/** * 标记清除的方式回收内存堆的垃圾对象 * 1.第一步: 标记所有存活的对象 * 2.第二步: 计算存活的对象在其内存区压缩后的偏移位置 * 3.第三步: 遍历所有存活的对象并修改其对应的地址映射表 * 4.第四步: 移动存活的对象压缩内存区 */ void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); GenCollectedHeap* gch = GenCollectedHeap::heap(); #ifdef ASSERT if (gch->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earlier"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); _ref_processor = rp; rp->setup_policy(clear_all_softrefs); TraceTime t1("Full GC", PrintGC && !PrintGCDetails, true, gclog_or_tty); // When collecting the permanent generation methodOops may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); Threads::gc_prologue(); // Increment the invocation count for the permanent generation, since it is // implicitly collected whenever we do a full mark sweep collection. gch->perm_gen()->stat_record()->invocations++; //本次Gc之前内存堆的使用量 size_t gch_prev_used = gch->used(); // Some of the card table updates below assume that the perm gen is // also being collected. assert(level == gch->n_gens() - 1, "All generations are being collected, ergo perm gen too."); // Capture used regions for each generation that will be // subject to collection, so that card table adjustments can // be made intelligently (see clear / invalidate further below). gch->save_used_regions(level, true /* perm */); allocate_stacks(); mark_sweep_phase1(level, clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(level); VALIDATE_MARK_SWEEP_ONLY( if (ValidateMarkSweep) { guarantee(_root_refs_stack->length() == 0, "should be empty by now"); } )
void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); SharedHeap* sh = SharedHeap::heap(); #ifdef ASSERT if (sh->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earler"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(GenMarkSweep::ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); assert(rp == G1CollectedHeap::heap()->ref_processor_stw(), "Precondition"); GenMarkSweep::_ref_processor = rp; rp->setup_policy(clear_all_softrefs); // When collecting the permanent generation Method*s may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); Threads::gc_prologue(); bool marked_for_unloading = false; allocate_stacks(); // We should save the marks of the currently locked biased monitors. // The marking doesn't preserve the marks of biased objects. BiasedLocking::preserve_marks(); mark_sweep_phase1(marked_for_unloading, clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(); mark_sweep_phase4(); GenMarkSweep::restore_marks(); BiasedLocking::restore_marks(); GenMarkSweep::deallocate_stacks(); // "free at last gc" is calculated from these. // CHF: cheating for now!!! // Universe::set_heap_capacity_at_last_gc(Universe::heap()->capacity()); // Universe::set_heap_used_at_last_gc(Universe::heap()->used()); Threads::gc_epilogue(); CodeCache::gc_epilogue(); JvmtiExport::gc_epilogue(); // refs processing: clean slate GenMarkSweep::_ref_processor = NULL; }
void GenMarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); GenCollectedHeap* gch = GenCollectedHeap::heap(); #ifdef ASSERT if (gch->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earlier"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); set_ref_processor(rp); rp->setup_policy(clear_all_softrefs); gch->trace_heap_before_gc(_gc_tracer); // When collecting the permanent generation Method*s may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); // Increment the invocation count _total_invocations++; // Capture used regions for each generation that will be // subject to collection, so that card table adjustments can // be made intelligently (see clear / invalidate further below). gch->save_used_regions(); allocate_stacks(); mark_sweep_phase1(clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 #if defined(COMPILER2) || INCLUDE_JVMCI assert(DerivedPointerTable::is_active(), "Sanity"); DerivedPointerTable::set_active(false); #endif mark_sweep_phase3(); mark_sweep_phase4(); restore_marks(); // Set saved marks for allocation profiler (and other things? -- dld) // (Should this be in general part?) gch->save_marks(); deallocate_stacks(); // If compaction completely evacuated the young generation then we // can clear the card table. Otherwise, we must invalidate // it (consider all cards dirty). In the future, we might consider doing // compaction within generations only, and doing card-table sliding. CardTableRS* rs = gch->rem_set(); Generation* old_gen = gch->old_gen(); // Clear/invalidate below make use of the "prev_used_regions" saved earlier. if (gch->young_gen()->used() == 0) { // We've evacuated the young generation. rs->clear_into_younger(old_gen); } else { // Invalidate the cards corresponding to the currently used // region and clear those corresponding to the evacuated region. rs->invalidate_or_clear(old_gen); } CodeCache::gc_epilogue(); JvmtiExport::gc_epilogue(); // refs processing: clean slate set_ref_processor(NULL); // Update heap occupancy information which is used as // input to soft ref clearing policy at the next gc. Universe::update_heap_info_at_gc(); // Update time of last gc for all generations we collected // (which currently is all the generations in the heap). // We need to use a monotonically non-decreasing time in ms // or we will see time-warp warnings and os::javaTimeMillis() // does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; gch->update_time_of_last_gc(now); gch->trace_heap_after_gc(_gc_tracer); }
int main (int argc, char* const argv[]) { int i,j; char c; nodummy = 0; program_name = argv[0]; double u1, u2, total = 0; struct timeval tv; /* Get the input arguments */ option_set(argc,argv); /* Handle the input files */ handle_files (circuit_name,vectors_name); gettimeofday(&tv,NULL); u1 = tv.tv_sec*1.0e6 + tv.tv_usec; /* Read the circuit file and make the structures */ if (read_circuit (circuit_fd) < 0) system_error ("read_circuit"); fclose (circuit_fd); if (nog<=0 || nopi<=0 || nopo<=0) { fprintf(stderr,"Error in circuit file: #PI=%d, #PO=%d, #GATES=%d\n",nopi,nopo,nog); abort(); } /* Add a gate for the output stage as you did for the input stage */ nodummy = add_PO(); /* Compute the levels of the circuit */ allocate_stacks(); maxlevel = compute_level(); place_PO(); printf("the max level = %d\n",maxlevel); /* Computes the level of each gate */ allocate_event_list(); levelize(); //xfree(event_list); gettimeofday(&tv,NULL); u2 = tv.tv_sec*1.0e6 + tv.tv_usec; total=(u2-u1); printf("Time for construction of data structures: %f usec\n", total); total= 0; printf("opening vectors file= %s\n",vectors_name); vectors_fd = fopen (vectors_name, "r"); if (vectors_fd == NULL) system_error ("fopen"); gettimeofday(&tv,NULL); u1 = tv.tv_sec*1.0e6 + tv.tv_usec; /* Read the vector file and put the input values to the INPUT GATES */ if (read_vectors (vectors_fd,vectors_name) != 0) system_error ("read_vectors"); //fclose (vectors_fd); //valgrind mistake //logic simulation here LUT = create_lut (LUT); logic_sim(); i=0; j=0; if(test_name[0]=='\0') { while((c=circuit_name[i++])!='\0') { if(c=='/') j=0; else if(c=='.') break; else test_name[j++]=c; } test_name[j]='\0'; strcat(test_name,".test"); } gettimeofday(&tv,NULL); u2 = tv.tv_sec*1.0e6 + tv.tv_usec; total=(u2-u1); printf("Time for logic simulation: %f usec\n", total); total= 0; //print_logic_sim(); //<---------------------------------------------------------------- //fault simulation here gettimeofday(&tv,NULL); u1 = tv.tv_sec*1.0e6 + tv.tv_usec; create_fault_list (); //print_fault_list(); fault_sim(); gettimeofday(&tv,NULL); u2 = tv.tv_sec*1.0e6 + tv.tv_usec; total=(u2-u1); printf("Time for fault simulation: %f usec\n", total); total= 0; /*if ( fault_name == NULL ) { printf("\nWe are done\n"); return 0; } printf("opening fault file= %s\n",fault_name); vectors_fd = fopen (vectors_name, "r"); if (vectors_fd == NULL) system_error ("fopen"); */ // synexeia simulation<----------------------------------- printf("\nWe are done\n"); return 0; }
// This method contains no policy. You should probably // be calling invoke() instead. void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); assert(ref_processor() != NULL, "Sanity"); if (GC_locker::check_active_before_gc()) { return; } ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); GCCause::Cause gc_cause = heap->gc_cause(); assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); PSAdaptiveSizePolicy* size_policy = heap->size_policy(); PSYoungGen* young_gen = heap->young_gen(); PSOldGen* old_gen = heap->old_gen(); PSPermGen* perm_gen = heap->perm_gen(); // Increment the invocation count heap->increment_total_collections(true /* full */); // Save information needed to minimize mangling heap->record_gen_tops_before_GC(); // We need to track unique mark sweep invocations as well. _total_invocations++; AdaptiveSizePolicyOutput(size_policy, heap->total_collections()); if (PrintHeapAtGC) { Universe::print_heap_before_gc(); } // Fill in TLABs heap->accumulate_statistics_all_tlabs(); heap->ensure_parsability(true); // retire TLABs if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification gclog_or_tty->print(" VerifyBeforeGC:"); Universe::verify(true); } // Verify object start arrays if (VerifyObjectStartArray && VerifyBeforeGC) { old_gen->verify_object_start_array(); perm_gen->verify_object_start_array(); } heap->pre_full_gc_dump(); // Filled in below to track the state of the young gen after the collection. bool eden_empty; bool survivors_empty; bool young_gen_empty; { HandleMark hm; const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc; // This is useful for debugging but don't change the output the // the customer sees. const char* gc_cause_str = "Full GC"; if (is_system_gc && PrintGCDetails) { gc_cause_str = "Full GC (System)"; } gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty); TraceCollectorStats tcs(counters()); TraceMemoryManagerStats tms(true /* Full GC */); if (TraceGen1Time) accumulated_time()->start(); // Let the size policy know we're starting size_policy->major_collection_begin(); // When collecting the permanent generation methodOops may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); Threads::gc_prologue(); BiasedLocking::preserve_marks(); // Capture heap size before collection for printing. size_t prev_used = heap->used(); // Capture perm gen size before collection for sizing. size_t perm_gen_prev_used = perm_gen->used_in_bytes(); // For PrintGCDetails size_t old_gen_prev_used = old_gen->used_in_bytes(); size_t young_gen_prev_used = young_gen->used_in_bytes(); allocate_stacks(); NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); COMPILER2_PRESENT(DerivedPointerTable::clear()); ref_processor()->enable_discovery(); ref_processor()->setup_policy(clear_all_softrefs); mark_sweep_phase1(clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(); mark_sweep_phase4(); restore_marks(); deallocate_stacks(); if (ZapUnusedHeapArea) { // Do a complete mangle (top to end) because the usage for // scratch does not maintain a top pointer. young_gen->to_space()->mangle_unused_area_complete(); } eden_empty = young_gen->eden_space()->is_empty(); if (!eden_empty) { eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen); } // Update heap occupancy information which is used as // input to soft ref clearing policy at the next gc. Universe::update_heap_info_at_gc(); survivors_empty = young_gen->from_space()->is_empty() && young_gen->to_space()->is_empty(); young_gen_empty = eden_empty && survivors_empty; BarrierSet* bs = heap->barrier_set(); if (bs->is_a(BarrierSet::ModRef)) { ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs; MemRegion old_mr = heap->old_gen()->reserved(); MemRegion perm_mr = heap->perm_gen()->reserved(); assert(perm_mr.end() <= old_mr.start(), "Generations out of order"); if (young_gen_empty) { modBS->clear(MemRegion(perm_mr.start(), old_mr.end())); } else { modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end())); } } BiasedLocking::restore_marks(); Threads::gc_epilogue(); CodeCache::gc_epilogue(); COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ref_processor()->enqueue_discovered_references(NULL); // Update time of last GC reset_millis_since_last_gc(); // Let the size policy know we're done size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); if (UseAdaptiveSizePolicy) { if (PrintAdaptiveSizePolicy) { gclog_or_tty->print("AdaptiveSizeStart: "); gclog_or_tty->stamp(); gclog_or_tty->print_cr(" collection: %d ", heap->total_collections()); if (Verbose) { gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d" " perm_gen_capacity: %d ", old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(), perm_gen->capacity_in_bytes()); } } // Don't check if the size_policy is ready here. Let // the size_policy check that internally. if (UseAdaptiveGenerationSizePolicyAtMajorCollection && ((gc_cause != GCCause::_java_lang_system_gc) || UseAdaptiveSizePolicyWithSystemGC)) { // Calculate optimal free space amounts assert(young_gen->max_size() > young_gen->from_space()->capacity_in_bytes() + young_gen->to_space()->capacity_in_bytes(), "Sizes of space in young gen are out-of-bounds"); size_t max_eden_size = young_gen->max_size() - young_gen->from_space()->capacity_in_bytes() - young_gen->to_space()->capacity_in_bytes(); size_policy->compute_generation_free_space(young_gen->used_in_bytes(), young_gen->eden_space()->used_in_bytes(), old_gen->used_in_bytes(), perm_gen->used_in_bytes(), young_gen->eden_space()->capacity_in_bytes(), old_gen->max_gen_size(), max_eden_size, true /* full gc*/, gc_cause); heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes()); // Don't resize the young generation at an major collection. A // desired young generation size may have been calculated but // resizing the young generation complicates the code because the // resizing of the old generation may have moved the boundary // between the young generation and the old generation. Let the // young generation resizing happen at the minor collections. } if (PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ", heap->total_collections()); } } if (UsePerfData) { heap->gc_policy_counters()->update_counters(); heap->gc_policy_counters()->update_old_capacity( old_gen->capacity_in_bytes()); heap->gc_policy_counters()->update_young_capacity( young_gen->capacity_in_bytes()); } heap->resize_all_tlabs(); // We collected the perm gen, so we'll resize it here. perm_gen->compute_new_size(perm_gen_prev_used); if (TraceGen1Time) accumulated_time()->stop(); if (PrintGC) { if (PrintGCDetails) { // Don't print a GC timestamp here. This is after the GC so // would be confusing. young_gen->print_used_change(young_gen_prev_used); old_gen->print_used_change(old_gen_prev_used); } heap->print_heap_change(prev_used); // Do perm gen after heap becase prev_used does // not include the perm gen (done this way in the other // collectors). if (PrintGCDetails) { perm_gen->print_used_change(perm_gen_prev_used); } } // Track memory usage and detect low memory MemoryService::track_memory_usage(); heap->update_counters(); if (PrintGCDetails) { if (size_policy->print_gc_time_limit_would_be_exceeded()) { if (size_policy->gc_time_limit_exceeded()) { gclog_or_tty->print_cr(" GC time is exceeding GCTimeLimit " "of %d%%", GCTimeLimit); } else { gclog_or_tty->print_cr(" GC time would exceed GCTimeLimit " "of %d%%", GCTimeLimit); } } size_policy->set_print_gc_time_limit_would_be_exceeded(false); } } if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification gclog_or_tty->print(" VerifyAfterGC:"); Universe::verify(false); } // Re-verify object start arrays if (VerifyObjectStartArray && VerifyAfterGC) { old_gen->verify_object_start_array(); perm_gen->verify_object_start_array(); } if (ZapUnusedHeapArea) { old_gen->object_space()->check_mangled_unused_area_complete(); perm_gen->object_space()->check_mangled_unused_area_complete(); } NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); if (PrintHeapAtGC) { Universe::print_heap_after_gc(); } heap->post_full_gc_dump(); #ifdef TRACESPINNING ParallelTaskTerminator::print_termination_counts(); #endif }
// This method contains no policy. You should probably // be calling invoke() instead. bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); assert(ref_processor() != NULL, "Sanity"); if (GC_locker::check_active_before_gc()) { return false; } ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); GCCause::Cause gc_cause = heap->gc_cause(); _gc_timer->register_gc_start(); _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start()); PSAdaptiveSizePolicy* size_policy = heap->size_policy(); // The scope of casr should end after code that can change // CollectorPolicy::_should_clear_all_soft_refs. ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy()); PSYoungGen* young_gen = heap->young_gen(); PSOldGen* old_gen = heap->old_gen(); // Increment the invocation count heap->increment_total_collections(true /* full */); // Save information needed to minimize mangling heap->record_gen_tops_before_GC(); // We need to track unique mark sweep invocations as well. _total_invocations++; AdaptiveSizePolicyOutput(size_policy, heap->total_collections()); heap->print_heap_before_gc(); heap->trace_heap_before_gc(_gc_tracer); // Fill in TLABs heap->accumulate_statistics_all_tlabs(); heap->ensure_parsability(true); // retire TLABs if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification Universe::verify(" VerifyBeforeGC:"); } // Verify object start arrays if (VerifyObjectStartArray && VerifyBeforeGC) { old_gen->verify_object_start_array(); } heap->pre_full_gc_dump(_gc_timer); // Filled in below to track the state of the young gen after the collection. bool eden_empty; bool survivors_empty; bool young_gen_empty; { HandleMark hm; TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer->gc_id()); TraceCollectorStats tcs(counters()); TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); if (TraceOldGenTime) accumulated_time()->start(); // Let the size policy know we're starting size_policy->major_collection_begin(); CodeCache::gc_prologue(); BiasedLocking::preserve_marks(); // Capture heap size before collection for printing. size_t prev_used = heap->used(); // Capture metadata size before collection for sizing. size_t metadata_prev_used = MetaspaceAux::used_bytes(); // For PrintGCDetails size_t old_gen_prev_used = old_gen->used_in_bytes(); size_t young_gen_prev_used = young_gen->used_in_bytes(); allocate_stacks(); COMPILER2_PRESENT(DerivedPointerTable::clear()); ref_processor()->enable_discovery(); ref_processor()->setup_policy(clear_all_softrefs); mark_sweep_phase1(clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(); mark_sweep_phase4(); restore_marks(); deallocate_stacks(); if (ZapUnusedHeapArea) { // Do a complete mangle (top to end) because the usage for // scratch does not maintain a top pointer. young_gen->to_space()->mangle_unused_area_complete(); } eden_empty = young_gen->eden_space()->is_empty(); if (!eden_empty) { eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen); } // Update heap occupancy information which is used as // input to soft ref clearing policy at the next gc. Universe::update_heap_info_at_gc(); survivors_empty = young_gen->from_space()->is_empty() && young_gen->to_space()->is_empty(); young_gen_empty = eden_empty && survivors_empty; ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set()); MemRegion old_mr = heap->old_gen()->reserved(); if (young_gen_empty) { modBS->clear(MemRegion(old_mr.start(), old_mr.end())); } else { modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); } // Delete metaspaces for unloaded class loaders and clean up loader_data graph ClassLoaderDataGraph::purge(); MetaspaceAux::verify_metrics(); BiasedLocking::restore_marks(); CodeCache::gc_epilogue(); JvmtiExport::gc_epilogue(); COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); ref_processor()->enqueue_discovered_references(NULL); // Update time of last GC reset_millis_since_last_gc(); // Let the size policy know we're done size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); if (UseAdaptiveSizePolicy) { if (PrintAdaptiveSizePolicy) { gclog_or_tty->print("AdaptiveSizeStart: "); gclog_or_tty->stamp(); gclog_or_tty->print_cr(" collection: %d ", heap->total_collections()); if (Verbose) { gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); } } // Don't check if the size_policy is ready here. Let // the size_policy check that internally. if (UseAdaptiveGenerationSizePolicyAtMajorCollection && ((gc_cause != GCCause::_java_lang_system_gc) || UseAdaptiveSizePolicyWithSystemGC)) { // Swap the survivor spaces if from_space is empty. The // resize_young_gen() called below is normally used after // a successful young GC and swapping of survivor spaces; // otherwise, it will fail to resize the young gen with // the current implementation. if (young_gen->from_space()->is_empty()) { young_gen->from_space()->clear(SpaceDecorator::Mangle); young_gen->swap_spaces(); } // Calculate optimal free space amounts assert(young_gen->max_size() > young_gen->from_space()->capacity_in_bytes() + young_gen->to_space()->capacity_in_bytes(), "Sizes of space in young gen are out-of-bounds"); size_t young_live = young_gen->used_in_bytes(); size_t eden_live = young_gen->eden_space()->used_in_bytes(); size_t old_live = old_gen->used_in_bytes(); size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); size_t max_old_gen_size = old_gen->max_gen_size(); size_t max_eden_size = young_gen->max_size() - young_gen->from_space()->capacity_in_bytes() - young_gen->to_space()->capacity_in_bytes(); // Used for diagnostics size_policy->clear_generation_free_space_flags(); size_policy->compute_generations_free_space(young_live, eden_live, old_live, cur_eden, max_old_gen_size, max_eden_size, true /* full gc*/); size_policy->check_gc_overhead_limit(young_live, eden_live, max_old_gen_size, max_eden_size, true /* full gc*/, gc_cause, heap->collector_policy()); size_policy->decay_supplemental_growth(true /* full gc*/); heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes()); heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), size_policy->calculated_survivor_size_in_bytes()); } if (PrintAdaptiveSizePolicy) { gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ", heap->total_collections()); } } if (UsePerfData) { heap->gc_policy_counters()->update_counters(); heap->gc_policy_counters()->update_old_capacity( old_gen->capacity_in_bytes()); heap->gc_policy_counters()->update_young_capacity( young_gen->capacity_in_bytes()); } heap->resize_all_tlabs(); // We collected the heap, recalculate the metaspace capacity MetaspaceGC::compute_new_size(); if (TraceOldGenTime) accumulated_time()->stop(); if (PrintGC) { if (PrintGCDetails) { // Don't print a GC timestamp here. This is after the GC so // would be confusing. young_gen->print_used_change(young_gen_prev_used); old_gen->print_used_change(old_gen_prev_used); } heap->print_heap_change(prev_used); if (PrintGCDetails) { MetaspaceAux::print_metaspace_change(metadata_prev_used); } } // Track memory usage and detect low memory MemoryService::track_memory_usage(); heap->update_counters(); } if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification Universe::verify(" VerifyAfterGC:"); } // Re-verify object start arrays if (VerifyObjectStartArray && VerifyAfterGC) { old_gen->verify_object_start_array(); } if (ZapUnusedHeapArea) { old_gen->object_space()->check_mangled_unused_area_complete(); } NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); heap->print_heap_after_gc(); heap->trace_heap_after_gc(_gc_tracer); heap->post_full_gc_dump(_gc_timer); #ifdef TRACESPINNING ParallelTaskTerminator::print_termination_counts(); #endif _gc_timer->register_gc_end(); _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions()); return true; }
void GenMarkSweep::invoke_at_safepoint(int level, ReferenceProcessor* rp, bool clear_all_softrefs) { guarantee(level == 1, "We always collect both old and young."); assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); GenCollectedHeap* gch = GenCollectedHeap::heap(); #ifdef ASSERT if (gch->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earlier"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); _ref_processor = rp; rp->setup_policy(clear_all_softrefs); GCTraceTime t1(GCCauseString("Full GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer->gc_id()); gch->trace_heap_before_gc(_gc_tracer); // When collecting the permanent generation Method*s may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); Threads::gc_prologue(); // Increment the invocation count _total_invocations++; // Capture heap size before collection for printing. size_t gch_prev_used = gch->used(); // Capture used regions for each generation that will be // subject to collection, so that card table adjustments can // be made intelligently (see clear / invalidate further below). gch->save_used_regions(level); allocate_stacks(); mark_sweep_phase1(level, clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity")); COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(level); mark_sweep_phase4(); restore_marks(); // Set saved marks for allocation profiler (and other things? -- dld) // (Should this be in general part?) gch->save_marks(); deallocate_stacks(); // If compaction completely evacuated all generations younger than this // one, then we can clear the card table. Otherwise, we must invalidate // it (consider all cards dirty). In the future, we might consider doing // compaction within generations only, and doing card-table sliding. bool all_empty = true; for (int i = 0; all_empty && i < level; i++) { Generation* g = gch->get_gen(i); all_empty = all_empty && gch->get_gen(i)->used() == 0; } GenRemSet* rs = gch->rem_set(); Generation* old_gen = gch->get_gen(level); // Clear/invalidate below make use of the "prev_used_regions" saved earlier. if (all_empty) { // We've evacuated all generations below us. rs->clear_into_younger(old_gen); } else { // Invalidate the cards corresponding to the currently used // region and clear those corresponding to the evacuated region. rs->invalidate_or_clear(old_gen); } Threads::gc_epilogue(); CodeCache::gc_epilogue(); JvmtiExport::gc_epilogue(); if (PrintGC && !PrintGCDetails) { gch->print_heap_change(gch_prev_used); } // refs processing: clean slate _ref_processor = NULL; // Update heap occupancy information which is used as // input to soft ref clearing policy at the next gc. Universe::update_heap_info_at_gc(); // Update time of last gc for all generations we collected // (which curently is all the generations in the heap). // We need to use a monotonically non-deccreasing time in ms // or we will see time-warp warnings and os::javaTimeMillis() // does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; gch->update_time_of_last_gc(now); gch->trace_heap_after_gc(_gc_tracer); }
void G1MarkSweep::invoke_at_safepoint(ReferenceProcessor* rp, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); SharedHeap* sh = SharedHeap::heap(); #ifdef ASSERT if (sh->collector_policy()->should_clear_all_soft_refs()) { assert(clear_all_softrefs, "Policy should have been checked earler"); } #endif // hook up weak ref data so it can be used during Mark-Sweep assert(GenMarkSweep::ref_processor() == NULL, "no stomping"); assert(rp != NULL, "should be non-NULL"); GenMarkSweep::_ref_processor = rp; rp->setup_policy(clear_all_softrefs); // When collecting the permanent generation methodOops may be moving, // so we either have to flush all bcp data or convert it into bci. CodeCache::gc_prologue(); Threads::gc_prologue(); // Increment the invocation count for the permanent generation, since it is // implicitly collected whenever we do a full mark sweep collection. sh->perm_gen()->stat_record()->invocations++; bool marked_for_unloading = false; allocate_stacks(); // We should save the marks of the currently locked biased monitors. // The marking doesn't preserve the marks of biased objects. BiasedLocking::preserve_marks(); mark_sweep_phase1(marked_for_unloading, clear_all_softrefs); if (VerifyDuringGC) { G1CollectedHeap* g1h = G1CollectedHeap::heap(); g1h->checkConcurrentMark(); } mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_PRESENT(DerivedPointerTable::set_active(false)); mark_sweep_phase3(); mark_sweep_phase4(); GenMarkSweep::restore_marks(); BiasedLocking::restore_marks(); GenMarkSweep::deallocate_stacks(); // We must invalidate the perm-gen rs, so that it gets rebuilt. GenRemSet* rs = sh->rem_set(); rs->invalidate(sh->perm_gen()->used_region(), true /*whole_heap*/); // "free at last gc" is calculated from these. // CHF: cheating for now!!! // Universe::set_heap_capacity_at_last_gc(Universe::heap()->capacity()); // Universe::set_heap_used_at_last_gc(Universe::heap()->used()); Threads::gc_epilogue(); CodeCache::gc_epilogue(); // refs processing: clean slate GenMarkSweep::_ref_processor = NULL; }
// This method contains no policy. You should probably // be calling invoke() instead. void PSMarkSweep::invoke_no_policy(bool& notify_ref_lock, bool clear_all_softrefs) { assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); assert(ref_processor() != NULL, "Sanity"); if (GC_locker::is_active()) return; ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); PSYoungGen* young_gen = heap->young_gen(); PSOldGen* old_gen = heap->old_gen(); PSPermGen* perm_gen = heap->perm_gen(); // Increment the invocation count heap->increment_total_collections(); // We need to track unique mark sweep invocations as well. _total_invocations++; if (PrintHeapAtGC) { gclog_or_tty->print_cr(" {Heap before GC invocations=%d:", heap->total_collections()); Universe::print(); } // Fill in TLABs heap->ensure_parseability(); if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification tty->print(" VerifyBeforeGC:"); Universe::verify(true); } { HandleMark hm; TraceTime t1("Full GC", PrintGC, true, gclog_or_tty); TraceCollectorStats tcs(counters()); if (TraceGen1Time) accumulated_time()->start(); // Let the size policy know we're starting AdaptiveSizePolicy* size_policy = heap->size_policy(); size_policy->major_collection_begin(); // When collecting the permanent generation methodOops may be moving, // so we either have to flush all bcp data or convert it into bci. NOT_CORE(CodeCache::gc_prologue()); Threads::gc_prologue(); // Capture heap size before collection for printing. size_t prev_used = heap->used(); // Capture perm gen size before collection for sizing. size_t perm_gen_prev_used = perm_gen->used_in_bytes(); bool marked_for_unloading = false; allocate_stacks(); NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); COMPILER2_ONLY(DerivedPointerTable::clear()); ref_processor()->enable_discovery(); mark_sweep_phase1(marked_for_unloading, clear_all_softrefs); mark_sweep_phase2(); // Don't add any more derived pointers during phase3 COMPILER2_ONLY(assert(DerivedPointerTable::is_active(), "Sanity")); COMPILER2_ONLY(DerivedPointerTable::set_active(false)); mark_sweep_phase3(); mark_sweep_phase4(); restore_marks(); deallocate_stacks(); // "free at last gc" is calculated from these. Universe::set_heap_capacity_at_last_gc(Universe::heap()->capacity()); Universe::set_heap_used_at_last_gc(Universe::heap()->used()); bool all_empty = young_gen->eden_space()->is_empty() && young_gen->from_space()->is_empty() && young_gen->to_space()->is_empty(); BarrierSet* bs = heap->barrier_set(); if (bs->is_a(BarrierSet::ModRef)) { ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs; MemRegion old_mr = heap->old_gen()->reserved(); MemRegion perm_mr = heap->perm_gen()->reserved(); assert(old_mr.end() <= perm_mr.start(), "Generations out of order"); if (all_empty) { modBS->clear(MemRegion(old_mr.start(), perm_mr.end())); } else { modBS->invalidate(MemRegion(old_mr.start(), perm_mr.end())); } } Threads::gc_epilogue(); NOT_CORE(CodeCache::gc_epilogue()); COMPILER2_ONLY(DerivedPointerTable::update_pointers()); notify_ref_lock |= ref_processor()->enqueue_discovered_references(); // Update time of last GC reset_millis_since_last_gc(); // Let the size policy know we're done size_policy->major_collection_end(old_gen->used_in_bytes()); if (UseAdaptiveSizePolicy) { if (PrintAdaptiveSizePolicy) { tty->print_cr("AdaptiveSizeStart: collection: %d ", heap->total_collections()); } // Calculate optimial free space amounts size_policy->compute_generation_free_space(young_gen->used_in_bytes(), old_gen->used_in_bytes(), perm_gen->used_in_bytes(), true /* full gc*/); // Resize old and young generations old_gen->resize(size_policy->calculated_old_free_size_in_bytes()); young_gen->resize(size_policy->calculated_eden_size_in_bytes(), size_policy->calculated_survivor_size_in_bytes()); if (PrintAdaptiveSizePolicy) { tty->print_cr("AdaptiveSizeStop: collection: %d ", heap->total_collections()); } } // We collected the perm gen, so we'll resize it here. perm_gen->compute_new_size(perm_gen_prev_used); if (TraceGen1Time) accumulated_time()->stop(); if (PrintGC) { heap->print_heap_change(prev_used); } heap->update_counters(); } if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { HandleMark hm; // Discard invalid handles created during verification tty->print(" VerifyAfterGC:"); Universe::verify(false); } NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); if (PrintHeapAtGC) { gclog_or_tty->print_cr(" Heap after GC invocations=%d:", heap->total_collections()); Universe::print(); gclog_or_tty->print("} "); } }