Example #1
0
void valid_char_rnn(char *cfgfile, char *weightfile)
{
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int count = 0;
    int c;
    float *input = calloc(inputs, sizeof(float));
    float sum = 0;
    c = getc(stdin);
    float log2 = log(2);
    while(c != EOF){
        int next = getc(stdin);
        if(next == EOF) break;
        ++count;
        input[c] = 1;
        float *out = network_predict(net, input);
        input[c] = 0;
        sum += log(out[next])/log2;
        c = next;
    }
    printf("Perplexity: %f\n", pow(2, -sum/count));
}
Example #2
0
void test_cgm(char *cfgfile, char *weightfile, char *session)
{

    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    load_weights(&net, weightfile);

    freopen("out.txt", "w", stdout);

    int input_len = net.w;
    int stride = net.w/4;

    int i,j,k;

    data train;
    train.shallow = 0;
    train.X = make_matrix(128, net.w*net.h*net.c);
    train.y = make_matrix(128, 1);

    float cbuf[4096*16];
    int cidx = 0;
    int cnt = 0;
    int cntstride = 0;
    int freq[16] = {0};
    FILE *fp = fopen(session, "rb");
    if(!fp) file_error(session);
    while (!feof(fp))
    {
        unsigned short bytes[11];
        fread(bytes, 2, 11, fp);
        float fbytes[2];
        fread(fbytes, 4, 2, fp);
        // put into circular buffer
        for (j=0;j<10;j++)
            cbuf[cidx+(j<<12)] = (float)(bytes[j])/65536.f;
        cidx = (1+cidx)&4095;
        cnt++;
        cntstride++;
        if (fbytes[0]>54 && cnt>input_len && cntstride>stride)
        {
            cntstride = 0;
            train.y.vals[0][0] = (fbytes[0]-50)/200.0;
            for (k=0;k<net.w;k++)
            for (j=0;j<10;j++)
            {
                train.X.vals[0][(j*net.w)+k] = cbuf[(j<<12)+(((cidx-1-net.w+k)+4096)&4095)];
            }
            float *p = network_predict(net, train.X.vals[0]);
         //   fprintf(stderr, "%f, %f\n", train.y.vals[0][0], p[0]);
            p[0] = (p[0]*200.0)+50.0;
            fprintf(stdout, "%f, %f\n", fbytes[0], p[0]);
            fprintf(stderr, "%f, %f\n", fbytes[0], p[0]);
        }
    }
    fclose(fp);

    free_network(net);
    free_data(train);
}
Example #3
0
void validate_captcha(char *cfgfile, char *weightfile)
{
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int numchars = 37;
    list *plist = get_paths("/data/captcha/solved.hard");
    char **paths = (char **)list_to_array(plist);
    int imgs = plist->size;
    data valid = load_data_captcha(paths, imgs, 0, 10, 200, 60);
    translate_data_rows(valid, -128);
    scale_data_rows(valid, 1./128);
    matrix pred = network_predict_data(net, valid);
    int i, k;
    int correct = 0;
    int total = 0;
    int accuracy = 0;
    for(i = 0; i < imgs; ++i){
        int allcorrect = 1;
        for(k = 0; k < 10; ++k){
            char truth = int_to_alphanum(max_index(valid.y.vals[i]+k*numchars, numchars));
            char prediction = int_to_alphanum(max_index(pred.vals[i]+k*numchars, numchars));
            if (truth != prediction) allcorrect=0;
            if (truth != '.' && truth == prediction) ++correct;
            if (truth != '.' || truth != prediction) ++total;
        }
        accuracy += allcorrect;
    }
    printf("Word Accuracy: %f, Char Accuracy %f\n", (float)accuracy/imgs, (float)correct/total);
    free_data(valid);
}
Example #4
0
void valid_go(char *cfgfile, char *weightfile, int multi)
{
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    float *board = calloc(19*19, sizeof(float));
    float *move = calloc(19*19, sizeof(float));
    moves m = load_go_moves("/home/pjreddie/backup/go.test");

    int N = m.n;
    int i;
    int correct = 0;
    for(i = 0; i <N; ++i){
        char *b = m.data[i];
        int row = b[0];
        int col = b[1];
        int truth = col + 19*row;
        string_to_board(b+2, board);
        predict_move(net, board, move, multi);
        int index = max_index(move, 19*19);
        if(index == truth) ++correct;
        printf("%d Accuracy %f\n", i, (float) correct/(i+1));
    }
}
Example #5
0
void train_mnist_distill(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "backup";
    int classes = 10;
    int N = 50000;

    int epoch = (*net.seen)/N;

    data train;// = load_all_mnist10();
    matrix soft = csv_to_matrix("results/ensemble.csv");

    float weight = .9;
    scale_matrix(soft, weight);
    scale_matrix(train.y, 1. - weight);
    matrix_add_matrix(soft, train.y);

    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        float loss = train_network_sgd(net, train, 1);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        if(get_current_batch(net)%100 == 0)
        {
            printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        }
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free(base);
    free_data(train);
}
Example #6
0
void train_char_rnn(char *cfgfile, char *weightfile, char *filename)
{
    FILE *fp = fopen(filename, "r");
    //FILE *fp = fopen("data/ab.txt", "r");
    //FILE *fp = fopen("data/grrm/asoiaf.txt", "r");

    fseek(fp, 0, SEEK_END); 
    size_t size = ftell(fp);
    fseek(fp, 0, SEEK_SET); 

    char *text = calloc(size, sizeof(char));
    fread(text, 1, size, fp);
    fclose(fp);

    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int batch = net.batch;
    int steps = net.time_steps;
    int i = (*net.seen)/net.batch;

    clock_t time;
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        float_pair p = get_rnn_data(text, size, batch/steps, steps);

        float loss = train_network_datum(net, p.x, p.y) / (batch);
        free(p.x);
        free(p.y);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        printf("%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        if(i%10==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
Example #7
0
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed, char *token_file)
{
    char **tokens = 0;
    if(token_file){
        size_t n;
        tokens = read_tokens(token_file, &n);
    }

    srand(rseed);
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int i, j;
    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
    int c = 0;
    int len = strlen(seed);
    float *input = calloc(inputs, sizeof(float));

    /*
       fill_cpu(inputs, 0, input, 1);
       for(i = 0; i < 10; ++i){
       network_predict(net, input);
       }
       fill_cpu(inputs, 0, input, 1);
     */

    for(i = 0; i < len-1; ++i){
        c = seed[i];
        input[c] = 1;
        network_predict(net, input);
        input[c] = 0;
        print_symbol(c, tokens);
    }
    if(len) c = seed[len-1];
    print_symbol(c, tokens);
    for(i = 0; i < num; ++i){
        input[c] = 1;
        float *out = network_predict(net, input);
        input[c] = 0;
        for(j = 32; j < 127; ++j){
            //printf("%d %c %f\n",j, j, out[j]);
        }
        for(j = 0; j < inputs; ++j){
            if (out[j] < .0001) out[j] = 0;
        }
        c = sample_array(out, inputs);
        print_symbol(c, tokens);
    }
    printf("\n");
}
Example #8
0
void train_go(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "/home/pjreddie/backup/";

    char buff[256];
    float *board = calloc(19*19*net.batch, sizeof(float));
    float *move = calloc(19*19*net.batch, sizeof(float));
    moves m = load_go_moves("/home/pjreddie/go.train");
    //moves m = load_go_moves("games.txt");

    int N = m.n;
    int epoch = (*net.seen)/N;
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        random_go_moves(m, board, move, net.batch);
        float loss = train_network_datum(net, board, move) / net.batch;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory,base, epoch);
            save_weights(net, buff);

        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%10000 == 0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.backup",backup_directory,base,get_current_batch(net));
            save_weights(net, buff);
        }
    }
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free(base);
}
Example #9
0
void train_imagenet(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    //net.seen=0;
    int imgs = 1024;
    int i = net.seen/imgs;
    char **labels = get_labels("data/inet.labels.list");
    list *plist = get_paths("/data/imagenet/cls.train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
    pthread_t load_thread;
    data train;
    data buffer;
    load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
    while(1){
        ++i;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;

        /*
        image im = float_to_image(256, 256, 3, train.X.vals[114]);
        show_image(im, "training");
        cvWaitKey(0);
        */

        load_thread = load_data_thread(paths, imgs, plist->size, labels, 1000, 256, 256, &buffer);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        net.seen += imgs;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
        free_data(train);
        if((i % 20000) == 0) net.learning_rate *= .1;
        //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
            save_weights(net, buff);
        }
    }
}
Example #10
0
void valid_tactic_rnn(char *cfgfile, char *weightfile, char *seed)
{
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int count = 0;
    int words = 1;
    int c;
    int len = strlen(seed);
    float *input = calloc(inputs, sizeof(float));
    int i;
    for(i = 0; i < len; ++i){
        c = seed[i];
        input[(int)c] = 1;
        network_predict(net, input);
        input[(int)c] = 0;
    }
    float sum = 0;
    c = getc(stdin);
    float log2 = log(2);
    int in = 0;
    while(c != EOF){
        int next = getc(stdin);
        if(next == EOF) break;
        if(next < 0 || next >= 255) error("Out of range character");

        input[c] = 1;
        float *out = network_predict(net, input);
        input[c] = 0;

        if(c == '.' && next == '\n') in = 0;
        if(!in) {
            if(c == '>' && next == '>'){
                in = 1;
                ++words;
            }
            c = next;
            continue;
        }
        ++count;
        sum += log(out[next])/log2;
        c = next;
        printf("%d %d Perplexity: %4.4f    Word Perplexity: %4.4f\n", count, words, pow(2, -sum/count), pow(2, -sum/words));
    }
}
Example #11
0
void vec_char_rnn(char *cfgfile, char *weightfile, char *seed)
{
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int c;
    int seed_len = strlen(seed);
    float *input = calloc(inputs, sizeof(float));
    int i;
    char *line;
    while((line=fgetl(stdin)) != 0){
        reset_rnn_state(net, 0);
        for(i = 0; i < seed_len; ++i){
            c = seed[i];
            input[(int)c] = 1;
            network_predict(net, input);
            input[(int)c] = 0;
        }
        strip(line);
        int str_len = strlen(line);
        for(i = 0; i < str_len; ++i){
            c = line[i];
            input[(int)c] = 1;
            network_predict(net, input);
            input[(int)c] = 0;
        }
        c = ' ';
        input[(int)c] = 1;
        network_predict(net, input);
        input[(int)c] = 0;

        layer l = net.layers[0];
        #ifdef GPU
        cuda_pull_array(l.output_gpu, l.output, l.outputs);
        #endif
        printf("%s", line);
        for(i = 0; i < l.outputs; ++i){
            printf(",%g", l.output[i]);
        }
        printf("\n");
    }
}
Example #12
0
void test_tactic_rnn_multi(char *cfgfile, char *weightfile, int num,
		real_t temp, int rseed, char *token_file) {
	char **tokens = 0;
	if (token_file) {
		size_t n;
		tokens = read_tokens(token_file, &n);
	}

	srand(rseed);
	char *base = basecfg(cfgfile);
	fprintf(stderr, "%s\n", base);

	network *net = load_network(cfgfile, weightfile, 0);
	int inputs = net->inputs;

	int i, j;
	for (i = 0; i < net->n; ++i)
		net->layers[i].temperature = temp;
	int c = 0;
	real_t *input = calloc(inputs, sizeof(real_t));
	real_t *out = 0;

	while (1) {
		reset_network_state(net, 0);
		while ((c = getc(stdin)) != EOF && c != 0) {
			input[c] = 1;
			out = network_predict(net, input);
			input[c] = 0;
		}
		for (i = 0; i < num; ++i) {
			for (j = 0; j < inputs; ++j) {
				if (out[j] < .0001)
					out[j] = 0;
			}
			int next = sample_array(out, inputs);
			if (c == '.' && next == '\n')
				break;
			c = next;
			print_symbol(c, tokens);

			input[c] = 1;
			out = network_predict(net, input);
			input[c] = 0;
		}
		printf("\n");
	}
}
Example #13
0
void train_cifar(char *cfgfile, char *weightfile)
{
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);

    char *backup_directory = "/home/pjreddie/backup/";
    int classes = 10;
    int N = 50000;

    char **labels = get_labels("data/cifar/labels.txt");
    int epoch = (*net.seen)/N;
    data train = load_all_cifar10();
    while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
        clock_t time=clock();

        float loss = train_network_sgd(net, train, 1);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.95 + loss*.05;
        printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s.weights", backup_directory, base);
    save_weights(net, buff);

    free_network(net);
    free_ptrs((void**)labels, classes);
    free(base);
    free_data(train);
}
Example #14
0
void train_writing(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 256;
    int i = net.seen/imgs;
    list *plist = get_paths("data/train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
    while(1){
        ++i;
        time=clock();
        data train = load_data_writing(paths, imgs, plist->size, 256, 256, 4);
        float loss = train_network(net, train);
        #ifdef GPU
        float *out = get_network_output_gpu(net);
        #else
        float *out = get_network_output(net);
        #endif
        // image pred = float_to_image(32, 32, 1, out);
        // print_image(pred);

        net.seen += imgs;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
        free_data(train);
        if((i % 20000) == 0) net.learning_rate *= .1;
        //if(i%100 == 0 && net.learning_rate > .00001) net.learning_rate *= .97;
        if(i%250==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/writing_backup/%s_%d.weights", base, i);
            save_weights(net, buff);
        }
    }
}
Example #15
0
void test_tactic_rnn(char *cfgfile, char *weightfile, int num, float temp, int rseed, char *token_file)
{
    char **tokens = 0;
    if(token_file){
        size_t n;
        tokens = read_tokens(token_file, &n);
    }

    srand(rseed);
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int i, j;
    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
    int c = 0;
    float *input = calloc(inputs, sizeof(float));
    float *out = 0;

    while((c = getc(stdin)) != EOF){
        input[c] = 1;
        out = network_predict(net, input);
        input[c] = 0;
    }
    for(i = 0; i < num; ++i){
        for(j = 0; j < inputs; ++j){
            if (out[j] < .0001) out[j] = 0;
        }
        int next = sample_array(out, inputs);
        if(c == '.' && next == '\n') break;
        c = next;
        print_symbol(c, tokens);

        input[c] = 1;
        out = network_predict(net, input);
        input[c] = 0;
    }
    printf("\n");
}
Example #16
0
void valid_char_rnn(char *cfgfile, char *weightfile, char *seed) {
	char *base = basecfg(cfgfile);
	fprintf(stderr, "%s\n", base);

	network *net = load_network(cfgfile, weightfile, 0);
	int inputs = net->inputs;

	int count = 0;
	int words = 1;
	int c;
	int len = strlen(seed);
	real_t *input = calloc(inputs, sizeof(real_t));
	int i;
	for (i = 0; i < len; ++i) {
		c = seed[i];
		input[(int) c] = 1;
		network_predict(net, input);
		input[(int) c] = 0;
	}
	real_t sum = 0;
	c = getc(stdin);
	real_t log2 = log(2);
	while (c != EOF) {
		int next = getc(stdin);
		if (next == EOF)
			break;
		if (next < 0 || next >= 255)
			error("Out of range character");
		++count;
		if (next == ' ' || next == '\n' || next == '\t')
			++words;
		input[c] = 1;
		real_t *out = network_predict(net, input);
		input[c] = 0;
		sum += log(out[next]) / log2;
		c = next;
		printf("%d BPC: %4.4f   Perplexity: %4.4f    Word Perplexity: %4.4f\n",
				count, -sum / count, pow(2, -sum / count),
				pow(2, -sum / words));
	}
}
Example #17
0
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed)
{
    srand(rseed);
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int inputs = get_network_input_size(net);

    int i, j;
    for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
    unsigned char c;
    int len = strlen(seed);
    float *input = calloc(inputs, sizeof(float));
    for(i = 0; i < len-1; ++i){
        c = seed[i];
        input[(int)c] = 1;
        network_predict(net, input);
        input[(int)c] = 0;
        printf("%c", c);
    }
    c = seed[len-1];
    for(i = 0; i < num; ++i){
        printf("%c", c);
        float r = rand_uniform(0,1);
        float sum = 0;
        input[(int)c] = 1;
        float *out = network_predict(net, input);
        input[(int)c] = 0;
        for(j = 0; j < inputs; ++j){
            sum += out[j];
            if(sum > r) break;
        }
        c = j;
    }
    printf("\n");
}
Example #18
0
void train_dice(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    char *backup_directory = "/home/pjreddie/backup/";
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    int i = *net.seen/imgs;
    char **labels = dice_labels;
    list *plist = get_paths("data/dice/dice.train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
    while(1){
        ++i;
        time=clock();
        data train = load_data(paths, imgs, plist->size, labels, 6, net.w, net.h);
        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = train_network(net, train);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
        free_data(train);
        if((i % 100) == 0) net.learning_rate *= .1;
        if(i%100==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i);
            save_weights(net, buff);
        }
    }
}
Example #19
0
void train_captcha(char *cfgfile, char *weightfile)
{
    float avg_loss = -1;
    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    int i = net.seen/imgs;
    list *plist = get_paths("/data/captcha/train.auto5");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
    while(1){
        ++i;
        time=clock();
        data train = load_data_captcha(paths, imgs, plist->size, 10, 200, 60);
        translate_data_rows(train, -128);
        scale_data_rows(train, 1./128);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        net.seen += imgs;
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), net.seen);
        free_data(train);
        if(i%10==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
            save_weights(net, buff);
        }
    }
}
Example #20
0
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
    list *options = read_data_cfg(datacfg);
    char *train_images = option_find_str(options, "train", "data/train.list");
    char *backup_directory = option_find_str(options, "backup", "/backup/");

    srand(time(0));
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network *nets = calloc(ngpus, sizeof(network));

    srand(time(0));
    int seed = rand();
    int i;
    for(i = 0; i < ngpus; ++i){
        srand(seed);
#ifdef GPU
        cuda_set_device(gpus[i]);
#endif
        nets[i] = parse_network_cfg(cfgfile);
        if(weightfile){
            load_weights(&nets[i], weightfile);
        }
        if(clear) *nets[i].seen = 0;
        nets[i].learning_rate *= ngpus;
    }
    srand(time(0));
    network net = nets[0];

    int imgs = net.batch * net.subdivisions * ngpus;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    data train, buffer;

    layer l = net.layers[net.n - 1];

    int classes = l.classes;
    float jitter = l.jitter;

    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = l.max_boxes;
    args.d = &buffer;
    args.type = DETECTION_DATA;
    args.threads = 8;

    args.angle = net.angle;
    args.exposure = net.exposure;
    args.saturation = net.saturation;
    args.hue = net.hue;

    pthread_t load_thread = load_data(args);
    clock_t time;
    int count = 0;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        if(l.random && count++%10 == 0){
            printf("Resizing\n");
            //int dim = (rand() % 10 + 10) * 32;
            //if (get_current_batch(net)+200 > net.max_batches) dim = 608;
            //int dim = (rand() % 4 + 16) * 32;
            int dim = (args.w <= args.h ? args.w : args.h);
            printf("%d\n", dim);
            args.w = dim;
            args.h = dim;

            pthread_join(load_thread, 0);
            train = buffer;
            free_data(train);
            load_thread = load_data(args);

            for(i = 0; i < ngpus; ++i){
                resize_network(nets + i, dim, dim);
            }
            net = nets[0];
        }
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data(args);

        /*
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           if(!b.x) break;
           printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h);
           }
           image im = float_to_image(448, 448, 3, train.X.vals[10]);
           int k;
           for(k = 0; k < l.max_boxes; ++k){
           box b = float_to_box(train.y.vals[10] + 1 + k*5);
           printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h);
           draw_bbox(im, b, 8, 1,0,0);
           }
           save_image(im, "truth11");
         */

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = 0;
#ifdef GPU
        if(ngpus == 1){
            loss = train_network(net, train);
        } else {
            loss = train_networks(nets, ngpus, train, 4);
        }
#else
        loss = train_network(net, train);
#endif
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        i = get_current_batch(net);
        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
#ifdef GPU
            if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
#ifdef GPU
    if(ngpus != 1) sync_nets(nets, ngpus, 0);
#endif
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
Example #21
0
void train_compare(char *cfgfile, char *weightfile)
{
    data_seed = time(0);
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    char *backup_directory = "/home/pjreddie/backup/";
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    list *plist = get_paths("data/compare.train.list");
    char **paths = (char **)list_to_array(plist);
    int N = plist->size;
    printf("%d\n", N);
    clock_t time;
#ifndef _MSC_VER
    pthread_t load_thread;
#endif
    data train;
    data buffer;

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = 20;
    args.n = imgs;
    args.m = N;
    args.d = &buffer;
    args.type = COMPARE_DATA;
#ifndef _MSC_VER
    load_thread = load_data_in_thread(args);
#endif
    int epoch = *net.seen/N;
    int i = 0;
    while(1){
        ++i;
        time=clock();
#ifndef _MSC_VER
        pthread_join(load_thread, 0);
#else
        load_data_in_thread(args);
#endif
        train = buffer;

#ifndef _MSC_VER
        load_thread = load_data_in_thread(args);
#endif
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%.3f: %f, %f avg, %lf seconds, %d images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
        free_data(train);
        if(i%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i);
            save_weights(net, buff);
        }
        if(*net.seen/N > epoch){
            epoch = *net.seen/N;
            i = 0;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
            if(epoch%22 == 0) net.learning_rate *= .1;
        }
    }
#ifndef _MSC_VER
    pthread_join(load_thread, 0);
#endif
    free_data(buffer);
    free_network(net);
    free_ptrs((void**)paths, plist->size);
    free_list(plist);
    free(base);
}
Example #22
0
void validate_yolo_classify(char *datacfg, char *cfgfile, char *weightfile)
{
    list *options = read_data_cfg(datacfg);
    
    //char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    //char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    //char **labels = get_labels(label_list);
    
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    //list *plist = get_paths("data/voc.2007.test");
    list *plist = get_paths(valid_list);
    
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j, k;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    //float thresh = .001;
    float thresh = .2;
    float iou_thresh = .5;
    //float nms = 0;
    float nms = 0.5;
    

    int total = 0;
    int correct = 0;
    int class_correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        float *predictions = network_predict(net, sized.data);
        convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 0);
        //if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
        if (nms) do_nms(boxes, probs, side*side*l.n, classes, nms);

        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
        labelpath = find_replace(labelpath, ".bmp", ".txt");
        labelpath = find_replace(labelpath, ".dib", ".txt");
        labelpath = find_replace(labelpath, ".jpe", ".txt");
        labelpath = find_replace(labelpath, ".jp2", ".txt");
        labelpath = find_replace(labelpath, ".png", ".txt");
        labelpath = find_replace(labelpath, ".pbm", ".txt");
        labelpath = find_replace(labelpath, ".pgm", ".txt");
        labelpath = find_replace(labelpath, ".ppm", ".txt");
        labelpath = find_replace(labelpath, ".sr", ".txt");
        labelpath = find_replace(labelpath, ".ras", ".txt");
        labelpath = find_replace(labelpath, ".tiff", ".txt");
        labelpath = find_replace(labelpath, ".tif", ".txt");

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < side*side*l.n; ++k){
            int class = max_index(probs[k], classes);
            float prob = probs[k][class];
            //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
        
            if(prob > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            int pre_class = -1;
            for(k = 0; k < side*side*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                int class = max_index(probs[k], classes);
                float prob = probs[k][class];
                //fprintf(stderr, "path=%s\t\tk=%d\tprob=%f\tclass=%d\n", path, k, prob, class);
                if(prob > thresh && iou > best_iou){
                    best_iou = iou;
                    pre_class = class;
                }
            }
            avg_iou += best_iou;
            
            if(best_iou > iou_thresh){
                ++correct;
            }
            
            if(pre_class == truth[j].id){
                ++class_correct;
            }
            
            //fprintf(stderr, "true_class=%d\tpre_class=%d\n", truth[j].id, pre_class);
        
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\t\tClassify:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total, 100.*class_correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
Example #23
0
void train_yolo(char *datacfg, char *cfgfile, char *weightfile)
{    
    list *options = read_data_cfg(datacfg);
    
    char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    //char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = net.batch*net.subdivisions;
    int i = *net.seen/imgs;
    data train, buffer;


    layer l = net.layers[net.n - 1];

    int side = l.side;
    int classes = l.classes;
    float jitter = l.jitter;

    list *plist = get_paths(train_list);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.jitter = jitter;
    args.num_boxes = side;
    args.d = &buffer;
    args.type = REGION_DATA;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    //while(i*imgs < N*120){
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
        if(i%1000==0 || (i < 1000 && i%100 == 0)){
            char buff[256];
            sprintf(buff, "%s/%s_%06d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
Example #24
0
void validate_yolo(char *datacfg, char *cfgfile, char *weightfile)
{
    list *options = read_data_cfg(datacfg);
    
    //char *train_list = option_find_str(options, "train", "data/train_list.txt");
    //char *test_list = option_find_str(options, "test", "data/test_list.txt");
    char *valid_list = option_find_str(options, "valid", "data/valid_list.txt");
    
    //char *backup_directory = option_find_str(options, "backup", "/backup/");
    //char *label_list = option_find_str(options, "labels", "data/labels_list.txt");
    
    //int classes = option_find_int(options, "classes", 2);
    
    //char **labels = get_labels(label_list);
    
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    char *base = "results/comp4_det_test_";
    list *plist = get_paths(valid_list);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;
    int square = l.sqrt;
    int side = l.side;

    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(side*side*l.n, sizeof(box));
    float **probs = calloc(side*side*l.n, sizeof(float *));
    for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .001;
    int nms = 1;
    float iou_thresh = .5;

    int nthreads = 2;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_yolo_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
            if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
            print_yolo_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
Example #25
0
void train_captcha(char *cfgfile, char *weightfile)
{
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1024;
    int i = *net.seen/imgs;
    int solved = 1;
    list *plist;
    char **labels = get_labels("/data/captcha/reimgs.labels.list");
    if (solved){
        plist = get_paths("/data/captcha/reimgs.solved.list");
    }else{
        plist = get_paths("/data/captcha/reimgs.raw.list");
    }
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
#if defined __linux__ || defined __APPLE__ || defined PTHREAD_WINDOWS
    pthread_t load_thread;
#else
#endif
    data train;
    data buffer;

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = 26;
    args.n = imgs;
    args.m = plist->size;
    args.labels = labels;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;

#if defined __linux__ || defined __APPLE__ || defined PTHREAD_WINDOWS
    load_thread = load_data_in_thread(args);
#endif
    while(1){
        ++i;
        time=clock();
#if defined __linux__ || defined __APPLE__ || defined PTHREAD_WINDOWS
        pthread_join(load_thread, 0);
#endif
        train = buffer;
        fix_data_captcha(train, solved);

        /*
           image im = float_to_image(256, 256, 3, train.X.vals[114]);
           show_image(im, "training");
           cvWaitKey(0);
         */

#if defined __linux__ || defined __APPLE__ || defined PTHREAD_WINDOWS
        load_thread = load_data_in_thread(args);
#endif
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
        free_data(train);
        if(i%100==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
            save_weights(net, buff);
        }
    }
}
Example #26
0
void run_nightmare(int argc, char **argv)
{
    srand(0);
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]);
        return;
    }

    char *cfg = argv[2];
    char *weights = argv[3];
    char *input = argv[4];
    int max_layer = atoi(argv[5]);

    int range = find_int_arg(argc, argv, "-range", 1);
    int norm = find_int_arg(argc, argv, "-norm", 1);
    int rounds = find_int_arg(argc, argv, "-rounds", 1);
    int iters = find_int_arg(argc, argv, "-iters", 10);
    int octaves = find_int_arg(argc, argv, "-octaves", 4);
    float zoom = find_float_arg(argc, argv, "-zoom", 1.);
    float rate = find_float_arg(argc, argv, "-rate", .04);
    float thresh = find_float_arg(argc, argv, "-thresh", 1.);
    float rotate = find_float_arg(argc, argv, "-rotate", 0);
    float momentum = find_float_arg(argc, argv, "-momentum", .9);
    float lambda = find_float_arg(argc, argv, "-lambda", .01);
    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
    int reconstruct = find_arg(argc, argv, "-reconstruct");
    int smooth_size = find_int_arg(argc, argv, "-smooth", 1);

    network net = parse_network_cfg(cfg);
    load_weights(&net, weights);
    char *cfgbase = basecfg(cfg);
    char *imbase = basecfg(input);

    set_batch_network(&net, 1);
    image im = load_image_color(input, 0, 0);
    if(0){
        float scale = 1;
        if(im.w > 512 || im.h > 512){
            if(im.w > im.h) scale = 512.0/im.w;
            else scale = 512.0/im.h;
        }
        image resized = resize_image(im, scale*im.w, scale*im.h);
        free_image(im);
        im = resized;
    }

    float *features = 0;
    image update;
    if (reconstruct){
        resize_network(&net, im.w, im.h);

        int zz = 0;
        network_predict(net, im.data);
        image out_im = get_network_image(net);
        image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz);
        //flip_image(crop);
        image f_im = resize_image(crop, out_im.w, out_im.h);
        free_image(crop);
        printf("%d features\n", out_im.w*out_im.h*out_im.c);


        im = resize_image(im, im.w, im.h);
        f_im = resize_image(f_im, f_im.w, f_im.h);
        features = f_im.data;

        int i;
        for(i = 0; i < 14*14*512; ++i){
            features[i] += rand_uniform(-.19, .19);
        }

        free_image(im);
        im = make_random_image(im.w, im.h, im.c);
        update = make_image(im.w, im.h, im.c);

    }

    int e;
    int n;
    for(e = 0; e < rounds; ++e){
        fprintf(stderr, "Iteration: ");
        fflush(stderr);
        for(n = 0; n < iters; ++n){  
            fprintf(stderr, "%d, ", n);
            fflush(stderr);
            if(reconstruct){
                reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1);
                //if ((n+1)%30 == 0) rate *= .5;
                show_image(im, "reconstruction");
#ifdef OPENCV
                cvWaitKey(10);
#endif
            }else{
                int layer = max_layer + rand()%range - range/2;
                int octave = rand()%octaves;
                optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm);
            }
        }
        fprintf(stderr, "done\n");
        if(0){
            image g = grayscale_image(im);
            free_image(im);
            im = g;
        }
        char buff[256];
        if (prefix){
            sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e);
        }else{
            sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e);
        }
        printf("%d %s\n", e, buff);
        save_image(im, buff);
        //show_image(im, buff);
        //cvWaitKey(0);

        if(rotate){
            image rot = rotate_image(im, rotate);
            free_image(im);
            im = rot;
        }
        image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom);
        image resized = resize_image(crop, im.w, im.h);
        free_image(im);
        free_image(crop);
        im = resized;
    }
}
Example #27
0
void train_writing(char *cfgfile, char *weightfile)
{
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    float avg_loss = -1;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    network * net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
    int imgs = net->batch*net->subdivisions;
    list *plist = get_paths("figures.list");
    char **paths = (char **)list_to_array(plist);
    clock_t time;
    int N = plist->size;
    printf("N: %d\n", N);
    image out = get_network_image(net);

    data train, buffer;

    load_args args = {0};
    args.w = net->w;
    args.h = net->h;
    args.out_w = out.w;
    args.out_h = out.h;
    args.paths = paths;
    args.n = imgs;
    args.m = N;
    args.d = &buffer;
    args.type = WRITING_DATA;

    pthread_t load_thread = load_data_in_thread(args);
    int epoch = (*net->seen)/N;
    while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
        printf("Loaded %lf seconds\n",sec(clock()-time));

        time=clock();
        float loss = train_network(net, train);

        /*
           image pred = float_to_image(64, 64, 1, out);
           print_image(pred);
         */

        /*
           image im = float_to_image(256, 256, 3, train.X.vals[0]);
           image lab = float_to_image(64, 64, 1, train.y.vals[0]);
           image pred = float_to_image(64, 64, 1, out);
           show_image(im, "image");
           show_image(lab, "label");
           print_image(lab);
           show_image(pred, "pred");
           cvWaitKey(0);
         */

        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
        free_data(train);
        if(get_current_batch(net)%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
            save_weights(net, buff);
        }
        if(*net->seen/N > epoch){
            epoch = *net->seen/N;
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
    }
}
Example #28
0
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
{
    int j;
    list *options = read_data_cfg(datacfg);
    char *valid_images = option_find_str(options, "valid", "data/train.list");
    char *name_list = option_find_str(options, "names", "data/names.list");
    char *prefix = option_find_str(options, "results", "results");
    char **names = get_labels(name_list);
    char *mapf = option_find_str(options, "map", 0);
    int *map = 0;
    if (mapf) map = read_map(mapf);

    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    list *plist = get_paths(valid_images);
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;

    char buff[1024];
    char *type = option_find_str(options, "eval", "voc");
    FILE *fp = 0;
    FILE **fps = 0;
    int coco = 0;
    int imagenet = 0;
    if(0==strcmp(type, "coco")){
        if(!outfile) outfile = "coco_results";
        snprintf(buff, 1024, "%s/%s.json", prefix, outfile);
        fp = fopen(buff, "w");
        fprintf(fp, "[\n");
        coco = 1;
    } else if(0==strcmp(type, "imagenet")){
        if(!outfile) outfile = "imagenet-detection";
        snprintf(buff, 1024, "%s/%s.txt", prefix, outfile);
        fp = fopen(buff, "w");
        imagenet = 1;
        classes = 200;
    } else {
        if(!outfile) outfile = "comp4_det_test_";
        fps = calloc(classes, sizeof(FILE *));
        for(j = 0; j < classes; ++j){
            snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
            fps[j] = fopen(buff, "w");
        }
    }


    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;
    int t;

    float thresh = .005;
    float nms = .45;

    int nthreads = 4;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));

    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;

    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            get_region_boxes(l, w, h, thresh, probs, boxes, 0, map, .5);
            if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms);
            if (coco){
                print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else if (imagenet){
                print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h);
            } else {
                print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h);
            }
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    for(j = 0; j < classes; ++j){
        if(fps) fclose(fps[j]);
    }
    if(coco){
        fseek(fp, -2, SEEK_CUR); 
        fprintf(fp, "\n]\n");
        fclose(fp);
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
Example #29
0
void validate_detector_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));

    list *plist = get_paths("data/voc.2007.test");
    char **paths = (char **)list_to_array(plist);

    layer l = net.layers[net.n-1];
    int classes = l.classes;

    int j, k;
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));

    int m = plist->size;
    int i=0;

    float thresh = .001;
    float iou_thresh = .5;
    float nms = .4;

    int total = 0;
    int correct = 0;
    int proposals = 0;
    float avg_iou = 0;

    for(i = 0; i < m; ++i){
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image sized = resize_image(orig, net.w, net.h);
        char *id = basecfg(path);
        network_predict(net, sized.data);
        get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0, .5);
        if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);

        char labelpath[4096];
        find_replace(path, "images", "labels", labelpath);
        find_replace(labelpath, "JPEGImages", "labels", labelpath);
        find_replace(labelpath, ".jpg", ".txt", labelpath);
        find_replace(labelpath, ".JPEG", ".txt", labelpath);

        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < l.w*l.h*l.n; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < l.w*l.h*l.n; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }

        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
        free(id);
        free_image(orig);
        free_image(sized);
    }
}
Example #30
0
void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear, int tokenized)
{
    srand(time(0));
    data_seed = time(0);
    unsigned char *text = 0;
    int *tokens = 0;
    size_t size;
    if(tokenized){
        tokens = read_tokenized_data(filename, &size);
    } else {
        FILE *fp = fopen(filename, "rb");

        fseek(fp, 0, SEEK_END); 
        size = ftell(fp);
        fseek(fp, 0, SEEK_SET); 

        text = calloc(size+1, sizeof(char));
        fread(text, 1, size, fp);
        fclose(fp);
    }

    char *backup_directory = "/home/pjreddie/backup/";
    char *base = basecfg(cfgfile);
    fprintf(stderr, "%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }

    int inputs = get_network_input_size(net);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int batch = net.batch;
    int steps = net.time_steps;
    if(clear) *net.seen = 0;
    int i = (*net.seen)/net.batch;

    int streams = batch/steps;
    size_t *offsets = calloc(streams, sizeof(size_t));
    int j;
    for(j = 0; j < streams; ++j){
        offsets[j] = rand_size_t()%size;
    }

    clock_t time;
    while(get_current_batch(net) < net.max_batches){
        i += 1;
        time=clock();
        float_pair p;
        if(tokenized){
            p = get_rnn_token_data(tokens, offsets, inputs, size, streams, steps);
        }else{
            p = get_rnn_data(text, offsets, inputs, size, streams, steps);
        }

        float loss = train_network_datum(net, p.x, p.y) / (batch);
        free(p.x);
        free(p.y);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;

        int chars = get_current_batch(net)*batch;
        fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);

        for(j = 0; j < streams; ++j){
            //printf("%d\n", j);
            if(rand()%10 == 0){
                //fprintf(stderr, "Reset\n");
                offsets[j] = rand_size_t()%size;
                reset_rnn_state(net, j);
            }
        }

        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        if(i%10==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(net, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}