCompactSpan& s = chf.spans[j];
					// Skip unassigned regions.
					if (srcReg[j] == 0xffff)
						continue;
					// Skip of does nto belong to current layer.
					unsigned short lid = regs[srcReg[j]].layerId;
					if (lid != curId)
						continue;

					// Update data bounds.
					layer->minx = rcMin(layer->minx, x);
					layer->maxx = rcMax(layer->maxx, x);
					layer->miny = rcMin(layer->miny, y);
					layer->maxy = rcMax(layer->maxy, y);

					// Store height and area type.
					const int idx = x+y*lw;
					layer->heights[idx] = (unsigned char)(s.y - hmin);
					layer->areas[idx] = chf.areas[j];

					// Check connection.
					unsigned char portal = 0;
					unsigned char con = 0;
					for (int dir = 0; dir < 4; ++dir)
					{
						if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
						{
							const int ax = cx + rcGetDirOffsetX(dir);
							const int ay = cy + rcGetDirOffsetY(dir);
							const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
							unsigned short alid = srcReg[ai] != 0xffff ? regs[srcReg[ai]].layerId : 0xffff;
							// Portal mask
							if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
							{
								portal |= (unsigned char)(1<<dir);
								// Update height so that it matches on both sides of the portal.
								const rcCompactSpan& as = chf.spans[ai];
								if (as.y > hmin)
									layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
							}
							// Valid connection mask
							if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
							{
								const int nx = ax - borderSize;
								const int ny = ay - borderSize;
								if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
								{
									con |= (unsigned char)(1 << dir);

									// [UE4: make sure that connections are bidirectional, otherwise contour tracing will stuck in infinite loop]
									const int nidx = nx + (ny * lw);
									layer->cons[nidx] |= (unsigned char)(1 << ((dir + 2) % 4));
								}
							}
						}
					}

					layer->cons[idx] |= (portal << 4) | con;
				}
			}
		}

		if (layer->minx > layer->maxx)
			layer->minx = layer->maxx = 0;
		if (layer->miny > layer->maxy)
			layer->miny = layer->maxy = 0;
	}

	return true;
}
Example #5
0
// All roots returned in interval [0,1]. Assumed geometry followed a linear
// trajectory between x and xnew. 
void getCoplanarityTimes( const Vec3& x0, const Vec3& x1, const Vec3& x2, const Vec3& x3,
        const Vec3& xnew0, const Vec3& xnew1, const Vec3& xnew2, const Vec3& xnew3,
        double* times, double* errors, unsigned &num_times )
{
    const double tol = 1e-8;
    num_times = 0;

    // cubic coefficients, A*t^3+B*t^2+C*t+D (for t in [0,1])
    const Vec3 x03 = x0 - x3;
    const Vec3 x13 = x1 - x3;
    const Vec3 x23 = x2 - x3;
    const Vec3 v03 = ( xnew0 - xnew3 ) - x03;
    const Vec3 v13 = ( xnew1 - xnew3 ) - x13;
    const Vec3 v23 = ( xnew2 - xnew3 ) - x23;

    double A = triple( v03, v13, v23 );
    double B = triple( x03, v13, v23 ) + triple( v03, x13, v23 ) + triple( v03, v13, x23 );
    double C = triple( x03, x13, v23 ) + triple( x03, v13, x23 ) + triple( v03, x13, x23 );
    double D = triple( x03, x13, x23 );

    const double convergence_tol = tol
            * ( std::fabs( A ) + std::fabs( B ) + std::fabs( C ) + std::fabs( D ) );

    // find intervals to check, or just solve it if it reduces to a quadratic =============================
    double interval_times[4];
    unsigned interval_times_size = 0;

    double discriminant = B * B - 3 * A * C; // of derivative of cubic, 3*A*t^2+2*B*t+C, divided by 4 for convenience
    if ( discriminant <= 0 )
    { // monotone cubic: only one root in [0,1] possible
      // so we just
        interval_times[0] = 0;
        interval_times[1] = 1;
        interval_times_size = 2;
    }
    else
    { // positive discriminant, B!=0
        if ( A == 0 )
        { // the cubic is just a quadratic, B*t^2+C*t+D ========================================
            discriminant = C * C - 4 * B * D; // of the quadratic
            if ( discriminant <= 0 )
            {
                double t = -C / ( 2 * B );
                if ( t >= -tol && t <= 1 + tol )
                {
                    t = clamp( t, 0., 1. );
                    double val = std::fabs(
                            signed_volume( ( 1 - t ) * x0 + t * xnew0, ( 1 - t ) * x1 + t * xnew1,
                                    ( 1 - t ) * x2 + t * xnew2, ( 1 - t ) * x3 + t * xnew3 ) );
                    if ( val < convergence_tol )
                    {
                        times[num_times++] = t;
                    }
                }
            }
            else
            { // two separate real roots
                double t0, t1;
                if ( C > 0 )
                    t0 = ( -C - std::sqrt( discriminant ) ) / ( 2 * B );
                else
                    t0 = ( -C + std::sqrt( discriminant ) ) / ( 2 * B );
                t1 = D / ( B * t0 );
                if ( t1 < t0 )
                    std::swap( t0, t1 );
                if ( t0 >= -tol && t0 <= 1 + tol )
                {
                    times[num_times++] = clamp( t0, 0., 1. );
                }
                if ( t1 >= -tol && t1 <= 1 + tol )
                {
                    addUnique( times, num_times, clamp( t1, 0., 1. ) );
                }
            }

            if ( errors )
            {
                for ( unsigned i = 0; i < num_times; ++i )
                {
                    double ti = times[i];
                    double val = std::fabs(
                            signed_volume( ( 1 - ti ) * x0 + ti * xnew0,
                                    ( 1 - ti ) * x1 + ti * xnew1, ( 1 - ti ) * x2 + ti * xnew2,
                                    ( 1 - ti ) * x3 + ti * xnew3 ) );
                    errors[i] = val;
                }
            }

            return;
        }
        else
        { // cubic is not monotone: divide up [0,1] accordingly =====================================
            double t0, t1;
            if ( B > 0 )
                t0 = ( -B - std::sqrt( discriminant ) ) / ( 3 * A );
            else
                t0 = ( -B + std::sqrt( discriminant ) ) / ( 3 * A );
            t1 = C / ( 3 * A * t0 );
            if ( t1 < t0 )
                std::swap( t0, t1 );

            interval_times[interval_times_size++] = 0;
            if ( t0 > 0 && t0 < 1 )
                interval_times[interval_times_size++] = t0;
            if ( t1 > 0 && t1 < 1 )
                interval_times[interval_times_size++] = t1;

            interval_times[interval_times_size++] = 1;
        }
    }

    // look for roots in indicated intervals ==============================================================
    // evaluate coplanarity more accurately at each endpoint of the intervals
    double interval_values[interval_times_size];
    for ( unsigned int i = 0; i < interval_times_size; ++i )
    {
        double t = interval_times[i];
        interval_values[i] = signed_volume( ( 1 - t ) * x0 + t * xnew0, ( 1 - t ) * x1 + t * xnew1,
                ( 1 - t ) * x2 + t * xnew2, ( 1 - t ) * x3 + t * xnew3 );
    }
    // first look for interval endpoints that are close enough to zero, without a sign change
    for ( unsigned int i = 0; i < interval_times_size; ++i )
    {
        if ( interval_values[i] == 0 )
        {
            times[num_times++] = interval_times[i];
        }
        else if ( std::fabs( interval_values[i] ) < convergence_tol )
        {
            if ( ( i == 0 || ( interval_values[i - 1] >= 0 && interval_values[i] >= 0 )
                    || ( interval_values[i - 1] <= 0 && interval_values[i] <= 0 ) )
                    && ( i == interval_times_size - 1
                            || ( interval_values[i + 1] >= 0 && interval_values[i] >= 0 )
                            || ( interval_values[i + 1] <= 0 && interval_values[i] <= 0 ) ) )
            {
                times[num_times++] = interval_times[i];
            }
        }
    }
    // and then search in intervals with a sign change
    for ( unsigned int i = 1; i < interval_times_size; ++i )
    {
        double tlo = interval_times[i - 1], thi = interval_times[i], tmid;
        double vlo = interval_values[i - 1], vhi = interval_values[i], vmid;
        if ( ( vlo < 0 && vhi > 0 ) || ( vlo > 0 && vhi < 0 ) )
        {
            // start off with secant approximation (in case the cubic is actually linear)
            double alpha = vhi / ( vhi - vlo );
            tmid = alpha * tlo + ( 1 - alpha ) * thi;
            for ( int iteration = 0; iteration < 50; ++iteration )
            {
                vmid = signed_volume( ( 1 - tmid ) * x0 + tmid * xnew0,
                        ( 1 - tmid ) * x1 + tmid * xnew1, ( 1 - tmid ) * x2 + tmid * xnew2,
                        ( 1 - tmid ) * x3 + tmid * xnew3 );
                if ( std::fabs( vmid ) < 1e-2 * convergence_tol )
                    break;
                if ( ( vlo < 0 && vmid > 0 ) || ( vlo > 0 && vmid < 0 ) )
                { // if sign change between lo and mid
                    thi = tmid;
                    vhi = vmid;
                }
                else
                { // otherwise sign change between hi and mid
                    tlo = tmid;
                    vlo = vmid;
                }
                if ( iteration % 2 )
                    alpha = 0.5; // sometimes go with bisection to guarantee we make progress
                else
                    alpha = vhi / ( vhi - vlo ); // other times go with secant to hopefully get there fast
                tmid = alpha * tlo + ( 1 - alpha ) * thi;
            }
            times[num_times++] = tmid;
        }
    }
    sort( times, num_times );

    if ( errors )
    {
        for ( unsigned i = 0; i < num_times; ++i )
        {
            double ti = times[i];
            double val = std::fabs(
                    signed_volume( ( 1 - ti ) * x0 + ti * xnew0, ( 1 - ti ) * x1 + ti * xnew1,
                            ( 1 - ti ) * x2 + ti * xnew2, ( 1 - ti ) * x3 + ti * xnew3 ) );
            errors[i] = val;
        }
    }
}
Example #6
0
void setUnique(complex arr[], int i, int j, int stats[]){
	stats[UNIQUES_GENERATED] += addUnique(arr, i, j, stats);
}
Example #7
0
KService::List KServiceType::offers(const QString &_servicetype)
{
    QDict< KService > dict(53);
    KService::List lst;

    // Services associated directly with this servicetype (the normal case)
    KServiceType::Ptr serv = KServiceTypeFactory::self()->findServiceTypeByName(_servicetype);
    if(serv)
        addUnique(lst, dict, KServiceFactory::self()->offers(serv->offset()), false);
    else
        kdWarning(7009) << "KServiceType::offers : servicetype " << _servicetype << " not found" << endl;

    // Find services associated with any mimetype parents. e.g. text/x-java -> text/plain
    KMimeType::Ptr mime = dynamic_cast< KMimeType * >(static_cast< KServiceType * >(serv));
    bool isAMimeType = (mime != 0);
    if(mime)
    {
        while(true)
        {
            QString parent = mime->parentMimeType();
            if(parent.isEmpty())
                break;
            mime = dynamic_cast< KMimeType * >(KServiceTypeFactory::self()->findServiceTypeByName(parent));
            if(!mime)
                break;

            addUnique(lst, dict, KServiceFactory::self()->offers(mime->offset()), false);
        }
    }
    serv = mime = 0;

    // QValueListIterator<KService::Ptr> it = lst.begin();
    // for( ; it != lst.end(); ++it )
    //    kdDebug() << (*it).data() << " " << (*it)->name() << endl;

    // Support for all/* is deactivated by KServiceTypeProfile::configurationMode()
    // (and makes no sense when querying for an "all" servicetype itself
    // nor for non-mimetypes service types)
    if(!KServiceTypeProfile::configurationMode() && isAMimeType && _servicetype.left(4) != "all/")
    {
        // Support for services associated with "all"
        KServiceType *servAll = KServiceTypeFactory::self()->findServiceTypeByName("all/all");
        if(servAll)
        {
            addUnique(lst, dict, KServiceFactory::self()->offers(servAll->offset()), true);
        }
        else
            kdWarning(7009) << "KServiceType::offers : servicetype all/all not found" << endl;
        delete servAll;

        // Support for services associated with "allfiles"
        if(_servicetype != "inode/directory" && _servicetype != "inode/directory-locked")
        {
            KServiceType *servAllFiles = KServiceTypeFactory::self()->findServiceTypeByName("all/allfiles");
            if(servAllFiles)
            {
                addUnique(lst, dict, KServiceFactory::self()->offers(servAllFiles->offset()), true);
            }
            else
                kdWarning(7009) << "KServiceType::offers : servicetype all/allfiles not found" << endl;
            delete servAllFiles;
        }
    }

    return lst;
}