void spline1dfitpenalizedw(/* Real */ ae_vector* x, /* Real */ ae_vector* y, /* Real */ ae_vector* w, ae_int_t n, ae_int_t m, double rho, ae_int_t* info, spline1dinterpolant* s, spline1dfitreport* rep, ae_state *_state) { ae_frame _frame_block; ae_vector _x; ae_vector _y; ae_vector _w; ae_int_t i; ae_int_t j; ae_int_t b; double v; double relcnt; double xa; double xb; double sa; double sb; ae_vector xoriginal; ae_vector yoriginal; double pdecay; double tdecay; ae_matrix fmatrix; ae_vector fcolumn; ae_vector y2; ae_vector w2; ae_vector xc; ae_vector yc; ae_vector dc; double fdmax; double admax; ae_matrix amatrix; ae_matrix d2matrix; double fa; double ga; double fb; double gb; double lambdav; ae_vector bx; ae_vector by; ae_vector bd1; ae_vector bd2; ae_vector tx; ae_vector ty; ae_vector td; spline1dinterpolant bs; ae_matrix nmatrix; ae_vector rightpart; fblslincgstate cgstate; ae_vector c; ae_vector tmp0; ae_frame_make(_state, &_frame_block); ae_vector_init_copy(&_x, x, _state, ae_true); x = &_x; ae_vector_init_copy(&_y, y, _state, ae_true); y = &_y; ae_vector_init_copy(&_w, w, _state, ae_true); w = &_w; *info = 0; _spline1dinterpolant_clear(s); _spline1dfitreport_clear(rep); ae_vector_init(&xoriginal, 0, DT_REAL, _state, ae_true); ae_vector_init(&yoriginal, 0, DT_REAL, _state, ae_true); ae_matrix_init(&fmatrix, 0, 0, DT_REAL, _state, ae_true); ae_vector_init(&fcolumn, 0, DT_REAL, _state, ae_true); ae_vector_init(&y2, 0, DT_REAL, _state, ae_true); ae_vector_init(&w2, 0, DT_REAL, _state, ae_true); ae_vector_init(&xc, 0, DT_REAL, _state, ae_true); ae_vector_init(&yc, 0, DT_REAL, _state, ae_true); ae_vector_init(&dc, 0, DT_INT, _state, ae_true); ae_matrix_init(&amatrix, 0, 0, DT_REAL, _state, ae_true); ae_matrix_init(&d2matrix, 0, 0, DT_REAL, _state, ae_true); ae_vector_init(&bx, 0, DT_REAL, _state, ae_true); ae_vector_init(&by, 0, DT_REAL, _state, ae_true); ae_vector_init(&bd1, 0, DT_REAL, _state, ae_true); ae_vector_init(&bd2, 0, DT_REAL, _state, ae_true); ae_vector_init(&tx, 0, DT_REAL, _state, ae_true); ae_vector_init(&ty, 0, DT_REAL, _state, ae_true); ae_vector_init(&td, 0, DT_REAL, _state, ae_true); _spline1dinterpolant_init(&bs, _state, ae_true); ae_matrix_init(&nmatrix, 0, 0, DT_REAL, _state, ae_true); ae_vector_init(&rightpart, 0, DT_REAL, _state, ae_true); _fblslincgstate_init(&cgstate, _state, ae_true); ae_vector_init(&c, 0, DT_REAL, _state, ae_true); ae_vector_init(&tmp0, 0, DT_REAL, _state, ae_true); ae_assert(n>=1, "Spline1DFitPenalizedW: N<1!", _state); ae_assert(m>=4, "Spline1DFitPenalizedW: M<4!", _state); ae_assert(x->cnt>=n, "Spline1DFitPenalizedW: Length(X)<N!", _state); ae_assert(y->cnt>=n, "Spline1DFitPenalizedW: Length(Y)<N!", _state); ae_assert(w->cnt>=n, "Spline1DFitPenalizedW: Length(W)<N!", _state); ae_assert(isfinitevector(x, n, _state), "Spline1DFitPenalizedW: X contains infinite or NAN values!", _state); ae_assert(isfinitevector(y, n, _state), "Spline1DFitPenalizedW: Y contains infinite or NAN values!", _state); ae_assert(isfinitevector(w, n, _state), "Spline1DFitPenalizedW: Y contains infinite or NAN values!", _state); ae_assert(ae_isfinite(rho, _state), "Spline1DFitPenalizedW: Rho is infinite!", _state); /* * Prepare LambdaV */ v = -ae_log(ae_machineepsilon, _state)/ae_log(10, _state); if( ae_fp_less(rho,-v) ) { rho = -v; } if( ae_fp_greater(rho,v) ) { rho = v; } lambdav = ae_pow(10, rho, _state); /* * Sort X, Y, W */ heapsortdpoints(x, y, w, n, _state); /* * Scale X, Y, XC, YC */ lsfitscalexy(x, y, w, n, &xc, &yc, &dc, 0, &xa, &xb, &sa, &sb, &xoriginal, &yoriginal, _state); /* * Allocate space */ ae_matrix_set_length(&fmatrix, n, m, _state); ae_matrix_set_length(&amatrix, m, m, _state); ae_matrix_set_length(&d2matrix, m, m, _state); ae_vector_set_length(&bx, m, _state); ae_vector_set_length(&by, m, _state); ae_vector_set_length(&fcolumn, n, _state); ae_matrix_set_length(&nmatrix, m, m, _state); ae_vector_set_length(&rightpart, m, _state); ae_vector_set_length(&tmp0, ae_maxint(m, n, _state), _state); ae_vector_set_length(&c, m, _state); /* * Fill: * * FMatrix by values of basis functions * * TmpAMatrix by second derivatives of I-th function at J-th point * * CMatrix by constraints */ fdmax = 0; for (b=0; b<=m-1; b++) { /* * Prepare I-th basis function */ for(j=0; j<=m-1; j++) { bx.ptr.p_double[j] = (double)(2*j)/(double)(m-1)-1; by.ptr.p_double[j] = 0; } by.ptr.p_double[b] = 1; //spline1dgriddiff2cubic(&bx, &by, m, 2, 0.0, 2, 0.0, &bd1, &bd2, _state); test_gridDiff2Cubic(&bx, &by, m, &bd1, &bd2, _state); // spline1dbuildcubic(&bx, &by, m, 2, 0.0, 2, 0.0, &bs, _state); test_buildCubic(&bx, &by, m, &bs, _state); /* * Calculate B-th column of FMatrix * Update FDMax (maximum column norm) */ spline1dconvcubic(&bx, &by, m, 2, 0.0, 2, 0.0, x, n, &fcolumn, _state); ae_v_move(&fmatrix.ptr.pp_double[0][b], fmatrix.stride, &fcolumn.ptr.p_double[0], 1, ae_v_len(0,n-1)); v = 0; for(i=0; i<=n-1; i++) { //fprintf(stderr, "fcoll %d %f\n", i, fcolumn.ptr.p_double[i]); v = v+ae_sqr(w->ptr.p_double[i]*fcolumn.ptr.p_double[i], _state); } fdmax = ae_maxreal(fdmax, v, _state); /* * Fill temporary with second derivatives of basis function */ ae_v_move(&d2matrix.ptr.pp_double[b][0], 1, &bd2.ptr.p_double[0], 1, ae_v_len(0,m-1)); } /* * * calculate penalty matrix A * * calculate max of diagonal elements of A * * calculate PDecay - coefficient before penalty matrix */ for(i=0; i<=m-1; i++) { for(j=i; j<=m-1; j++) { /* * calculate integral(B_i''*B_j'') where B_i and B_j are * i-th and j-th basis splines. * B_i and B_j are piecewise linear functions. */ v = 0; for(b=0; b<=m-2; b++) { fa = d2matrix.ptr.pp_double[i][b]; fb = d2matrix.ptr.pp_double[i][b+1]; ga = d2matrix.ptr.pp_double[j][b]; gb = d2matrix.ptr.pp_double[j][b+1]; v = v+(bx.ptr.p_double[b+1]-bx.ptr.p_double[b])*(fa*ga+(fa*(gb-ga)+ga*(fb-fa))/2+(fb-fa)*(gb-ga)/3); } amatrix.ptr.pp_double[i][j] = v; amatrix.ptr.pp_double[j][i] = v; } } admax = 0; for(i=0; i<=m-1; i++) { admax = ae_maxreal(admax, ae_fabs(amatrix.ptr.pp_double[i][i], _state), _state); } pdecay = lambdav*fdmax/admax; /* * Calculate TDecay for Tikhonov regularization */ tdecay = fdmax*(1+pdecay)*10*ae_machineepsilon; /* * Prepare system * * NOTE: FMatrix is spoiled during this process */ for(i=0; i<=n-1; i++) { v = w->ptr.p_double[i]; ae_v_muld(&fmatrix.ptr.pp_double[i][0], 1, ae_v_len(0,m-1), v); } rmatrixgemm(m, m, n, 1.0, &fmatrix, 0, 0, 1, &fmatrix, 0, 0, 0, 0.0, &nmatrix, 0, 0, _state); for(i=0; i<=m-1; i++) { for(j=0; j<=m-1; j++) { nmatrix.ptr.pp_double[i][j] = nmatrix.ptr.pp_double[i][j]+pdecay*amatrix.ptr.pp_double[i][j]; } } for(i=0; i<=m-1; i++) { nmatrix.ptr.pp_double[i][i] = nmatrix.ptr.pp_double[i][i]+tdecay; } for(i=0; i<=m-1; i++) { rightpart.ptr.p_double[i] = 0; } for(i=0; i<=n-1; i++) { v = y->ptr.p_double[i]*w->ptr.p_double[i]; ae_v_addd(&rightpart.ptr.p_double[0], 1, &fmatrix.ptr.pp_double[i][0], 1, ae_v_len(0,m-1), v); } /* * Solve system */ if( !spdmatrixcholesky(&nmatrix, m, ae_true, _state) ) { *info = -4; ae_frame_leave(_state); return; } fblscholeskysolve(&nmatrix, 1.0, m, ae_true, &rightpart, &tmp0, _state); ae_v_move(&c.ptr.p_double[0], 1, &rightpart.ptr.p_double[0], 1, ae_v_len(0,m-1)); /* * add nodes to force linearity outside of the fitting interval */ spline1dgriddiffcubic(&bx, &c, m, 2, 0.0, 2, 0.0, &bd1, _state); ae_vector_set_length(&tx, m+2, _state); ae_vector_set_length(&ty, m+2, _state); ae_vector_set_length(&td, m+2, _state); ae_v_move(&tx.ptr.p_double[1], 1, &bx.ptr.p_double[0], 1, ae_v_len(1,m)); ae_v_move(&ty.ptr.p_double[1], 1, &rightpart.ptr.p_double[0], 1, ae_v_len(1,m)); ae_v_move(&td.ptr.p_double[1], 1, &bd1.ptr.p_double[0], 1, ae_v_len(1,m)); tx.ptr.p_double[0] = tx.ptr.p_double[1]-(tx.ptr.p_double[2]-tx.ptr.p_double[1]); ty.ptr.p_double[0] = ty.ptr.p_double[1]-td.ptr.p_double[1]*(tx.ptr.p_double[2]-tx.ptr.p_double[1]); td.ptr.p_double[0] = td.ptr.p_double[1]; tx.ptr.p_double[m+1] = tx.ptr.p_double[m]+(tx.ptr.p_double[m]-tx.ptr.p_double[m-1]); ty.ptr.p_double[m+1] = ty.ptr.p_double[m]+td.ptr.p_double[m]*(tx.ptr.p_double[m]-tx.ptr.p_double[m-1]); td.ptr.p_double[m+1] = td.ptr.p_double[m]; spline1dbuildhermite(&tx, &ty, &td, m+2, s, _state); spline1dlintransx(s, 2/(xb-xa), -(xa+xb)/(xb-xa), _state); spline1dlintransy(s, sb-sa, sa, _state); *info = 1; /* * Fill report */ rep->rmserror = 0; rep->avgerror = 0; rep->avgrelerror = 0; rep->maxerror = 0; relcnt = 0; spline1dconvcubic(&bx, &rightpart, m, 2, 0.0, 2, 0.0, x, n, &fcolumn, _state); for(i=0; i<=n-1; i++) { v = (sb-sa)*fcolumn.ptr.p_double[i]+sa; rep->rmserror = rep->rmserror+ae_sqr(v-yoriginal.ptr.p_double[i], _state); rep->avgerror = rep->avgerror+ae_fabs(v-yoriginal.ptr.p_double[i], _state); if( ae_fp_neq(yoriginal.ptr.p_double[i],0) ) { rep->avgrelerror = rep->avgrelerror+ae_fabs(v-yoriginal.ptr.p_double[i], _state)/ae_fabs(yoriginal.ptr.p_double[i], _state); relcnt = relcnt+1; } rep->maxerror = ae_maxreal(rep->maxerror, ae_fabs(v-yoriginal.ptr.p_double[i], _state), _state); } rep->rmserror = ae_sqrt(rep->rmserror/n, _state); rep->avgerror = rep->avgerror/n; if( ae_fp_neq(relcnt,0) ) { rep->avgrelerror = rep->avgrelerror/relcnt; } ae_frame_leave(_state); }
/************************************************************************* Internal initialization subroutine *************************************************************************/ static void odesolver_odesolverinit(ae_int_t solvertype, /* Real */ ae_vector* y, ae_int_t n, /* Real */ ae_vector* x, ae_int_t m, double eps, double h, odesolverstate* state, ae_state *_state) { ae_int_t i; double v; _odesolverstate_clear(state); /* * Prepare RComm */ ae_vector_set_length(&state->rstate.ia, 5+1, _state); ae_vector_set_length(&state->rstate.ba, 0+1, _state); ae_vector_set_length(&state->rstate.ra, 5+1, _state); state->rstate.stage = -1; state->needdy = ae_false; /* * check parameters. */ if( (n<=0||m<1)||ae_fp_eq(eps,(double)(0)) ) { state->repterminationtype = -1; return; } if( ae_fp_less(h,(double)(0)) ) { h = -h; } /* * quick exit if necessary. * after this block we assume that M>1 */ if( m==1 ) { state->repnfev = 0; state->repterminationtype = 1; ae_matrix_set_length(&state->ytbl, 1, n, _state); ae_v_move(&state->ytbl.ptr.pp_double[0][0], 1, &y->ptr.p_double[0], 1, ae_v_len(0,n-1)); ae_vector_set_length(&state->xg, m, _state); ae_v_move(&state->xg.ptr.p_double[0], 1, &x->ptr.p_double[0], 1, ae_v_len(0,m-1)); return; } /* * check again: correct order of X[] */ if( ae_fp_eq(x->ptr.p_double[1],x->ptr.p_double[0]) ) { state->repterminationtype = -2; return; } for(i=1; i<=m-1; i++) { if( (ae_fp_greater(x->ptr.p_double[1],x->ptr.p_double[0])&&ae_fp_less_eq(x->ptr.p_double[i],x->ptr.p_double[i-1]))||(ae_fp_less(x->ptr.p_double[1],x->ptr.p_double[0])&&ae_fp_greater_eq(x->ptr.p_double[i],x->ptr.p_double[i-1])) ) { state->repterminationtype = -2; return; } } /* * auto-select H if necessary */ if( ae_fp_eq(h,(double)(0)) ) { v = ae_fabs(x->ptr.p_double[1]-x->ptr.p_double[0], _state); for(i=2; i<=m-1; i++) { v = ae_minreal(v, ae_fabs(x->ptr.p_double[i]-x->ptr.p_double[i-1], _state), _state); } h = 0.001*v; } /* * store parameters */ state->n = n; state->m = m; state->h = h; state->eps = ae_fabs(eps, _state); state->fraceps = ae_fp_less(eps,(double)(0)); ae_vector_set_length(&state->xg, m, _state); ae_v_move(&state->xg.ptr.p_double[0], 1, &x->ptr.p_double[0], 1, ae_v_len(0,m-1)); if( ae_fp_greater(x->ptr.p_double[1],x->ptr.p_double[0]) ) { state->xscale = (double)(1); } else { state->xscale = (double)(-1); ae_v_muld(&state->xg.ptr.p_double[0], 1, ae_v_len(0,m-1), -1); } ae_vector_set_length(&state->yc, n, _state); ae_v_move(&state->yc.ptr.p_double[0], 1, &y->ptr.p_double[0], 1, ae_v_len(0,n-1)); state->solvertype = solvertype; state->repterminationtype = 0; /* * Allocate arrays */ ae_vector_set_length(&state->y, n, _state); ae_vector_set_length(&state->dy, n, _state); }