Example #1
0
File: main.c Project: barug/Epitech
int		main(int argc, char **argv)
{
  int		height;
  int		width;
  t_maze	**maze;

  if (argc < 4)
    {
      printf("usage: ./generator [height] [width] [name]\n");
      return (0);
    }
  height = atoi(argv[1]);
  width = atoi(argv[2]);
  if (width < 5 || height < 5)
    {
      my_printf("values must be > 5\n");
      return (0);
    }
  srand(time(NULL));
  maze = pre_generator(height, width);
  generator(maze, height, width);
  imperfect_gen(height, width, maze);
  if ((height % 2) == 0 || (width % 2) == 0)
    add_solution(maze, height, width);
  if (write_maze_to_file(maze, argv[3], width) == -1)
    return (-1);
  return (0);
}
int put_queen_brute(int nb_queen, char board[8][8], int possibility, solution **s, options *op) {
  int posy = 0;
  int posx = 0;

  for (; posy < 8; ++posy) {
    for (posx = 0; posx < 8; ++posx) {
      if (!board[posy][posx]) {
	set_queen(nb_queen, board, posx, posy);
	if (nb_queen == 8) {
	  if (add_solution(board, s)) {
	    possibility += 1;
	    print_board(board, possibility, op);
	    if (possibility == 92 && op->stop_before_end)
	      op->end = 1;
	  }
	}
	else
	  possibility = put_queen_brute(nb_queen + 1, board, possibility, s, op);
	unset_queen(nb_queen, board);
	if (op->end)
	  return possibility;
      }
    }
  }
  return possibility;
}
Example #3
0
void
ColumnMajorMatrixTest::addMatrixScalar()
{
  ColumnMajorMatrix add_solution(3, 3);

  add_solution(0, 0) = 11;
  add_solution(1, 0) = 12;
  add_solution(2, 0) = 13;
  add_solution(0, 1) = 14;
  add_solution(1, 1) = 15;
  add_solution(2, 1) = 16;
  add_solution(0, 2) = 17;
  add_solution(1, 2) = 18;
  add_solution(2, 2) = 19;

  CPPUNIT_ASSERT(add_solution == *a + 10);
}
Example #4
0
File: step.c Project: AkaBlood/ogs5
/* ---------------------------------------------------------------------- */
int
add_mix (struct mix *mix_ptr)
/* ---------------------------------------------------------------------- */
{
/*
 *   calls add_solution to accumulate all data in master->totals
 *   and other variables.
 */
  int i;
  int n;
  LDBLE sum_fractions, intensive, extensive;
  struct solution *solution_ptr;
  int count_positive;
  LDBLE sum_positive;

  if (mix_ptr == NULL)
    return (OK);
  if (mix_ptr->count_comps <= 0)
    return (OK);
  sum_fractions = 0.0;
  sum_positive = 0.0;
  count_positive = 0;
  for (i = 0; i < mix_ptr->count_comps; i++)
  {
    sum_fractions += mix_ptr->comps[i].fraction;
    if (mix_ptr->comps[i].fraction > 0)
    {
      sum_positive += mix_ptr->comps[i].fraction;
      count_positive++;
    }
  }
  for (i = 0; i < mix_ptr->count_comps; i++)
  {
    solution_ptr = solution_bsearch (mix_ptr->comps[i].n_solution, &n, TRUE);
    if (solution_ptr == NULL)
    {
      input_error++;
      continue;
    }
    extensive = mix_ptr->comps[i].fraction;
    intensive = extensive / sum_fractions;
    if (count_positive < mix_ptr->count_comps)
    {
      if (mix_ptr->comps[i].fraction > 0)
      {
	intensive = extensive / sum_positive;
      }
      else
      {
	intensive = 0;
      }
    }
    add_solution (solution_ptr, extensive, intensive);
  }
  return (OK);
}
Example #5
0
void
ColumnMajorMatrixTest::addMatrixScalarEquals()
{
  ColumnMajorMatrix add_solution(3, 3);

  add_solution(0, 0) = 11;
  add_solution(1, 0) = 12;
  add_solution(2, 0) = 13;
  add_solution(0, 1) = 14;
  add_solution(1, 1) = 15;
  add_solution(2, 1) = 16;
  add_solution(0, 2) = 17;
  add_solution(1, 2) = 18;
  add_solution(2, 2) = 19;

  // Scalar add and update
  *a += 10;
  CPPUNIT_ASSERT(add_solution == *a);
}
Example #6
0
File: main.c Project: zydeon/mosal
void align(){

	int k, i, j, match, last_match = NEG_INF, r, s, t;

	if( M==N ){			// possible solution with no indels
		printf("%d %d\n", R1[M][N], 0);
		last_match = R1[M][N];
	}


	for( k = 1; k <= K; ++k ){
		init_base_cases(k);

		for( i = 1; i <= M; ++i ){
			for( j = 1; j <= N; ++j ){

				match = seq1[i-1] == seq2[j-1];	

				// do not allow the value of 'match' to make it possible from NEG_INF
				r = R2[i-1][j-1] + match *(R2[i-1][j-1]!=NEG_INF);
				s = S2[i-1][j-1] + match *(S2[i-1][j-1]!=NEG_INF);
				t = T2[i-1][j-1] + match *(T2[i-1][j-1]!=NEG_INF);
				
				R2[i][j] = max( r, s, t );
				S2[i][j] = max( R1[i][j-1], S2[i][j-1], T1[i][j-1] );
				T2[i][j] = max( R1[i-1][j], S1[i-1][j], T2[i-1][j] );		
			}
		}
		
		// add to the solution set
		add_solution( &last_match , k);

		swap_tables( &R1, &R2 );
		swap_tables( &S1, &S2 );
		swap_tables( &T1, &T2 );
	}
	fclose(f_out);
}
Example #7
0
File: step.c Project: AkaBlood/ogs5
/* ---------------------------------------------------------------------- */
int
P_step (LDBLE step_fraction)
/* ---------------------------------------------------------------------- */
{
/*
 *   zero global solution, add solution or mixture, add exchange,
 *   add surface, add gas phase, add solid solutions,
 *   set temperature, and add reaction. 
 *   Ensure all elements
 *   included in any of these are present in small amounts.
 *   Save result as n_user -1.
 */
  LDBLE difftemp;
  int step_number;
  struct pp_assemblage *pp_assemblage_save = NULL;
  struct s_s_assemblage *s_s_assemblage_save = NULL;

  if (svnid == NULL)
    fprintf (stderr, " ");

/*
 *   Zero out global solution data
 */

  xsolution_zero ();
/*
 *   Set reaction to zero
 */
  step_x = 0.0;
  step_number = reaction_step;
/*
 *   Mixing or solution
 */
  if (use.mix_ptr != NULL)
  {
    add_mix (use.mix_ptr);
  }
  else if (use.solution_ptr != NULL)
  {
    add_solution (use.solution_ptr, 1.0, 1.0);
  }
  else
  {
    input_error++;
    error_msg ("Neither mixing nor an initial solution have "
	       "been defined in reaction step.", STOP);
  }
/*
 *   Reaction
 */
  if (use.irrev_ptr != NULL)
  {
    add_reaction (use.irrev_ptr, step_number, step_fraction);
  }
/*
 *   Kinetics
 */
  if (use.kinetics_ptr != NULL)
  {
    add_kinetics (use.kinetics_ptr);
    /*
       master_ptr =master_bsearch("S(6)");
       output_msg(OUTPUT_MESSAGE,"Added kinetics, S(6) %e\n", master_ptr->total);
       master_ptr =master_bsearch("S");
       output_msg(OUTPUT_MESSAGE,"Added kinetics, S %e\n", master_ptr->total);
     */
  }
/*
 *   Exchange
 */
  if (use.exchange_ptr != NULL)
  {
    add_exchange (use.exchange_ptr);
  }
/*
 *   Surface
 */
  if (use.surface_ptr != NULL)
  {
    add_surface (use.surface_ptr);
  }
/*
 *   Gases
 */
  if (use.gas_phase_ptr != NULL)
  {
    add_gas_phase (use.gas_phase_ptr);
  }
/*
 *   Temperature
 */
  if (use.temperature_ptr != NULL)
  {
    add_temperature (use.temperature_ptr, step_number);
  }
  if ((state == TRANSPORT) && (transport_step != 0) &&
      (cell > 0) && (cell != count_cells + 1))
  {
    difftemp = tc_x - cell_data[cell - 1].temp;
    cell_data[cell - 1].temp += difftemp / tempr;
    tc_x = cell_data[cell - 1].temp;
  }
/*
 *   Pure phases and solid solutions are added to avoid
 *   zero or negative concentrations
 */
/*
 *   Pure phases
 */
  if (use.pp_assemblage_ptr != NULL)
  {
    pp_assemblage_save =
      (struct pp_assemblage *) PHRQ_malloc (sizeof (struct pp_assemblage));
    if (pp_assemblage_save == NULL)
      malloc_error ();
    pp_assemblage_copy (use.pp_assemblage_ptr, pp_assemblage_save,
			use.pp_assemblage_ptr->n_user);
    add_pp_assemblage (use.pp_assemblage_ptr);
  }
/*
 *   Solid solutions
 */
  if (use.s_s_assemblage_ptr != NULL)
  {
    s_s_assemblage_save =
      (struct s_s_assemblage *) PHRQ_malloc (sizeof (struct s_s_assemblage));
    if (s_s_assemblage_save == NULL)
      malloc_error ();
    s_s_assemblage_copy (use.s_s_assemblage_ptr, s_s_assemblage_save,
			 use.s_s_assemblage_ptr->n_user);
    add_s_s_assemblage (use.s_s_assemblage_ptr);
  }
/*
 *   Check that elements are available for gas components,
 *   pure phases, and solid solutions
 */
  if (use.gas_phase_ptr != NULL)
  {
    gas_phase_check (use.gas_phase_ptr);
  }
  if (use.pp_assemblage_ptr != NULL)
  {
    pp_assemblage_check (use.pp_assemblage_ptr);
  }
  if (use.s_s_assemblage_ptr != NULL)
  {
    s_s_assemblage_check (use.s_s_assemblage_ptr);
  }
/*
 *   Check that element moles are >= zero
 */
  if (solution_check () == MASS_BALANCE)
  {
    /* reset moles and deltas */
    if (use.pp_assemblage_ptr != NULL)
    {
      pp_assemblage_free (use.pp_assemblage_ptr);
      pp_assemblage_copy (pp_assemblage_save, use.pp_assemblage_ptr,
			  use.pp_assemblage_ptr->n_user);
      pp_assemblage_free (pp_assemblage_save);
      pp_assemblage_save =
	(struct pp_assemblage *) free_check_null (pp_assemblage_save);
    }
    if (use.s_s_assemblage_ptr != NULL)
    {
      s_s_assemblage_free (use.s_s_assemblage_ptr);
      s_s_assemblage_copy (s_s_assemblage_save, use.s_s_assemblage_ptr,
			   use.s_s_assemblage_ptr->n_user);
      s_s_assemblage_free (s_s_assemblage_save);
      s_s_assemblage_save =
	(struct s_s_assemblage *) free_check_null (s_s_assemblage_save);
    }
    return (MASS_BALANCE);
  }
/*
 *   Copy global into solution n_user = -1
 */
  xsolution_save (-1);
  step_save_surf (-1);
  step_save_exch (-1);
/*
 *   Clean up temporary space
 */
  if (pp_assemblage_save != NULL)
  {
    pp_assemblage_free (pp_assemblage_save);
    pp_assemblage_save =
      (struct pp_assemblage *) free_check_null (pp_assemblage_save);
  }
  if (s_s_assemblage_save != NULL)
  {
    s_s_assemblage_free (s_s_assemblage_save);
    s_s_assemblage_save =
      (struct s_s_assemblage *) free_check_null (s_s_assemblage_save);
  }
  return (OK);
}
Example #8
0
/* Look for all integer points in "bset", which is assumed to be bounded,
 * and call callback->add on each of them.
 *
 * We first compute a reduced basis for the set and then scan
 * the set in the directions of this basis.
 * We basically perform a depth first search, where in each level i
 * we compute the range in the i-th basis vector direction, given
 * fixed values in the directions of the previous basis vector.
 * We then add an equality to the tableau fixing the value in the
 * direction of the current basis vector to each value in the range
 * in turn and then continue to the next level.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 * Solutions are added in the leaves of the search tree, i.e., after
 * we have fixed a value in each direction of the basis.
 */
int isl_basic_set_scan(struct isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	unsigned dim;
	struct isl_mat *B = NULL;
	struct isl_tab *tab = NULL;
	struct isl_vec *min;
	struct isl_vec *max;
	struct isl_tab_undo **snap;
	int level;
	int init;
	enum isl_lp_result res;

	if (!bset)
		return -1;

	dim = isl_basic_set_total_dim(bset);
	if (dim == 0)
		return scan_0D(bset, callback);

	min = isl_vec_alloc(bset->ctx, dim);
	max = isl_vec_alloc(bset->ctx, dim);
	snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim);

	if (!min || !max || !snap)
		goto error;

	tab = isl_tab_from_basic_set(bset, 0);
	if (!tab)
		goto error;
	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		goto error;

	tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
	if (1)
		tab = isl_tab_compute_reduced_basis(tab);
	if (!tab)
		goto error;
	B = isl_mat_copy(tab->basis);
	if (!B)
		goto error;

	level = 0;
	init = 1;

	while (level >= 0) {
		int empty = 0;
		if (init) {
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &min->el[level], NULL, 0);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &max->el[level], NULL, 0);
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			isl_int_neg(max->el[level], max->el[level]);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);

		if (empty || isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		if (level == dim - 1 && callback->add == increment_counter) {
			if (increment_range(callback,
					    min->el[level], max->el[level]))
				goto error;
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(B->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(B->row[1 + level][0], 0);
		if (level < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		if (add_solution(tab, callback) < 0)
			goto error;
		init = 0;
		if (isl_tab_rollback(tab, snap[level]) < 0)
			goto error;
	}

	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return 0;
error:
	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return -1;
}