static void presets_changed (GtkWidget *widget, gpointer user_data) { dt_iop_module_t *self = (dt_iop_module_t *)user_data; apply_preset(self); const int pos = dt_bauhaus_combobox_get(widget); dt_iop_temperature_gui_data_t *g = (dt_iop_temperature_gui_data_t *)self->gui_data; gtk_widget_set_sensitive(g->finetune, pos > 2); }
static void finetune_changed (GtkWidget *widget, gpointer user_data) { apply_preset((dt_iop_module_t *)user_data); }
int lame_init_params(lame_global_flags * gfp) { int i; int j; lame_internal_flags *const gfc = gfp->internal_flags; SessionConfig_t *const cfg = &gfc->cfg; gfc->class_id = 0; cfg->enforce_min_bitrate = gfp->VBR_hard_min; cfg->analysis = gfp->analysis; if (cfg->analysis) gfp->write_lame_tag = 0; /* some file options not allowed if output is: not specified or stdout */ if (gfc->pinfo != NULL) gfp->write_lame_tag = 0; /* disable Xing VBR tag */ /* report functions */ gfc->report_msg = gfp->report.msgf; gfc->report_dbg = gfp->report.debugf; gfc->report_err = gfp->report.errorf; if (gfp->asm_optimizations.amd3dnow) gfc->CPU_features.AMD_3DNow = has_3DNow(); else gfc->CPU_features.AMD_3DNow = 0; if (gfp->asm_optimizations.mmx) gfc->CPU_features.MMX = has_MMX(); else gfc->CPU_features.MMX = 0; if (gfp->asm_optimizations.sse) { gfc->CPU_features.SSE = has_SSE(); gfc->CPU_features.SSE2 = has_SSE2(); } else { gfc->CPU_features.SSE = 0; gfc->CPU_features.SSE2 = 0; } if (NULL == gfc->ATH) gfc->ATH = calloc(1, sizeof(ATH_t)); if (NULL == gfc->ATH) return -2; /* maybe error codes should be enumerated in lame.h ?? */ if (NULL == gfc->sv_rpg.rgdata) gfc->sv_rpg.rgdata = calloc(1, sizeof(replaygain_t)); if (NULL == gfc->sv_rpg.rgdata) { freegfc(gfc); gfp->internal_flags = NULL; return -2; } cfg->error_protection = gfp->error_protection; cfg->copyright = gfp->copyright; cfg->original = gfp->original; cfg->extension = gfp->extension; cfg->emphasis = gfp->emphasis; cfg->channels_in = gfp->num_channels; if (cfg->channels_in == 1) gfp->mode = MONO; cfg->channels_out = (gfp->mode == MONO) ? 1 : 2; if (gfp->mode == MONO) gfp->force_ms = 0; /* don't allow forced mid/side stereo for mono output */ cfg->force_ms = gfp->force_ms; if (gfp->VBR == vbr_off && gfp->VBR_mean_bitrate_kbps != 128 && gfp->brate == 0) gfp->brate = gfp->VBR_mean_bitrate_kbps; switch (gfp->VBR) { case vbr_off: case vbr_mtrh: case vbr_mt: /* these modes can handle free format condition */ break; default: gfp->free_format = 0; /* mode can't be mixed with free format */ break; } cfg->free_format = gfp->free_format; if (gfp->VBR == vbr_off && gfp->brate == 0) { /* no bitrate or compression ratio specified, use 11.025 */ if (EQ(gfp->compression_ratio, 0)) gfp->compression_ratio = 11.025; /* rate to compress a CD down to exactly 128000 bps */ } /* find bitrate if user specify a compression ratio */ if (gfp->VBR == vbr_off && gfp->compression_ratio > 0) { if (gfp->samplerate_out == 0) gfp->samplerate_out = map2MP3Frequency((int) (0.97 * gfp->samplerate_in)); /* round up with a margin of 3% */ /* choose a bitrate for the output samplerate which achieves * specified compression ratio */ gfp->brate = gfp->samplerate_out * 16 * cfg->channels_out / (1.e3 * gfp->compression_ratio); /* we need the version for the bitrate table look up */ cfg->samplerate_index = SmpFrqIndex(gfp->samplerate_out, &cfg->version); if (!cfg->free_format) /* for non Free Format find the nearest allowed bitrate */ gfp->brate = FindNearestBitrate(gfp->brate, cfg->version, gfp->samplerate_out); } if (gfp->samplerate_out) { if (gfp->samplerate_out < 16000) { gfp->VBR_mean_bitrate_kbps = Max(gfp->VBR_mean_bitrate_kbps, 8); gfp->VBR_mean_bitrate_kbps = Min(gfp->VBR_mean_bitrate_kbps, 64); } else if (gfp->samplerate_out < 32000) { gfp->VBR_mean_bitrate_kbps = Max(gfp->VBR_mean_bitrate_kbps, 8); gfp->VBR_mean_bitrate_kbps = Min(gfp->VBR_mean_bitrate_kbps, 160); } else { gfp->VBR_mean_bitrate_kbps = Max(gfp->VBR_mean_bitrate_kbps, 32); gfp->VBR_mean_bitrate_kbps = Min(gfp->VBR_mean_bitrate_kbps, 320); } } /* WORK IN PROGRESS */ /* mapping VBR scale to internal VBR quality settings */ if (gfp->samplerate_out == 0 && (gfp->VBR == vbr_mt || gfp->VBR == vbr_mtrh)) { float const qval = gfp->VBR_q + gfp->VBR_q_frac; struct q_map { int sr_a; float qa, qb, ta, tb; int lp; }; struct q_map const m[9] = { {48000, 0.0,6.5, 0.0,6.5, 23700} , {44100, 0.0,6.5, 0.0,6.5, 21780} , {32000, 6.5,8.0, 5.2,6.5, 15800} , {24000, 8.0,8.5, 5.2,6.0, 11850} , {22050, 8.5,9.01, 5.2,6.5, 10892} , {16000, 9.01,9.4, 4.9,6.5, 7903} , {12000, 9.4,9.6, 4.5,6.0, 5928} , {11025, 9.6,9.9, 5.1,6.5, 5446} , { 8000, 9.9,10., 4.9,6.5, 3952} }; for (i = 2; i < 9; ++i) { if (gfp->samplerate_in == m[i].sr_a) { if (qval < m[i].qa) { double d = qval / m[i].qa; d = d * m[i].ta; gfp->VBR_q = (int)d; gfp->VBR_q_frac = d - gfp->VBR_q; } } if (gfp->samplerate_in >= m[i].sr_a) { if (m[i].qa <= qval && qval < m[i].qb) { float const q_ = m[i].qb-m[i].qa; float const t_ = m[i].tb-m[i].ta; double d = m[i].ta + t_ * (qval-m[i].qa) / q_; gfp->VBR_q = (int)d; gfp->VBR_q_frac = d - gfp->VBR_q; gfp->samplerate_out = m[i].sr_a; if (gfp->lowpassfreq == 0) { gfp->lowpassfreq = -1; } break; } } } } /****************************************************************/ /* if a filter has not been enabled, see if we should add one: */ /****************************************************************/ if (gfp->lowpassfreq == 0) { double lowpass = 16000; double highpass; switch (gfp->VBR) { case vbr_off:{ optimum_bandwidth(&lowpass, &highpass, gfp->brate); break; } case vbr_abr:{ optimum_bandwidth(&lowpass, &highpass, gfp->VBR_mean_bitrate_kbps); break; } case vbr_rh:{ int const x[11] = { 19500, 19000, 18600, 18000, 17500, 16000, 15600, 14900, 12500, 10000, 3950 }; if (0 <= gfp->VBR_q && gfp->VBR_q <= 9) { double a = x[gfp->VBR_q], b = x[gfp->VBR_q + 1], m = gfp->VBR_q_frac; lowpass = linear_int(a, b, m); } else { lowpass = 19500; } break; } case vbr_mtrh: case vbr_mt:{ int const x[11] = { 24000, 19500, 18500, 18000, 17500, 17000, 16500, 15600, 15200, 7230, 3950 }; if (0 <= gfp->VBR_q && gfp->VBR_q <= 9) { double a = x[gfp->VBR_q], b = x[gfp->VBR_q + 1], m = gfp->VBR_q_frac; lowpass = linear_int(a, b, m); } else { lowpass = 21500; } break; } default:{ int const x[11] = { 19500, 19000, 18500, 18000, 17500, 16500, 15500, 14500, 12500, 9500, 3950 }; if (0 <= gfp->VBR_q && gfp->VBR_q <= 9) { double a = x[gfp->VBR_q], b = x[gfp->VBR_q + 1], m = gfp->VBR_q_frac; lowpass = linear_int(a, b, m); } else { lowpass = 19500; } } } if (gfp->mode == MONO && (gfp->VBR == vbr_off || gfp->VBR == vbr_abr)) lowpass *= 1.5; gfp->lowpassfreq = lowpass; } if (gfp->samplerate_out == 0) { if (2 * gfp->lowpassfreq > gfp->samplerate_in) { gfp->lowpassfreq = gfp->samplerate_in / 2; } gfp->samplerate_out = optimum_samplefreq((int) gfp->lowpassfreq, gfp->samplerate_in); } if (gfp->VBR == vbr_mt || gfp->VBR == vbr_mtrh) { gfp->lowpassfreq = Min(24000, gfp->lowpassfreq); } else { gfp->lowpassfreq = Min(20500, gfp->lowpassfreq); } gfp->lowpassfreq = Min(gfp->samplerate_out / 2, gfp->lowpassfreq); if (gfp->VBR == vbr_off) { gfp->compression_ratio = gfp->samplerate_out * 16 * cfg->channels_out / (1.e3 * gfp->brate); } if (gfp->VBR == vbr_abr) { gfp->compression_ratio = gfp->samplerate_out * 16 * cfg->channels_out / (1.e3 * gfp->VBR_mean_bitrate_kbps); } /* do not compute ReplayGain values and do not find the peak sample if we can't store them */ if (!gfp->write_lame_tag) { gfp->findReplayGain = 0; gfp->decode_on_the_fly = 0; cfg->findPeakSample = 0; } cfg->findReplayGain = gfp->findReplayGain; cfg->decode_on_the_fly = gfp->decode_on_the_fly; if (cfg->decode_on_the_fly) cfg->findPeakSample = 1; if (cfg->findReplayGain) { if (InitGainAnalysis(gfc->sv_rpg.rgdata, gfp->samplerate_out) == INIT_GAIN_ANALYSIS_ERROR) { freegfc(gfc); gfp->internal_flags = NULL; return -6; } } #ifdef DECODE_ON_THE_FLY if (cfg->decode_on_the_fly && !gfp->decode_only) { if (gfc->hip) { hip_decode_exit(gfc->hip); } gfc->hip = hip_decode_init(); /* report functions */ hip_set_errorf(gfc->hip, gfp->report.errorf); hip_set_debugf(gfc->hip, gfp->report.debugf); hip_set_msgf(gfc->hip, gfp->report.msgf); } #endif cfg->disable_reservoir = gfp->disable_reservoir; cfg->lowpassfreq = gfp->lowpassfreq; cfg->highpassfreq = gfp->highpassfreq; cfg->samplerate_in = gfp->samplerate_in; cfg->samplerate_out = gfp->samplerate_out; cfg->mode_gr = cfg->samplerate_out <= 24000 ? 1 : 2; /* Number of granules per frame */ gfc->ov_enc.encoder_delay = ENCDELAY; /* * sample freq bitrate compression ratio * [kHz] [kbps/channel] for 16 bit input * 44.1 56 12.6 * 44.1 64 11.025 * 44.1 80 8.82 * 22.05 24 14.7 * 22.05 32 11.025 * 22.05 40 8.82 * 16 16 16.0 * 16 24 10.667 * */ /* * For VBR, take a guess at the compression_ratio. * For example: * * VBR_q compression like * - 4.4 320 kbps/44 kHz * 0...1 5.5 256 kbps/44 kHz * 2 7.3 192 kbps/44 kHz * 4 8.8 160 kbps/44 kHz * 6 11 128 kbps/44 kHz * 9 14.7 96 kbps * * for lower bitrates, downsample with --resample */ switch (gfp->VBR) { case vbr_mt: case vbr_rh: case vbr_mtrh: { /*numbers are a bit strange, but they determine the lowpass value */ FLOAT const cmp[] = { 5.7, 6.5, 7.3, 8.2, 10, 11.9, 13, 14, 15, 16.5 }; gfp->compression_ratio = cmp[gfp->VBR_q]; } break; case vbr_abr: gfp->compression_ratio = cfg->samplerate_out * 16 * cfg->channels_out / (1.e3 * gfp->VBR_mean_bitrate_kbps); break; default: gfp->compression_ratio = cfg->samplerate_out * 16 * cfg->channels_out / (1.e3 * gfp->brate); break; } /* mode = -1 (not set by user) or * mode = MONO (because of only 1 input channel). * If mode has not been set, then select J-STEREO */ if (gfp->mode == NOT_SET) { gfp->mode = JOINT_STEREO; } cfg->mode = gfp->mode; /* apply user driven high pass filter */ if (cfg->highpassfreq > 0) { cfg->highpass1 = 2. * cfg->highpassfreq; if (gfp->highpasswidth >= 0) cfg->highpass2 = 2. * (cfg->highpassfreq + gfp->highpasswidth); else /* 0% above on default */ cfg->highpass2 = (1 + 0.00) * 2. * cfg->highpassfreq; cfg->highpass1 /= cfg->samplerate_out; cfg->highpass2 /= cfg->samplerate_out; } else { cfg->highpass1 = 0; cfg->highpass2 = 0; } /* apply user driven low pass filter */ cfg->lowpass1 = 0; cfg->lowpass2 = 0; if (cfg->lowpassfreq > 0 && cfg->lowpassfreq < (cfg->samplerate_out / 2) ) { cfg->lowpass2 = 2. * cfg->lowpassfreq; if (gfp->lowpasswidth >= 0) { cfg->lowpass1 = 2. * (cfg->lowpassfreq - gfp->lowpasswidth); if (cfg->lowpass1 < 0) /* has to be >= 0 */ cfg->lowpass1 = 0; } else { /* 0% below on default */ cfg->lowpass1 = (1 - 0.00) * 2. * cfg->lowpassfreq; } cfg->lowpass1 /= cfg->samplerate_out; cfg->lowpass2 /= cfg->samplerate_out; } /**********************************************************************/ /* compute info needed for polyphase filter (filter type==0, default) */ /**********************************************************************/ lame_init_params_ppflt(gfc); /******************************************************* * samplerate and bitrate index *******************************************************/ cfg->samplerate_index = SmpFrqIndex(cfg->samplerate_out, &cfg->version); if (cfg->samplerate_index < 0) { freegfc(gfc); gfp->internal_flags = NULL; return -1; } if (gfp->VBR == vbr_off) { if (cfg->free_format) { gfc->ov_enc.bitrate_index = 0; } else { gfp->brate = FindNearestBitrate(gfp->brate, cfg->version, cfg->samplerate_out); gfc->ov_enc.bitrate_index = BitrateIndex(gfp->brate, cfg->version, cfg->samplerate_out); if (gfc->ov_enc.bitrate_index <= 0) { freegfc(gfc); gfp->internal_flags = NULL; return -1; } } } else { gfc->ov_enc.bitrate_index = 1; } init_bit_stream_w(gfc); j = cfg->samplerate_index + (3 * cfg->version) + 6 * (cfg->samplerate_out < 16000); for (i = 0; i < SBMAX_l + 1; i++) gfc->scalefac_band.l[i] = sfBandIndex[j].l[i]; for (i = 0; i < PSFB21 + 1; i++) { int const size = (gfc->scalefac_band.l[22] - gfc->scalefac_band.l[21]) / PSFB21; int const start = gfc->scalefac_band.l[21] + i * size; gfc->scalefac_band.psfb21[i] = start; } gfc->scalefac_band.psfb21[PSFB21] = 576; for (i = 0; i < SBMAX_s + 1; i++) gfc->scalefac_band.s[i] = sfBandIndex[j].s[i]; for (i = 0; i < PSFB12 + 1; i++) { int const size = (gfc->scalefac_band.s[13] - gfc->scalefac_band.s[12]) / PSFB12; int const start = gfc->scalefac_band.s[12] + i * size; gfc->scalefac_band.psfb12[i] = start; } gfc->scalefac_band.psfb12[PSFB12] = 192; /* determine the mean bitrate for main data */ if (cfg->mode_gr == 2) /* MPEG 1 */ cfg->sideinfo_len = (cfg->channels_out == 1) ? 4 + 17 : 4 + 32; else /* MPEG 2 */ cfg->sideinfo_len = (cfg->channels_out == 1) ? 4 + 9 : 4 + 17; if (cfg->error_protection) cfg->sideinfo_len += 2; gfc->class_id = LAME_ID; { int k; for (k = 0; k < 19; k++) gfc->sv_enc.pefirbuf[k] = 700 * cfg->mode_gr * cfg->channels_out; if (gfp->ATHtype == -1) gfp->ATHtype = 4; } assert(gfp->VBR_q <= 9); assert(gfp->VBR_q >= 0); switch (gfp->VBR) { case vbr_mt: case vbr_mtrh:{ if (gfp->strict_ISO < 0) { gfp->strict_ISO = MDB_MAXIMUM; } if (gfp->useTemporal < 0) { gfp->useTemporal = 0; /* off by default for this VBR mode */ } (void) apply_preset(gfp, 500 - (gfp->VBR_q * 10), 0); /* The newer VBR code supports only a limited subset of quality levels: 9-5=5 are the same, uses x^3/4 quantization 4-0=0 are the same 5 plus best huffman divide code */ if (gfp->quality < 0) gfp->quality = LAME_DEFAULT_QUALITY; if (gfp->quality < 5) gfp->quality = 0; if (gfp->quality > 7) gfp->quality = 7; /* sfb21 extra only with MPEG-1 at higher sampling rates */ if (gfp->experimentalY) gfc->sv_qnt.sfb21_extra = 0; else gfc->sv_qnt.sfb21_extra = (cfg->samplerate_out > 44000); gfc->iteration_loop = VBR_new_iteration_loop; break; } case vbr_rh:{ (void) apply_preset(gfp, 500 - (gfp->VBR_q * 10), 0); /* sfb21 extra only with MPEG-1 at higher sampling rates */ if (gfp->experimentalY) gfc->sv_qnt.sfb21_extra = 0; else gfc->sv_qnt.sfb21_extra = (cfg->samplerate_out > 44000); /* VBR needs at least the output of GPSYCHO, * so we have to garantee that by setting a minimum * quality level, actually level 6 does it. * down to level 6 */ if (gfp->quality > 6) gfp->quality = 6; if (gfp->quality < 0) gfp->quality = LAME_DEFAULT_QUALITY; gfc->iteration_loop = VBR_old_iteration_loop; break; } default: /* cbr/abr */ { vbr_mode vbrmode; /* no sfb21 extra with CBR code */ gfc->sv_qnt.sfb21_extra = 0; if (gfp->quality < 0) gfp->quality = LAME_DEFAULT_QUALITY; vbrmode = gfp->VBR; if (vbrmode == vbr_off) (void) lame_set_VBR_mean_bitrate_kbps(gfp, gfp->brate); /* second, set parameters depending on bitrate */ (void) apply_preset(gfp, gfp->VBR_mean_bitrate_kbps, 0); gfp->VBR = vbrmode; if (vbrmode == vbr_off) { gfc->iteration_loop = CBR_iteration_loop; } else { gfc->iteration_loop = ABR_iteration_loop; } break; } } /*initialize default values common for all modes */ gfc->sv_qnt.mask_adjust = gfp->maskingadjust; gfc->sv_qnt.mask_adjust_short = gfp->maskingadjust_short; /* just another daily changing developer switch */ if (gfp->tune) { gfc->sv_qnt.mask_adjust += gfp->tune_value_a; gfc->sv_qnt.mask_adjust_short += gfp->tune_value_a; } if (gfp->VBR != vbr_off) { /* choose a min/max bitrate for VBR */ /* if the user didn't specify VBR_max_bitrate: */ cfg->vbr_min_bitrate_index = 1; /* default: allow 8 kbps (MPEG-2) or 32 kbps (MPEG-1) */ cfg->vbr_max_bitrate_index = 14; /* default: allow 160 kbps (MPEG-2) or 320 kbps (MPEG-1) */ if (cfg->samplerate_out < 16000) cfg->vbr_max_bitrate_index = 8; /* default: allow 64 kbps (MPEG-2.5) */ if (gfp->VBR_min_bitrate_kbps) { gfp->VBR_min_bitrate_kbps = FindNearestBitrate(gfp->VBR_min_bitrate_kbps, cfg->version, cfg->samplerate_out); cfg->vbr_min_bitrate_index = BitrateIndex(gfp->VBR_min_bitrate_kbps, cfg->version, cfg->samplerate_out); if (cfg->vbr_min_bitrate_index < 0) return -1; } if (gfp->VBR_max_bitrate_kbps) { gfp->VBR_max_bitrate_kbps = FindNearestBitrate(gfp->VBR_max_bitrate_kbps, cfg->version, cfg->samplerate_out); cfg->vbr_max_bitrate_index = BitrateIndex(gfp->VBR_max_bitrate_kbps, cfg->version, cfg->samplerate_out); if (cfg->vbr_max_bitrate_index < 0) return -1; } gfp->VBR_min_bitrate_kbps = bitrate_table[cfg->version][cfg->vbr_min_bitrate_index]; gfp->VBR_max_bitrate_kbps = bitrate_table[cfg->version][cfg->vbr_max_bitrate_index]; gfp->VBR_mean_bitrate_kbps = Min(bitrate_table[cfg->version][cfg->vbr_max_bitrate_index], gfp->VBR_mean_bitrate_kbps); gfp->VBR_mean_bitrate_kbps = Max(bitrate_table[cfg->version][cfg->vbr_min_bitrate_index], gfp->VBR_mean_bitrate_kbps); } cfg->preset = gfp->preset; cfg->write_lame_tag = gfp->write_lame_tag; cfg->vbr = gfp->VBR; gfc->sv_qnt.substep_shaping = gfp->substep_shaping; cfg->noise_shaping = gfp->noise_shaping; cfg->subblock_gain = gfp->subblock_gain; cfg->use_best_huffman = gfp->use_best_huffman; cfg->avg_bitrate = gfp->brate; cfg->vbr_avg_bitrate_kbps = gfp->VBR_mean_bitrate_kbps; cfg->compression_ratio = gfp->compression_ratio; /* initialize internal qval settings */ lame_init_qval(gfp); /* automatic ATH adjustment on */ if (gfp->athaa_type < 0) gfc->ATH->use_adjust = 3; else gfc->ATH->use_adjust = gfp->athaa_type; /* initialize internal adaptive ATH settings -jd */ gfc->ATH->aa_sensitivity_p = pow(10.0, gfp->athaa_sensitivity / -10.0); if (gfp->short_blocks == short_block_not_set) { gfp->short_blocks = short_block_allowed; } /*Note Jan/2003: Many hardware decoders cannot handle short blocks in regular stereo mode unless they are coupled (same type in both channels) it is a rare event (1 frame per min. or so) that LAME would use uncoupled short blocks, so lets turn them off until we decide how to handle this. No other encoders allow uncoupled short blocks, even though it is in the standard. */ /* rh 20040217: coupling makes no sense for mono and dual-mono streams */ if (gfp->short_blocks == short_block_allowed && (cfg->mode == JOINT_STEREO || cfg->mode == STEREO)) { gfp->short_blocks = short_block_coupled; } cfg->short_blocks = gfp->short_blocks; if (lame_get_quant_comp(gfp) < 0) (void) lame_set_quant_comp(gfp, 1); if (lame_get_quant_comp_short(gfp) < 0) (void) lame_set_quant_comp_short(gfp, 0); if (lame_get_msfix(gfp) < 0) lame_set_msfix(gfp, 0); /* select psychoacoustic model */ (void) lame_set_exp_nspsytune(gfp, lame_get_exp_nspsytune(gfp) | 1); if (gfp->ATHtype < 0) gfp->ATHtype = 4; if (gfp->ATHcurve < 0) gfp->ATHcurve = 4; if (gfp->interChRatio < 0) gfp->interChRatio = 0; if (gfp->useTemporal < 0) gfp->useTemporal = 1; /* on by default */ cfg->interChRatio = gfp->interChRatio; cfg->msfix = gfp->msfix; cfg->ATH_offset_db = 0-gfp->ATH_lower_db; cfg->ATH_offset_factor = powf(10.f, cfg->ATH_offset_db * 0.1f); cfg->ATHcurve = gfp->ATHcurve; cfg->ATHtype = gfp->ATHtype; cfg->ATHonly = gfp->ATHonly; cfg->ATHshort = gfp->ATHshort; cfg->noATH = gfp->noATH; cfg->quant_comp = gfp->quant_comp; cfg->quant_comp_short = gfp->quant_comp_short; cfg->use_temporal_masking_effect = gfp->useTemporal; cfg->use_safe_joint_stereo = gfp->exp_nspsytune & 2; { cfg->adjust_bass_db = (gfp->exp_nspsytune >> 2) & 63; if (cfg->adjust_bass_db >= 32.f) cfg->adjust_bass_db -= 64.f; cfg->adjust_bass_db *= 0.25f; cfg->adjust_alto_db = (gfp->exp_nspsytune >> 8) & 63; if (cfg->adjust_alto_db >= 32.f) cfg->adjust_alto_db -= 64.f; cfg->adjust_alto_db *= 0.25f; cfg->adjust_treble_db = (gfp->exp_nspsytune >> 14) & 63; if (cfg->adjust_treble_db >= 32.f) cfg->adjust_treble_db -= 64.f; cfg->adjust_treble_db *= 0.25f; /* to be compatible with Naoki's original code, the next 6 bits * define only the amount of changing treble for sfb21 */ cfg->adjust_sfb21_db = (gfp->exp_nspsytune >> 20) & 63; if (cfg->adjust_sfb21_db >= 32.f) cfg->adjust_sfb21_db -= 64.f; cfg->adjust_sfb21_db *= 0.25f; cfg->adjust_sfb21_db += cfg->adjust_treble_db; } /* Setting up the PCM input data transform matrix, to apply * user defined re-scaling, and or two-to-one channel downmix. */ { FLOAT m[2][2] = { {1.0f, 0.0f}, {0.0f, 1.0f} }; /* user selected scaling of the samples */ m[0][0] *= gfp->scale; m[0][1] *= gfp->scale; m[1][0] *= gfp->scale; m[1][1] *= gfp->scale; /* user selected scaling of the channel 0 (left) samples */ m[0][0] *= gfp->scale_left; m[0][1] *= gfp->scale_left; /* user selected scaling of the channel 1 (right) samples */ m[1][0] *= gfp->scale_right; m[1][1] *= gfp->scale_right; /* Downsample to Mono if 2 channels in and 1 channel out */ if (cfg->channels_in == 2 && cfg->channels_out == 1) { m[0][0] = 0.5f * (m[0][0] + m[1][0]); m[0][1] = 0.5f * (m[0][1] + m[1][1]); m[1][0] = 0; m[1][1] = 0; } cfg->pcm_transform[0][0] = m[0][0]; cfg->pcm_transform[0][1] = m[0][1]; cfg->pcm_transform[1][0] = m[1][0]; cfg->pcm_transform[1][1] = m[1][1]; } /* padding method as described in * "MPEG-Layer3 / Bitstream Syntax and Decoding" * by Martin Sieler, Ralph Sperschneider * * note: there is no padding for the very first frame * * Robert Hegemann 2000-06-22 */ gfc->sv_enc.slot_lag = gfc->sv_enc.frac_SpF = 0; if (cfg->vbr == vbr_off) gfc->sv_enc.slot_lag = gfc->sv_enc.frac_SpF = ((cfg->version + 1) * 72000L * cfg->avg_bitrate) % cfg->samplerate_out; (void) lame_init_bitstream(gfp); iteration_init(gfc); (void) psymodel_init(gfp); cfg->buffer_constraint = get_max_frame_buffer_size_by_constraint(cfg, gfp->strict_ISO); return 0; }
int lame_set_preset( lame_global_flags* gfp, int preset ) { gfp->preset = preset; return apply_preset(gfp, preset, 1); }
void x264_speedcontrol_frame( x264_t *h ) { x264_speedcontrol_t *sc = h->sc; int64_t t, delta_t, delta_buffer; int delta_f; x264_emms(); // update buffer state after encoding and outputting the previous frame(s) t = x264_mdate(); delta_f = h->i_frame - sc->prev_frame; delta_t = t - sc->timestamp; delta_buffer = delta_f * sc->spf / h->param.sc.f_speed - delta_t; sc->buffer_fill += delta_buffer; sc->prev_frame = h->i_frame; sc->timestamp = t; // update the time predictor if( delta_f ) { int cpu_time = h->param.sc.b_alt_timer ? sc->cpu_time : delta_t; float decay = powf( sc->cplx_decay, delta_f ); sc->cplx_num *= decay; sc->cplx_den *= decay; sc->cplx_num += cpu_time / presets[sc->preset].time; sc->cplx_den += delta_f; sc->stat.avg_preset += sc->preset * delta_f; sc->stat.den += delta_f; } sc->stat.min_buffer = X264_MIN( sc->buffer_fill, sc->stat.min_buffer ); sc->stat.max_buffer = X264_MAX( sc->buffer_fill, sc->stat.max_buffer ); if( sc->buffer_fill > sc->buffer_size ) // oops, cpu was idle { // not really an error, but we'll warn for debugging purposes static int64_t idle_t = 0, print_interval = 0; idle_t += sc->buffer_fill - sc->buffer_size; if( t - print_interval > 1e6 ) { x264_log( h, X264_LOG_WARNING, "speedcontrol idle (%.6f sec)\n", idle_t/1e6 ); print_interval = t; idle_t = 0; } sc->buffer_fill = sc->buffer_size; } else if( sc->buffer_fill < 0 && delta_buffer < 0 ) // oops, we're late { // don't clip fullness to 0; we'll hope the real buffer was bigger than // specified, and maybe we can catch up. if the application had to drop // frames, then it should override the buffer fullness (FIXME implement this). x264_log( h, X264_LOG_WARNING, "speedcontrol underflow (%.6f sec)\n", sc->buffer_fill/1e6 ); } { // pick the preset that should return the buffer to 3/4-full within a time // specified by compensation_period float target = sc->spf / h->param.sc.f_speed * (sc->buffer_fill + sc->compensation_period) / (sc->buffer_size*3/4 + sc->compensation_period); float cplx = sc->cplx_num / sc->cplx_den; float set, t0, t1; float filled = (float) sc->buffer_fill / sc->buffer_size; int i; t0 = presets[0].time * cplx; for( i=1;; i++ ) { t1 = presets[i].time * cplx; if( t1 >= target || i == PRESETS-1 ) break; t0 = t1; } // linear interpolation between states set = i-1 + (target - t0) / (t1 - t0); // Even if our time estimations in the PRESETS array are off // this will push us towards our target fullness set += (20 * (filled-0.75)); set = x264_clip3f(set,0,PRESETS-1); apply_preset( h, dither( sc, set ) ); // FIXME if (h->param.i_log_level >= X264_LOG_DEBUG) { static float cpu, wall, tgt, den; float decay = 1-1/100.; cpu = cpu*decay + sc->cpu_time; wall = wall*decay + delta_t; tgt = tgt*decay + target; den = den*decay + 1; fprintf( stderr, "speed: %.2f %d[%.5f] (t/c/w: %6.0f/%6.0f/%6.0f = %.4f) fps=%.2f\r", set, sc->preset, (float)sc->buffer_fill / sc->buffer_size, tgt/den, cpu/den, wall/den, cpu/wall, 1e6*den/wall ); } } }