static int axp_battery_adc_set(struct axp_charger *charger)
{
	 int ret ;
	 uint8_t val;

	/*enable adc and set adc */
	val= AXP19_ADC_BATVOL_ENABLE | AXP19_ADC_BATCUR_ENABLE
	| AXP19_ADC_DCINCUR_ENABLE | AXP19_ADC_DCINVOL_ENABLE
	| AXP19_ADC_USBVOL_ENABLE | AXP19_ADC_USBCUR_ENABLE;

	ret = axp_write(charger->master, AXP19_ADC_CONTROL1, val);
	if (ret)
		return ret;
    ret = axp_read(charger->master, AXP19_ADC_CONTROL3, &val);
	switch (charger->sample_time/25){
	case 1: val &= ~(3 << 6);break;
	case 2: val &= ~(3 << 6);val |= 1 << 6;break;
	case 4: val &= ~(3 << 6);val |= 2 << 6;break;
	case 8: val |= 3 << 6;break;
	default: break;
	}
	ret = axp_write(charger->master, AXP19_ADC_CONTROL3, val);
	if (ret)
		return ret;

	return 0;
}
Example #2
0
int axp_set_charging_current(int current)
{
	uint8_t reg_val = 0;

    if (current > 1800 * 1000 || current < 0) {
        printf("%s, wrong charge current seting:%d\n", __func__, current);
        return -1;
    }

    if (current > 100) {
        current = current / 1000;
    } else {
        current = (current * board_battery_para.pmu_battery_cap) / 100 + 100;    
    }
    if (current > 1600) {
        current = 1600;    
    }
	axp_read(POWER20_CHARGE1, &reg_val);
	if(current == 0) {
		reg_val &= 0x7f;
		axp_write(POWER20_CHARGE1, reg_val);
		printf("%s: set charge current to %d Reg value %x!\n",__FUNCTION__, current, reg_val);		
	} else {
		reg_val &= 0xf0;
		reg_val |= ((current-300)/100);
		axp_write(POWER20_CHARGE1, reg_val);
		printf("%s: set charge current to %d Reg value %x!\n",__FUNCTION__, current, reg_val);		
	}
    return 0;
}
Example #3
0
int axp_calculate_rdc(void)
{
    struct axp_adc_res axp_adc;
    char    buf[100];
    int32_t i_lo, i_hi;
    int32_t v_lo, v_hi;
    int32_t rdc_cal = 0;

    if (ocv > 4000) {                           // don't calculate rdc when ocv is too high
        return 0;
    }
    axp_write(0x33, 0xc1);                      // set charge current to 400mA 
    udelay(500000);
    axp_read_adc(&axp_adc);
    i_lo = ABS(axp_ibat_to_mA(axp_adc.ichar_res)-axp_ibat_to_mA(axp_adc.idischar_res)); 
    v_lo = (axp_adc.vbat_res * 1100) / 1000;
    axp_write(0x33, 0xc9);                      // set charge current to 1.2A
    udelay(500000);
    axp_read_adc(&axp_adc);
    i_hi = ABS(axp_ibat_to_mA(axp_adc.ichar_res)-axp_ibat_to_mA(axp_adc.idischar_res)); 
    v_hi = (axp_adc.vbat_res * 1100) / 1000;
    rdc_cal = (v_hi - v_lo) * 1000 / (i_hi - i_lo);
    sprintf(buf, "i_lo:%4d, i_hi:%4d, u_lo:%4d, u_hi:%4d, rdc:%4d\n", i_lo, i_hi, v_lo, v_hi, rdc_cal);
    terminal_print(0, 36, buf);
    if (rdc_cal < 0 || rdc_cal >= 300) {        // usually RDC will not greater than 300 mhom
        return 0;
    }
    return rdc_cal;
}
Example #4
0
static void board_pmu_init(void)
{
    struct aml_pmu_driver *driver = aml_pmu_get_driver();
    if (driver && driver->pmu_init) {
        driver->pmu_init();
    }

#ifdef CONFIG_AW_AXP20
    // todo add your platform needed init code here
#ifdef	CONFIG_AML_AXP202
	uint8_t tmp;
	uint8_t reg_val;
	uint8_t axp_ts_current=0x3;		//TS pin output current: 00:20uA£»01:40uA;10:60uA;11:80uA
#endif
#ifdef	CONFIG_AML_AXP202
#define LTF_CHARGE_REG 		0x38			
#define HTF_CHARGE_REG 		0x39
//#define LTF_DISCHARGE_REG 	0x3c
//#define HTF_DISCHARGE_REG 	0x3d
#define TS_CURRENT_REG 		0x84

	axp_read(TS_CURRENT_REG, &reg_val);
	tmp = axp_ts_current << 4;
	reg_val &= ~(3<<4);	//reg_val &= 0xcf;
	reg_val |= tmp;		

	reg_val &= ~(3<<0);
	reg_val |= 0x1;		//TS pin:charge output current
	
	axp_write(TS_CURRENT_REG,reg_val); 	//set TS pin output current
	axp_write(LTF_CHARGE_REG,0xDB); 	//set battery low temperature threshold,T=0
	axp_write(HTF_CHARGE_REG,0x48); 	//set battery high temperature threshold,T=70
#endif
#endif
}
Example #5
0
void axp81x_power_off(int power_start)
{
	uint8_t val;
	struct axp_dev *axp;
	axp = axp_dev_lookup(AXP81X);
	if (NULL == axp) {
		printk("%s: axp data is null\n", __func__);
		return;
	}
	if(axp81x_config.pmu_pwroff_vol >= 2600 && axp81x_config.pmu_pwroff_vol <= 3300){
		if (axp81x_config.pmu_pwroff_vol > 3200){
			val = 0x7;
		}else if (axp81x_config.pmu_pwroff_vol > 3100){
			val = 0x6;
		}else if (axp81x_config.pmu_pwroff_vol > 3000){
			val = 0x5;
		}else if (axp81x_config.pmu_pwroff_vol > 2900){
			val = 0x4;
		}else if (axp81x_config.pmu_pwroff_vol > 2800){
			val = 0x3;
		}else if (axp81x_config.pmu_pwroff_vol > 2700){
			val = 0x2;
		}else if (axp81x_config.pmu_pwroff_vol > 2600){
			val = 0x1;
		}else
			val = 0x0;
		axp_update(axp->dev, AXP81X_VOFF_SET, val, 0x7);
	}
	val = 0xff;
	printk("[axp] send power-off command!\n");

	mdelay(20);

	if(axp81x_config.power_start != 1){
		axp_read(axp->dev, AXP81X_STATUS, &val);
		if(val & 0xF0){
			axp_read(axp->dev, AXP81X_MODE_CHGSTATUS, &val);
			if(val & 0x20) {
				printk("[axp] set flag!\n");
				axp_read(axp->dev, AXP81X_BUFFERC, &val);
				if (0x0d != val)
					axp_write(axp->dev, AXP81X_BUFFERC, 0x0f);
				mdelay(20);
				printk("[axp] reboot!\n");
				machine_restart(NULL);
				printk("[axp] warning!!! arch can't ,reboot, maybe some error happend!\n");
			}
		}
	}
	axp_read(axp->dev, AXP81X_BUFFERC, &val);
	if (0x0d != val)
		axp_write(axp->dev, AXP81X_BUFFERC, 0x00);

	mdelay(20);
	axp_set_bits(axp->dev, AXP81X_OFF_CTL, 0x80);
	mdelay(20);
	printk("[axp] warning!!! axp can't power-off, maybe some error happend!\n");
}
Example #6
0
int axp_charger_set_usbcur_limit(int usbcur_limit)
{
    uint8_t val;

    if ((usbcur_limit < 0 || usbcur_limit > 900) && (usbcur_limit != -1)) {
        printf("wrong current limit:%d\n", usbcur_limit); 
    }
	axp_read(AXP20_CHARGE_VBUS, &val);
    val &= ~0x03;
	switch (usbcur_limit) {
    case -1:
	case  0:
		val |= 0x3;             // Max
		break;
	case 100:
		val |= 0x2;
		break;
	case 500:
		val |= 0x1;
		break;
	case 900:
		val |= 0x0;
		break;
	default:
		printf("usbcur_limit=%d, not in 0,100,500,900. please check!\n", usbcur_limit);
		return -1;
		break;
	}
	axp_write(AXP20_CHARGE_VBUS, val);
    axp_read(AXP20_CHARGE_VBUS, &val);
	printf("[AXP_PMU]%s,AXP20_CHARGE_VBUS:0x%x\n", __func__, val);
	
    return 0;
}
static int setup_regulator(const void *fdt, int node,
			   const struct axp_regulator *reg)
{
	int mvolt;
	uint8_t regval;

	if (!should_enable_regulator(fdt, node))
		return -ENOENT;

	mvolt = fdt_get_regulator_millivolt(fdt, node);
	if (mvolt < reg->min_volt || mvolt > reg->max_volt)
		return -EINVAL;

	regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
	if (regval > reg->split)
		regval = ((regval - reg->split) / 2) + reg->split;

	axp_write(reg->volt_reg, regval);
	if (reg->switch_reg < 0xff)
		axp_setbits(reg->switch_reg, BIT(reg->switch_bit));

	INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
	     mvolt / 1000, mvolt % 1000);

	return 0;
}
Example #8
0
static void axp_set_basecap(int base_cap)
{
	uint8_t val;
	if(base_cap >= 0)
		val = base_cap & 0x7F;
	else
		val = ABS(base_cap) | 0x80;
	DBG_PSY_MSG("axp_set_basecap = %d\n", val);
	axp_write(POWER20_DATA_BUFFER4, val);
}
Example #9
0
void axp_set_rdc(int rdc)
{
    uint32_t rdc_tmp = (rdc * 10000 + 5371) / 10742;
    //char    buf[100];

    axp_set_bits(0xB9, 0x80);                           // stop
    axp_clr_bits(0xBA, 0x80);
    axp_write(0xBB, rdc_tmp & 0xff);
    axp_write(0xBA, (rdc_tmp >> 8) & 0x1F);
    axp_clr_bits(0xB9, 0x80);                           // start
}
static void axp_set_charge(struct axp_charger *charger)
{
	uint8_t val,tmp;
	val = 0x00;

	if(charger->chgvol < 4200)
		val &= ~(3 << 5);
	else if (charger->chgvol<4360){
		val &= ~(3 << 5);
		val |= 1 << 6;
	}
	else
		val |= 3 << 5;
	if(charger->limit_on)
		val |= ((charger->chgcur - 100) / 200) | (1 << 3);
	else
		val |= ((charger->chgcur - 100) / 200) ;
	val &= 0x7F;
	val |= charger->chgen << 7;
	axp_read(charger->master, AXP18_CHARGE_CONTROL2, &tmp);
		tmp &= 0x3C;
	if(charger->chgpretime < 30)
		charger->chgpretime = 30;
	if(charger->chgcsttime < 420)
		charger->chgcsttime = 420;
	tmp |= ((charger->chgpretime - 30) / 10) << 6  \
			| (charger->chgcsttime - 420) / 60;

	axp_write(charger->master, AXP18_CHARGE_CONTROL1, val);
	axp_write(charger->master, AXP18_CHARGE_CONTROL2, tmp);

	axp_read(charger->master, AXP18_CHARGE_STATUS, &val);

	if(charger ->chgend == 10)
		val &= ~(1 << 6);
	else
		val |= 1 << 6;
	axp_write(charger->master, AXP18_CHARGE_STATUS, val);
}
static int axp_battery_adc_set(struct axp_charger *charger)
{
	int ret ;
	uint8_t val;

	/*enable adc and set adc */
	val=(charger->sample_time / 8 - 1) << 2 | AXP18_ADC_BATVOL_ENABLE
		| AXP18_ADC_BATCUR_ENABLE | AXP18_ADC_ACCUR_ENABLE
		| AXP18_ADC_ACVOL_ENABLE;

	ret = axp_write(charger->master, AXP18_ADC_CONTROL, val);

	return ret;
}
static int axp_get_rdc(struct axp_charger *charger)
{
    uint8_t val[2];
    unsigned int i,temp,pre_temp;
    int averPreVol = 0, averPreCur = 0,averNextVol = 0,averNextCur = 0;

	axp_reads(charger->master,AXP19_DATA_BUFFER2,2,val);

	pre_temp = (((val[0] & 0x07) << 8 ) + val[1]);

	if(!charger->bat_det){
        return pre_temp;
	}
	if( charger->ext_valid){
		for(i = 0; i< AXP19_RDC_COUNT; i++){
            axp_charger_update(charger);
			averPreVol += charger->vbat;
			averPreCur += charger->ibat;
			msleep(200);
        }
        averPreVol /= AXP19_RDC_COUNT;
        averPreCur /= AXP19_RDC_COUNT;
		axp_clr_bits(charger->master,AXP20_CHARGE_CONTROL1,0x80);
		msleep(3000);
		for(i = 0; i< AXP19_RDC_COUNT; i++){
            axp_charger_update(charger);
			averNextVol += charger->vbat;
			averNextCur += charger->ibat;
			msleep(200);
        }
		averNextVol /= AXP19_RDC_COUNT;
		averNextCur /= AXP19_RDC_COUNT;
		axp_set_bits(charger->master,AXP20_CHARGE_CONTROL1,0x80);
		if(ABS(averPreCur - averNextCur) > 200){
            temp = 1000 * ABS(averPreVol - averNextVol) / ABS(averPreCur - averNextCur);
			if((temp < 5) || (temp > 5000)){
                return pre_temp;
			}
			else {
				temp += pre_temp;
			 	temp >>= 1;
			  axp_write(charger->master,AXP19_DATA_BUFFER2,((temp & 0xFF00) | 0x800) >> 8);
		    axp_write(charger->master,AXP19_DATA_BUFFER3,temp & 0x00FF);
				return temp;
			}
		}
		else {
			return pre_temp;
Example #13
0
static void axp_set_charge(struct axp_charger *charger)
{
	uint8_t val=0x00;
	uint8_t tmp=0x00;

	if(charger->chgvol < AXP81X_CHARGE_VOLTAGE_LEVEL1){
		val &= ~(3 << 5);
	}else if (charger->chgvol<AXP81X_CHARGE_VOLTAGE_LEVEL2){
		val &= ~(3 << 5);
		val |= 1 << 5;
	}else if (charger->chgvol<AXP81X_CHARGE_VOLTAGE_LEVEL3){
		val &= ~(3 << 5);
		val |= 1 << 6;
	}else
		val |= 3 << 5;

	spin_lock(&charger->charger_lock);
	if(charger->chgcur == 0)
		charger->chgen = 0;

	if(charger->chgcur< 200000)
		charger->chgcur = 200000;
	else if(charger->chgcur > 2800000)
		charger->chgcur = 2800000;
	spin_unlock(&charger->charger_lock);

	val |= (charger->chgcur - 200000) / 200000 ;
	if(charger ->chgend == 10)
		val &= ~(1 << 4);
	else
		val |= 1 << 4;

	val &= 0x7F;
	val |= charger->chgen << 7;
	spin_lock(&charger->charger_lock);
	if(charger->chgpretime < 30)
		charger->chgpretime = 30;
	if(charger->chgcsttime < 360)
		charger->chgcsttime = 360;
	spin_unlock(&charger->charger_lock);

	tmp = ((((charger->chgpretime - 40) / 10) << 6)  \
	| ((charger->chgcsttime - 360) / 120));
	axp_write(charger->master, AXP81X_CHARGE_CONTROL1,val);
	axp_update(charger->master, AXP81X_CHARGE_CONTROL2,tmp,0xC2);
}
Example #14
0
static int axp81x_resume(struct platform_device *dev)
{
	struct axp_charger *charger = platform_get_drvdata(dev);
	int pre_rest_vol;
	uint8_t val,tmp;

	axp_enable_irq(charger);
	pre_rest_vol = charger->rest_vol;
	axp_read(charger->master, AXP81X_CAP,&val);
	charger->rest_vol = val & 0x7f;
	if(charger->rest_vol - pre_rest_vol){
		printk("battery vol change: %d->%d \n", pre_rest_vol, charger->rest_vol);
		pre_rest_vol = charger->rest_vol;
		axp_write(charger->master,AXP81X_DATA_BUFFER1,charger->rest_vol | 0x80);
	}
#if defined (CONFIG_AXP_CHGCHANGE)
	if(axp81x_config.pmu_runtime_chgcur == 0)
		axp_clr_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	printk("pmu_runtime_chgcur = %d\n", axp81x_config.pmu_runtime_chgcur);
	if(axp81x_config.pmu_runtime_chgcur >= 300000 && axp81x_config.pmu_runtime_chgcur <= 2550000){
		tmp = (axp81x_config.pmu_runtime_chgcur -200001)/150000;
		charger->chgcur = tmp *150000 + 300000;
		axp_update(charger->master, AXP81X_CHARGE_CONTROL1, tmp,0x0F);
	}else if(axp81x_config.pmu_runtime_chgcur < 300000){
		axp_clr_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}else{
		axp_set_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}
#endif
	charger->disvbat = 0;
	charger->disibat = 0;
	axp_charger_update_state(charger);
	axp_charger_update(charger, &axp81x_config);
	power_supply_changed(&charger->batt);
	power_supply_changed(&charger->ac);
	power_supply_changed(&charger->usb);
	schedule_delayed_work(&charger->work, charger->interval);
	return 0;
}
static ssize_t frequency_store(struct device *dev,
                               struct device_attribute *attr, const char *buf, size_t count)
{
    struct regulator_dev *rdev = dev_get_drvdata(dev);
    struct device *axp_dev = to_axp_dev(rdev);
    uint8_t val,tmp;
    int var;
    var = simple_strtoul(buf, NULL, 10);
    if(var < 750)
        var = 750;
    if(var > 1875)
        var = 1875;

    val = (var -750)/75;
    val &= 0x0F;

    axp_read(axp_dev, AXP18_BUCKFREQ, &tmp);
    tmp &= 0xF0;
    val |= tmp;
    axp_write(axp_dev, AXP18_BUCKFREQ, val);
    return count;
}
Example #16
0
int axp_battery_calibrate_init(void)
{
    uint8_t val;
    axp_read(0x01, &val);
    if (!(val & 0x20)) {
        terminal_print(0, 35, "ERROR, NO battery is connected to system\n");
        return 0;
    }
    axp_read(0x30, &val);
    val |= 0x03;
    axp_write(0x30, val);
    axp_read(0x84, &val);
    val &= ~0xc0;
    val |= 0x80;
    axp_write(0x84, val);                       // set ADC sample rate to 100KHz
    axp_write(0x82, 0xff);                      // open all ADC
    axp_write(0x31, 0x03);                      // shutdown when battery voltage < 2.9V
    axp_write(0x33, 0xc8);                      // set charge current to 1.1A
    axp_write(0xb8, 0x20);                      // clear coulomb counter
    axp_write(0xb8, 0x80);                      // start coulomb counter
    return 1;
}
Example #17
0
static void axp_power_off(void)
{
	uint8_t val;

	preempt_count() = 0;

#if defined (CONFIG_AW_AXP18)
	axp_set_bits(&axp->dev, POWER18_ONOFF, 0x80);
#endif

#if defined (CONFIG_AW_AXP19)
	axp_set_bits(&axp->dev, POWER19_OFF_CTL, 0x80);
#endif

#if defined (CONFIG_AW_AXP20)
	if(pmu_pwroff_vol >= 2600 && pmu_pwroff_vol <= 3300){
		if (pmu_pwroff_vol > 3200){
			val = 0x7;
		}
		else if (pmu_pwroff_vol > 3100){
			val = 0x6;
		}
		else if (pmu_pwroff_vol > 3000){
			val = 0x5;
		}
		else if (pmu_pwroff_vol > 2900){
			val = 0x4;
		}
		else if (pmu_pwroff_vol > 2800){
			val = 0x3;
		}
		else if (pmu_pwroff_vol > 2700){
			val = 0x2;
		}
		else if (pmu_pwroff_vol > 2600){
			val = 0x1;
		}
		else
			val = 0x0;

		axp_update(&axp->dev, POWER20_VOFF_SET, val, 0x7);
	}
	val = 0xff;

	axp_read(&axp->dev, POWER20_COULOMB_CTL, &val);
	val &= 0x3f;
	axp_write(&axp->dev, POWER20_COULOMB_CTL, val);
	val |= 0x80;
	val &= 0xbf;
	axp_write(&axp->dev, POWER20_COULOMB_CTL, val);

    //led auto
    axp_clr_bits(&axp->dev,0x32,0x38);
	axp_clr_bits(&axp->dev,0xb9,0x80);

    printk("[axp] send power-off command!\n");
    mdelay(20);
    if(power_start != 1){
		axp_read(&axp->dev, POWER20_STATUS, &val);
		if(val & 0xF0){
	    	axp_read(&axp->dev, POWER20_MODE_CHGSTATUS, &val);
	    	if(val & 0x20){
            	printk("[axp] set flag!\n");
	        	axp_write(&axp->dev, POWER20_DATA_BUFFERC, 0x0f);
            	mdelay(20);
		    	printk("[axp] reboot!\n");
			machine_restart(NULL);
		    	printk("[axp] warning!!! arch can't ,reboot, maybe some error happend!\n");
	    	}
		}
	}
    axp_write(&axp->dev, POWER20_DATA_BUFFERC, 0x00);
    mdelay(20);
	axp_set_bits(&axp->dev, POWER20_OFF_CTL, 0x80);
    mdelay(20);
    printk("[axp] warning!!! axp can't power-off, maybe some error happend!\n");

#endif
}
Example #18
0
int axp81x_init(struct axp_charger *charger)
{
	int ret = 0, var = 0;
	uint8_t val = 0;
	uint8_t ocv_cap[63];
	int Cur_CoulombCounter,rdc;

	ret = axp_battery_first_init(charger);
	if (ret)
		goto err_charger_init;

	/* usb /ac voltage limit */
	if(axp81x_config.pmu_usbvol){
		axp81x_usb_ac_vol_limit(charger, CHARGE_AC, axp81x_config.pmu_usbvol);
	}
	if(axp81x_config.pmu_usbvol_pc){
		axp81x_usb_ac_vol_limit(charger, CHARGE_USB_20, axp81x_config.pmu_usbvol_pc);
	}

	/* ac current limit */
	if(axp81x_config.pmu_usbcur){
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, axp81x_config.pmu_usbcur);
	} else {
#ifdef BPI-M3
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, 2500);
#else
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, 4000);
#endif
	}
#ifdef BPI-M3
#else
printk("BPI-M3: set PMIC AC 4000mA\n");
	axp81x_usb_ac_current_limit(charger, CHARGE_AC, 4000);
#endif

	axp81x_chg_current_limit(axp81x_config.pmu_runtime_chgcur);

	/* set lowe power warning/shutdown level */
	axp_write(charger->master, AXP81X_WARNING_LEVEL,((axp81x_config.pmu_battery_warning_level1-5) << 4)+axp81x_config.pmu_battery_warning_level2);
	ocv_cap[0]  = axp81x_config.pmu_bat_para1;
	ocv_cap[1]  = 0xC1;
	ocv_cap[2]  = axp81x_config.pmu_bat_para2;
	ocv_cap[3]  = 0xC2;
	ocv_cap[4]  = axp81x_config.pmu_bat_para3;
	ocv_cap[5]  = 0xC3;
	ocv_cap[6]  = axp81x_config.pmu_bat_para4;
	ocv_cap[7]  = 0xC4;
	ocv_cap[8]  = axp81x_config.pmu_bat_para5;
	ocv_cap[9]  = 0xC5;
	ocv_cap[10] = axp81x_config.pmu_bat_para6;
	ocv_cap[11] = 0xC6;
	ocv_cap[12] = axp81x_config.pmu_bat_para7;
	ocv_cap[13] = 0xC7;
	ocv_cap[14] = axp81x_config.pmu_bat_para8;
	ocv_cap[15] = 0xC8;
	ocv_cap[16] = axp81x_config.pmu_bat_para9;
	ocv_cap[17] = 0xC9;
	ocv_cap[18] = axp81x_config.pmu_bat_para10;
	ocv_cap[19] = 0xCA;
	ocv_cap[20] = axp81x_config.pmu_bat_para11;
	ocv_cap[21] = 0xCB;
	ocv_cap[22] = axp81x_config.pmu_bat_para12;
	ocv_cap[23] = 0xCC;
	ocv_cap[24] = axp81x_config.pmu_bat_para13;
	ocv_cap[25] = 0xCD;
	ocv_cap[26] = axp81x_config.pmu_bat_para14;
	ocv_cap[27] = 0xCE;
	ocv_cap[28] = axp81x_config.pmu_bat_para15;
	ocv_cap[29] = 0xCF;
	ocv_cap[30] = axp81x_config.pmu_bat_para16;
	ocv_cap[31] = 0xD0;
	ocv_cap[32] = axp81x_config.pmu_bat_para17;
	ocv_cap[33] = 0xD1;
	ocv_cap[34] = axp81x_config.pmu_bat_para18;
	ocv_cap[35] = 0xD2;
	ocv_cap[36] = axp81x_config.pmu_bat_para19;
	ocv_cap[37] = 0xD3;
	ocv_cap[38] = axp81x_config.pmu_bat_para20;
	ocv_cap[39] = 0xD4;
	ocv_cap[40] = axp81x_config.pmu_bat_para21;
	ocv_cap[41] = 0xD5;
	ocv_cap[42] = axp81x_config.pmu_bat_para22;
	ocv_cap[43] = 0xD6;
	ocv_cap[44] = axp81x_config.pmu_bat_para23;
	ocv_cap[45] = 0xD7;
	ocv_cap[46] = axp81x_config.pmu_bat_para24;
	ocv_cap[47] = 0xD8;
	ocv_cap[48] = axp81x_config.pmu_bat_para25;
	ocv_cap[49] = 0xD9;
	ocv_cap[50] = axp81x_config.pmu_bat_para26;
	ocv_cap[51] = 0xDA;
	ocv_cap[52] = axp81x_config.pmu_bat_para27;
	ocv_cap[53] = 0xDB;
	ocv_cap[54] = axp81x_config.pmu_bat_para28;
	ocv_cap[55] = 0xDC;
	ocv_cap[56] = axp81x_config.pmu_bat_para29;
	ocv_cap[57] = 0xDD;
	ocv_cap[58] = axp81x_config.pmu_bat_para30;
	ocv_cap[59] = 0xDE;
	ocv_cap[60] = axp81x_config.pmu_bat_para31;
	ocv_cap[61] = 0xDF;
	ocv_cap[62] = axp81x_config.pmu_bat_para32;
	axp_writes(charger->master, 0xC0,63,ocv_cap);
	/* pok open time set */
	if(axp81x_config.pmu_pekon_time < 1000)
		val = 0x00;
	else if(axp81x_config.pmu_pekon_time < 2000){
		val = 0x40;
	}else if(axp81x_config.pmu_pekon_time < 3000){
		val = 0x80;
	}else {
		val = 0xc0;
	}
	axp_update(charger->master, AXP81X_POK_SET, val, 0xc0);
	var = axp81x_config.pmu_peklong_time;
	/* pok long time set*/
	if(axp81x_config.pmu_peklong_time < 1000)
		var = 1000;
	if(axp81x_config.pmu_peklong_time > 2500)
		var = 2500;
	val = (((var - 1000) / 500) << 4);
	axp_update(charger->master, AXP81X_POK_SET, val, 0x30);
	/* pek offlevel poweroff en set*/
	if(axp81x_config.pmu_pekoff_en)
		var = 1;
	else
		var = 0;
	val = (var << 3);
	axp_update(charger->master, AXP81X_POK_SET, val, 0x8);
	/*Init offlevel restart or not */
	if(axp81x_config.pmu_pekoff_func)
		axp_set_bits(charger->master,AXP81X_POK_SET,0x04); //restart
	else
		axp_clr_bits(charger->master,AXP81X_POK_SET,0x04); //not restart

	if(10 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x00;
	else if(20 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x01;
	else if(30 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x02;
	else if(40 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x03;
	else if(50 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x04;
	else if(60 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x05;
	else if(70 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x06;
	else
		val = 0x07;
	axp_write(charger->master,AXP81X_POK_DELAY_SET,val);

	/* pek delay set */
	if (axp81x_config.pmu_pwrok_time < 32)
		val = ((axp81x_config.pmu_pwrok_time / 8) - 1);
	else
		val = ((axp81x_config.pmu_pwrok_time / 32) + 1);
	axp_update(charger->master, AXP81X_OFF_CTL, val, 0x3);

	//axp_read(charger->master,AXP81X_DCDC_MONITOR,&val);
	//if(axp81x_config.pmu_pwrok_shutdown_en)
	//	val |= 0x40;
	//axp_write(charger->master,AXP81X_DCDC_MONITOR,val);

	if(axp81x_config.pmu_reset_shutdown_en)
		axp_set_bits(charger->master,AXP81X_HOTOVER_CTL,0x01); //restart shutdown ldo/dcdc

	/* pek offlevel time set */
	if(axp81x_config.pmu_pekoff_time < 4000)
		var = 4000;
	if(axp81x_config.pmu_pekoff_time > 10000)
		var =10000;
	var = (axp81x_config.pmu_pekoff_time - 4000) / 2000 ;
	val = var ;
	axp_update(charger->master, AXP81X_POK_SET, val, 0x3);
	/*Init 16's Reset PMU en */
	if(axp81x_config.pmu_reset)
		axp_set_bits(charger->master,0x8F,0x08); //enable
	else
		axp_clr_bits(charger->master,0x8F,0x08); //disable
	/*Init IRQ wakeup en*/
	if(axp81x_config.pmu_IRQ_wakeup)
		axp_set_bits(charger->master,0x8F,0x80); //enable
	else
		axp_clr_bits(charger->master,0x8F,0x80); //disable
	/*Init N_VBUSEN status*/
	if(axp81x_config.pmu_vbusen_func)
		axp_set_bits(charger->master,0x8F,0x10); //output
	else
		axp_clr_bits(charger->master,0x8F,0x10); //input
	/*Init InShort status*/
	if(axp81x_config.pmu_inshort)
		axp_set_bits(charger->master,0x8F,0x60); //InShort
	else
		axp_clr_bits(charger->master,0x8F,0x60); //auto detect
	/*Init CHGLED function*/
	if(axp81x_config.pmu_chgled_func)
		axp_set_bits(charger->master,0x32,0x08); //control by charger
	else
		axp_clr_bits(charger->master,0x32,0x08); //drive MOTO
	/*set CHGLED Indication Type*/
	if(axp81x_config.pmu_chgled_type)
		axp_set_bits(charger->master,0x34,0x10); //Type B
	else
		axp_clr_bits(charger->master,0x34,0x10); //Type A
	/*Init PMU Over Temperature protection*/
	if(axp81x_config.pmu_hot_shutdowm)
		axp_set_bits(charger->master,0x8f,0x04); //enable
	else
		axp_clr_bits(charger->master,0x8f,0x04); //disable
	/*Init battery capacity correct function*/
	if(axp81x_config.pmu_batt_cap_correct)
		axp_set_bits(charger->master,0xb8,0x20); //enable
	else
		axp_clr_bits(charger->master,0xb8,0x20); //disable
	/* Init battery regulator enable or not when charge finish*/
	if(axp81x_config.pmu_bat_regu_en)
		axp_set_bits(charger->master,0x34,0x20); //enable
	else
		axp_clr_bits(charger->master,0x34,0x20); //disable
	if(!axp81x_config.pmu_batdeten)
		axp_clr_bits(charger->master,AXP81X_PDBC,0x40);
	else
		axp_set_bits(charger->master,AXP81X_PDBC,0x40);
	/* RDC initial */
	axp_read(charger->master, AXP81X_RDC0,&val);
	if((axp81x_config.pmu_battery_rdc) && (!(val & 0x40))){
		rdc = (axp81x_config.pmu_battery_rdc * 10000 + 5371) / 10742;
		axp_write(charger->master, AXP81X_RDC0, ((rdc >> 8) & 0x1F)|0x80);
		axp_write(charger->master,AXP81X_RDC1,rdc & 0x00FF);
	}
Example #19
0
void axp20_power_off(int power_start)
{
	uint8_t val;
	struct axp_dev *axp;
	axp = axp_dev_lookup(AXP20);
	if (NULL == axp) {
		printk("%s: axp data is null\n", __func__);
		return;
	}
	if(axp20_config.pmu_pwroff_vol >= 2600 && axp20_config.pmu_pwroff_vol <= 3300){
		if (axp20_config.pmu_pwroff_vol > 3200){
			val = 0x7;
		}
		else if (axp20_config.pmu_pwroff_vol > 3100){
			val = 0x6;
		}
		else if (axp20_config.pmu_pwroff_vol > 3000){
			val = 0x5;
		}
		else if (axp20_config.pmu_pwroff_vol > 2900){
			val = 0x4;
		}
		else if (axp20_config.pmu_pwroff_vol > 2800){
			val = 0x3;
		}
		else if (axp20_config.pmu_pwroff_vol > 2700){
			val = 0x2;
		}
		else if (axp20_config.pmu_pwroff_vol > 2600){
			val = 0x1;
		}
		else
			val = 0x0;

		axp_update(axp->dev, POWER20_VOFF_SET, val, 0x7);
	}
	val = 0xff;
	if (!use_cou){
		axp_read(axp->dev, POWER20_COULOMB_CTL, &val);
		val &= 0x3f;
		axp_write(axp->dev, POWER20_COULOMB_CTL, val);
		val |= 0x80;
		val &= 0xbf;
		axp_write(axp->dev, POWER20_COULOMB_CTL, val);
	}
	//led auto
	axp_clr_bits(axp->dev,0x32,0x38);
	axp_clr_bits(axp->dev,0xb9,0x80);

	printk("[axp] send power-off command!\n");
	mdelay(20);
	if(axp20_config.power_start != 1){
		axp_write(axp->dev, POWER20_INTSTS3, 0x03);
		axp_read(axp->dev, POWER20_STATUS, &val);
		if(val & 0xF0){
			axp_read(axp->dev, POWER20_MODE_CHGSTATUS, &val);
		    	if(val & 0x20){
				printk("[axp] set flag!\n");
		        	axp_write(axp->dev, POWER20_DATA_BUFFERC, 0x0f);
	            		mdelay(20);
			    	printk("[axp] reboot!\n");
			    	machine_restart(NULL);
			    	printk("[axp] warning!!! arch can't ,reboot, maybe some error happend!\n");
		    	}
		}
	}
	axp_write(axp->dev, POWER20_DATA_BUFFERC, 0x00);
	//axp_write(&axp->dev, 0xf4, 0x06);
	//axp_write(&axp->dev, 0xf2, 0x04);
	//axp_write(&axp->dev, 0xff, 0x01);
	//axp_write(&axp->dev, 0x04, 0x01);
	//axp_clr_bits(&axp->dev, 0x03, 0xc0);
	//axp_write(&axp->dev, 0xff, 0x00);
	//mdelay(20);
	axp_set_bits(axp->dev, POWER20_OFF_CTL, 0x80);
	mdelay(20);
	printk("[axp] warning!!! axp can't power-off, maybe some error happend!\n");
}
Example #20
0
static void axp_usb(struct work_struct *work)
{
	int var;
	uint8_t tmp,val;

	DBG_PSY_MSG(DEBUG_CHG, "[axp_usb]axp_usbcurflag = %d\n",axp_usbcurflag);

	axp_read(axp_charger->master, AXP_CHARGE_STATUS, &val);
	if((val & 0x10) == 0x00){/*usb or usb adapter can not be used*/
		DBG_PSY_MSG(DEBUG_CHG, "USB not insert!\n");
		axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x02);
		axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x01);
	}else if(CHARGE_USB_20 == axp_usbcurflag){
		DBG_PSY_MSG(DEBUG_CHG, "set usbcur_pc %d mA\n",axp_config->pmu_usbcur_pc);
		if(axp_config->pmu_usbcur_pc){
			var = axp_config->pmu_usbcur_pc * 1000;
			if(var >= 900000)
				axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
			else if (var < 900000){
				axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x02);
				axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x01);
			}
		}else//not limit
			axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
	}else if (CHARGE_USB_30 == axp_usbcurflag){
		axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
	}else {
		DBG_PSY_MSG(DEBUG_CHG, "set usbcur %d mA\n",axp_config->pmu_usbcur);
		if((axp_config->pmu_usbcur) && (axp_config->pmu_usbcur_limit)){
			var = axp_config->pmu_usbcur * 1000;
			if(var >= 900000)
				axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
			else if (var < 900000){
				axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x02);
				axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x01);
			}
		}else //not limit
			axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
	}

	if(!vbus_curr_limit_debug){ //usb current not limit
		DBG_PSY_MSG(DEBUG_CHG, "vbus_curr_limit_debug = %d\n",vbus_curr_limit_debug);
		axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x03);
	}

	if(CHARGE_USB_20 == axp_usbvolflag){
		DBG_PSY_MSG(DEBUG_CHG, "set usbvol_pc %d mV\n",axp_config->pmu_usbvol_pc);
		if(axp_config->pmu_usbvol_pc){
			axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x40);
			var = axp_config->pmu_usbvol_pc * 1000;
			if(var >= 4000000 && var <=4700000){
				tmp = (var - 4000000)/100000;
				axp_read(axp_charger->master, AXP_CHARGE_VBUS,&val);
				val &= 0xC7;
				val |= tmp << 3;
				axp_write(axp_charger->master, AXP_CHARGE_VBUS,val);
			}else
				DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol_pc);
		}else
		    axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x40);
	}else if(CHARGE_USB_30 == axp_usbvolflag) {
		axp_read(axp_charger->master, AXP_CHARGE_VBUS,&val);
		val &= 0xC7;
		val |= 7 << 3;
		axp_write(axp_charger->master, AXP_CHARGE_VBUS,val);
	}else {
		DBG_PSY_MSG(DEBUG_CHG, "set usbvol %d mV\n",axp_config->pmu_usbvol);
		if((axp_config->pmu_usbvol) && (axp_config->pmu_usbvol_limit)){
			axp_set_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x40);
			var = axp_config->pmu_usbvol * 1000;
			if(var >= 4000000 && var <=4700000){
				tmp = (var - 4000000)/100000;
				axp_read(axp_charger->master, AXP_CHARGE_VBUS,&val);
				val &= 0xC7;
				val |= tmp << 3;
				axp_write(axp_charger->master, AXP_CHARGE_VBUS,val);
			}else
				DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol);
		}else
		    axp_clr_bits(axp_charger->master, AXP_CHARGE_VBUS, 0x40);
	}
}