Example #1
0
int fakeidentd_main(int argc, char **argv)
{
	enum {
		OPT_foreground = 0x1,
		OPT_inetd      = 0x2,
		OPT_inetdwait  = 0x4,
		OPT_fiw        = 0x7,
		OPT_bindaddr   = 0x8,
	};

	const char *bind_address = NULL;
	unsigned opt;
	int fd;

	opt = getopt32(argv, "fiwb:", &bind_address);
	strcpy(bogouser, "nobody");
	if (argv[optind])
		strncpy(bogouser, argv[optind], sizeof(bogouser));

	/* Daemonize if no -f and no -i and no -w */
	if (!(opt & OPT_fiw));
		bb_daemonize_or_rexec(0, argv);

	/* Where to log in inetd modes? "Classic" inetd
	 * probably has its stderr /dev/null'ed (we need log to syslog?),
	 * but daemontools-like utilities usually expect that children
	 * log to stderr. I like daemontools more. Go their way.
	 * (Or maybe we need yet another option "log to syslog") */
	if (!(opt & OPT_fiw) /* || (opt & OPT_syslog) */) {
		openlog(applet_name, 0, LOG_DAEMON);
		logmode = LOGMODE_SYSLOG;
	}

	if (opt & OPT_inetd) {
		inetd_mode();
		return 0;
	}

	/* Ignore closed connections when writing */
	signal(SIGPIPE, SIG_IGN);

	fd = 0;
	if (!(opt & OPT_inetdwait)) {
		fd = create_and_bind_stream_or_die(bind_address,
				bb_lookup_port("identd", "tcp", 113));
		xlisten(fd, 5);
	}

	isrv_run(fd, new_peer, do_rd, /*do_wr:*/ NULL, do_timeout,
			TIMEOUT, (opt & OPT_inetdwait) ? TIMEOUT : 0);
	return 0;
}
int watchdog_main(int argc, char **argv)
{
	unsigned opts;
	unsigned timer_duration = 30000; /* Userspace timer duration, in milliseconds */
	char *t_arg;

	opt_complementary = "=1"; /* must have 1 argument */
	opts = getopt32(argv, "Ft:", &t_arg);

	if (opts & OPT_TIMER) {
		static const struct suffix_mult suffixes[] = {
			{ "ms", 1 },
			{ "", 1000 },
			{ }
		};
		timer_duration = xatou_sfx(t_arg, suffixes);
	}

	if (!(opts & OPT_FOREGROUND)) {
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);
	}

	bb_signals(BB_FATAL_SIGS, watchdog_shutdown);

	/* Use known fd # - avoid needing global 'int fd' */
	xmove_fd(xopen(argv[argc - 1], O_WRONLY), 3);

// TODO?
//	if (!(opts & OPT_TIMER)) {
//		if (ioctl(fd, WDIOC_GETTIMEOUT, &timer_duration) == 0)
//			timer_duration *= 500;
//		else
//			timer_duration = 30000;
//	}

	while (1) {
		/*
		 * Make sure we clear the counter before sleeping, as the counter value
		 * is undefined at this point -- PFM
		 */
		write(3, "", 1); /* write zero byte */
		usleep(timer_duration * 1000L);
	}
	return EXIT_SUCCESS; /* - not reached, but gcc 4.2.1 is too dumb! */
}
Example #3
0
int openvt_main(int argc, char **argv)
{
	char vtname[sizeof(VC_FORMAT) + 2];

	if (argc < 3)
		bb_show_usage();

	/* check for illegal vt number: < 1 or > 63 */
	sprintf(vtname, VC_FORMAT, (int)xatou_range(argv[1], 1, 63));

	bb_daemonize_or_rexec(DAEMON_CLOSE_EXTRA_FDS, argv);
	/* grab new one */
	close(0);
	xopen(vtname, O_RDWR);
	xdup2(0, STDOUT_FILENO);
	xdup2(0, STDERR_FILENO);

	argv += 2;
	BB_EXECVP(argv[0], argv);
	_exit(1);
}
Example #4
0
int klogd_main(int argc UNUSED_PARAM, char **argv)
{
	int i = 0;
	char *opt_c;
	int opt;
	int used = 0;

	opt = getopt32(argv, "c:n", &opt_c);
	if (opt & OPT_LEVEL) {
		/* Valid levels are between 1 and 8 */
		i = xatou_range(opt_c, 1, 8);
	}
	if (!(opt & OPT_FOREGROUND)) {
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);
	}

	openlog("kernel", 0, LOG_KERN);

	bb_signals(BB_FATAL_SIGS, klogd_signal);
	signal(SIGHUP, SIG_IGN);

	/* "Open the log. Currently a NOP" */
	klogctl(1, NULL, 0);

	/* "printk() prints a message on the console only if it has a loglevel
	 * less than console_loglevel". Here we set console_loglevel = i. */
	if (i)
		klogctl(8, NULL, i);

	syslog(LOG_NOTICE, "klogd started: %s", bb_banner);

	while (1) {
		int n;
		int priority;
		char *start;

		/* "2 -- Read from the log." */
		start = log_buffer + used;
		n = klogctl(2, start, KLOGD_LOGBUF_SIZE-1 - used);
		if (n < 0) {
			if (errno == EINTR)
				continue;
			syslog(LOG_ERR, "klogd: error %d in klogctl(2): %m",
					errno);
			break;
		}
		start[n] = '\0';

		/* klogctl buffer parsing modelled after code in dmesg.c */
		/* Process each newline-terminated line in the buffer */
		start = log_buffer;
		while (1) {
			char *newline = strchrnul(start, '\n');

			if (*newline == '\0') {
				/* This line is incomplete... */
				if (start != log_buffer) {
					/* move it to the front of the buffer */
					overlapping_strcpy(log_buffer, start);
					used = newline - start;
					/* don't log it yet */
					break;
				}
				/* ...but if buffer is full, log it anyway */
				used = 0;
				newline = NULL;
			} else {
				*newline++ = '\0';
			}

			/* Extract the priority */
			priority = LOG_INFO;
			if (*start == '<') {
				start++;
				if (*start) {
					/* kernel never generates multi-digit prios */
					priority = (*start - '0');
					start++;
				}
				if (*start == '>')
					start++;
			}
			/* Log (only non-empty lines) */
			if (*start)
				syslog(priority, "%s", start);

			if (!newline)
				break;
			start = newline;
		}
	}

	return EXIT_FAILURE;
}
Example #5
0
int watchdog_main(int argc, char **argv)
{
	static const struct suffix_mult suffixes[] = {
		{ "ms", 1 },
		{ "", 1000 },
		{ "", 0 }
	};

	unsigned opts;
	unsigned stimer_duration; /* how often to restart */
	unsigned htimer_duration = 60000; /* reboots after N ms if not restarted */
	char *st_arg;
	char *ht_arg;

	opt_complementary = "=1"; /* must have exactly 1 argument */
	opts = getopt32(argv, "Ft:T:", &st_arg, &ht_arg);

	/* We need to daemonize *before* opening the watchdog as many drivers
	 * will only allow one process at a time to do so.  Since daemonizing
	 * is not perfect (child may run before parent finishes exiting), we
	 * can't rely on parent exiting before us (let alone *cleanly* releasing
	 * the watchdog fd -- something else that may not even be allowed).
	 */
	if (!(opts & OPT_FOREGROUND))
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);

	if (opts & OPT_HTIMER)
		htimer_duration = xatou_sfx(ht_arg, suffixes);
	stimer_duration = htimer_duration / 2;
	if (opts & OPT_STIMER)
		stimer_duration = xatou_sfx(st_arg, suffixes);

	bb_signals(BB_FATAL_SIGS, watchdog_shutdown);

	/* Use known fd # - avoid needing global 'int fd' */
	xmove_fd(xopen(argv[argc - 1], O_WRONLY), 3);

	/* WDIOC_SETTIMEOUT takes seconds, not milliseconds */
	htimer_duration = htimer_duration / 1000;
#ifndef WDIOC_SETTIMEOUT
# error WDIOC_SETTIMEOUT is not defined, cannot compile watchdog applet
#else
# if defined WDIOC_SETOPTIONS && defined WDIOS_ENABLECARD
	{
		static const int enable = WDIOS_ENABLECARD;
		ioctl_or_warn(3, WDIOC_SETOPTIONS, (void*) &enable);
	}
# endif
	ioctl_or_warn(3, WDIOC_SETTIMEOUT, &htimer_duration);
#endif

#if 0
	ioctl_or_warn(3, WDIOC_GETTIMEOUT, &htimer_duration);
	printf("watchdog: SW timer is %dms, HW timer is %ds\n",
		stimer_duration, htimer_duration * 1000);
#endif

	while (1) {
		/*
		 * Make sure we clear the counter before sleeping,
		 * as the counter value is undefined at this point -- PFM
		 */
		write(3, "", 1); /* write zero byte */
		usleep(stimer_duration * 1000L);
	}
	return EXIT_SUCCESS; /* - not reached, but gcc 4.2.1 is too dumb! */
}
Example #6
0
int ifplugd_main(int argc UNUSED_PARAM, char **argv)
{
	int iface_status;
	int delay_time;
	const char *iface_status_str;
	struct pollfd netlink_pollfd[1];
	unsigned opts;
	const char *api_mode_found;
#if ENABLE_FEATURE_PIDFILE
	char *pidfile_name;
	pid_t pid_from_pidfile;
#endif

	INIT_G();

	opt_complementary = "t+:u+:d+";
	opts = getopt32(argv, OPTION_STR,
		&G.iface, &G.script_name, &G.poll_time, &G.delay_up,
		&G.delay_down, &G.api_mode, &G.extra_arg);
	G.poll_time *= 1000;

	applet_name = xasprintf("ifplugd(%s)", G.iface);

#if ENABLE_FEATURE_PIDFILE
	pidfile_name = xasprintf(CONFIG_PID_FILE_PATH "/ifplugd.%s.pid", G.iface);
	pid_from_pidfile = read_pid(pidfile_name);

	if (opts & FLAG_KILL) {
		if (pid_from_pidfile > 0)
			/* Upstream tool use SIGINT for -k */
			kill(pid_from_pidfile, SIGINT);
		return EXIT_SUCCESS;
	}

	if (pid_from_pidfile > 0 && kill(pid_from_pidfile, 0) == 0)
		bb_error_msg_and_die("daemon already running");
#endif

	api_mode_found = strchr(api_modes, G.api_mode[0]);
	if (!api_mode_found)
		bb_error_msg_and_die("unknown API mode '%s'", G.api_mode);
	G.api_method_num = api_mode_found - api_modes;

	if (!(opts & FLAG_NO_DAEMON))
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);

	xmove_fd(xsocket(AF_INET, SOCK_DGRAM, 0), ioctl_fd);
	if (opts & FLAG_MONITOR) {
		struct sockaddr_nl addr;
		int fd = xsocket(PF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE);

		memset(&addr, 0, sizeof(addr));
		addr.nl_family = AF_NETLINK;
		addr.nl_groups = RTMGRP_LINK;
		addr.nl_pid = getpid();

		xbind(fd, (struct sockaddr*)&addr, sizeof(addr));
		xmove_fd(fd, netlink_fd);
	}

	write_pidfile(pidfile_name);

	/* this can't be moved before socket creation */
	if (!(opts & FLAG_NO_SYSLOG)) {
		openlog(applet_name, 0, LOG_DAEMON);
		logmode |= LOGMODE_SYSLOG;
	}

	bb_signals(0
		| (1 << SIGINT )
		| (1 << SIGTERM)
		| (1 << SIGQUIT)
		| (1 << SIGHUP ) /* why we ignore it? */
		/* | (1 << SIGCHLD) - run_script does not use it anymore */
		, record_signo);

	bb_error_msg("started: %s", bb_banner);

	if (opts & FLAG_MONITOR) {
		struct ifreq ifrequest;
		set_ifreq_to_ifname(&ifrequest);
		G.iface_exists = (network_ioctl(SIOCGIFINDEX, &ifrequest, NULL) == 0);
	}

	if (G.iface_exists)
		maybe_up_new_iface();

	iface_status = detect_link();
	if (iface_status == IFSTATUS_ERR)
		goto exiting;
	iface_status_str = strstatus(iface_status);

	if (opts & FLAG_MONITOR) {
		bb_error_msg("interface %s",
			G.iface_exists ? "exists"
			: "doesn't exist, waiting");
	}
	/* else we assume it always exists, but don't mislead user
	 * by potentially lying that it really exists */

	if (G.iface_exists) {
		bb_error_msg("link is %s", iface_status_str);
	}

	if ((!(opts & FLAG_NO_STARTUP)
	     && iface_status == IFSTATUS_UP
	    )
	 || (opts & FLAG_INITIAL_DOWN)
	) {
		if (run_script(iface_status_str) != 0)
			goto exiting;
	}

	/* Main loop */
	netlink_pollfd[0].fd = netlink_fd;
	netlink_pollfd[0].events = POLLIN;
	delay_time = 0;
	while (1) {
		int iface_status_old;
		int iface_exists_old;

		switch (bb_got_signal) {
		case SIGINT:
		case SIGTERM:
			bb_got_signal = 0;
			goto cleanup;
		case SIGQUIT:
			bb_got_signal = 0;
			goto exiting;
		default:
			bb_got_signal = 0;
			break;
		}

		if (poll(netlink_pollfd,
				(opts & FLAG_MONITOR) ? 1 : 0,
				G.poll_time
			) < 0
		) {
			if (errno == EINTR)
				continue;
			bb_perror_msg("poll");
			goto exiting;
		}

		iface_status_old = iface_status;
		iface_exists_old = G.iface_exists;

		if ((opts & FLAG_MONITOR)
		 && (netlink_pollfd[0].revents & POLLIN)
		) {
			G.iface_exists = check_existence_through_netlink();
			if (G.iface_exists < 0) /* error */
				goto exiting;
			if (iface_exists_old != G.iface_exists) {
				bb_error_msg("interface %sappeared",
						G.iface_exists ? "" : "dis");
				if (G.iface_exists)
					maybe_up_new_iface();
			}
		}

		/* note: if !G.iface_exists, returns DOWN */
		iface_status = detect_link();
		if (iface_status == IFSTATUS_ERR) {
			if (!(opts & FLAG_MONITOR))
				goto exiting;
			iface_status = IFSTATUS_DOWN;
		}
		iface_status_str = strstatus(iface_status);

		if (iface_status_old != iface_status) {
			bb_error_msg("link is %s", iface_status_str);

			if (delay_time) {
				/* link restored its old status before
				 * we run script. don't run the script: */
				delay_time = 0;
			} else {
				delay_time = monotonic_sec();
				if (iface_status == IFSTATUS_UP)
					delay_time += G.delay_up;
				if (iface_status == IFSTATUS_DOWN)
					delay_time += G.delay_down;
				if (delay_time == 0)
					delay_time++;
			}
		}

		if (delay_time && (int)(monotonic_sec() - delay_time) >= 0) {
			delay_time = 0;
			if (run_script(iface_status_str) != 0)
				goto exiting;
		}
	} /* while (1) */

 cleanup:
	if (!(opts & FLAG_NO_SHUTDOWN)
	 && (iface_status == IFSTATUS_UP
	     || (iface_status == IFSTATUS_DOWN && delay_time)
	    )
	) {
		setenv(IFPLUGD_ENV_PREVIOUS, strstatus(iface_status), 1);
		setenv(IFPLUGD_ENV_CURRENT, strstatus(-1), 1);
		run_script("down\0up"); /* reusing string */
	}

 exiting:
	remove_pidfile(pidfile_name);
	bb_error_msg_and_die("exiting");
}
void FAST_FUNC bb_sanitize_stdio(void)
{
	bb_daemonize_or_rexec(DAEMON_ONLY_SANITIZE, NULL);
}
Example #8
0
int klogd_main(int argc UNUSED_PARAM, char **argv)
{
	int i = 0;
	char *opt_c;
	int opt;
	int used;
	unsigned int cnt;

	opt = getopt32(argv, "c:n", &opt_c);
	if (opt & OPT_LEVEL) {
		/* Valid levels are between 1 and 8 */
		i = xatou_range(opt_c, 1, 8);
	}
	if (!(opt & OPT_FOREGROUND)) {
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);
	}

	logmode = LOGMODE_SYSLOG;

	/* klogd_open() before openlog(), since it might use fixed fd 3,
	 * and openlog() also may use the same fd 3 if we swap them:
	 */
	klogd_open();
	openlog("kernel", 0, LOG_KERN);
	/*
	 * glibc problem: for some reason, glibc changes LOG_KERN to LOG_USER
	 * above. The logic behind this is that standard
	 * http://pubs.opengroup.org/onlinepubs/9699919799/functions/syslog.html
	 * says the following about openlog and syslog:
	 * "LOG_USER
	 *  Messages generated by arbitrary processes.
	 *  This is the default facility identifier if none is specified."
	 *
	 * I believe glibc misinterpreted this text as "if openlog's
	 * third parameter is 0 (=LOG_KERN), treat it as LOG_USER".
	 * Whereas it was meant to say "if *syslog* is called with facility
	 * 0 in its 1st parameter without prior call to openlog, then perform
	 * implicit openlog(LOG_USER)".
	 *
	 * As a result of this, eh, feature, standard klogd was forced
	 * to open-code its own openlog and syslog implementation (!).
	 *
	 * Note that prohibiting openlog(LOG_KERN) on libc level does not
	 * add any security: any process can open a socket to "/dev/log"
	 * and write a string "<0>Voila, a LOG_KERN + LOG_EMERG message"
	 *
	 * Google code search tells me there is no widespread use of
	 * openlog("foo", 0, 0), thus fixing glibc won't break userspace.
	 *
	 * The bug against glibc was filed:
	 * bugzilla.redhat.com/show_bug.cgi?id=547000
	 */

	if (i)
		klogd_setloglevel(i);

	signal(SIGHUP, SIG_IGN);
	/* We want klogd_read to not be restarted, thus _norestart: */
	bb_signals_recursive_norestart(BB_FATAL_SIGS, record_signo);

	syslog(LOG_NOTICE, "klogd started: %s", bb_banner);

	used = 0;
	cnt = 0;
	while (!bb_got_signal) {
		int n;
		int priority;
		char *start;
		char *eor;

		/* "2 -- Read from the log." */
		start = log_buffer + used;
		n = klogd_read(start, KLOGD_LOGBUF_SIZE-1 - used);
		if (n < 0) {
			if (errno == EINTR)
				continue;
			bb_perror_msg(READ_ERROR);
			break;
		}
		start[n] = '\0';
		eor = &start[n];

		/* Process each newline-terminated line in the buffer */
		start = log_buffer;
		while (1) {
			char *newline = strchrnul(start, '\n');

			if (*newline == '\0') {
				/* This line is incomplete */

				/* move it to the front of the buffer */
				overlapping_strcpy(log_buffer, start);
				used = newline - start;
				if (used < KLOGD_LOGBUF_SIZE-1) {
					/* buffer isn't full */
					break;
				}
				/* buffer is full, log it anyway */
				used = 0;
				newline = NULL;
			} else {
				*newline++ = '\0';
			}

			/* Extract the priority */
			priority = LOG_INFO;
			if (*start == '<') {
				start++;
				if (*start) {
					/* kernel never generates multi-digit prios */
					priority = (*start - '0');
					start++;
				}
				if (*start == '>')
					start++;
			}
			/* Log (only non-empty lines) */
			if (*start) {
				syslog(priority, "%s", start);
				/* give syslog time to catch up */
				++cnt;
				if ((cnt & 0x07) == 0 && (cnt < 300 || (eor - start) > 200))
					usleep(50 * 1000);
			}

			if (!newline)
				break;
			start = newline;
		}
	}

	klogd_close();
	syslog(LOG_NOTICE, "klogd: exiting");
	if (bb_got_signal)
		kill_myself_with_sig(bb_got_signal);
	return EXIT_FAILURE;
}
Example #9
0
int klogd_main(int argc, char **argv)
{
	int i = i; /* silence gcc */
	char *start;

	/* do normal option parsing */
	getopt32(argv, "c:n", &start);

	if (option_mask32 & OPT_LEVEL) {
		/* Valid levels are between 1 and 8 */
		i = xatoul_range(start, 1, 8);
	}

	if (!(option_mask32 & OPT_FOREGROUND)) {
		bb_daemonize_or_rexec(DAEMON_CHDIR_ROOT, argv);
	}

	openlog("kernel", 0, LOG_KERN);

	/* Set up sig handlers */
	signal(SIGINT, klogd_signal);
	signal(SIGKILL, klogd_signal);
	signal(SIGTERM, klogd_signal);
	signal(SIGHUP, SIG_IGN);

	/* "Open the log. Currently a NOP." */
	klogctl(1, NULL, 0);

	/* Set level of kernel console messaging. */
	if (option_mask32 & OPT_LEVEL)
		klogctl(8, NULL, i);

	syslog(LOG_NOTICE, "klogd started: %s", bb_banner);

	/* Note: this code does not detect incomplete messages
	 * (messages not ending with '\n' or just when kernel
	 * generates too many messages for us to keep up)
	 * and will split them in two separate lines */
	while (1) {
		int n;
		int priority;

		n = klogctl(2, log_buffer, KLOGD_LOGBUF_SIZE - 1);
		if (n < 0) {
			if (errno == EINTR)
				continue;
			syslog(LOG_ERR, "klogd: error from klogctl(2): %d - %m",
					errno);
			break;
		}
		log_buffer[n] = '\n';
		i = 0;
		while (i < n) {
			priority = LOG_INFO;
			start = &log_buffer[i];
			if (log_buffer[i] == '<') {
				i++;
				// kernel never ganerates multi-digit prios
				//priority = 0;
				//while (log_buffer[i] >= '0' && log_buffer[i] <= '9') {
				//	priority = priority * 10 + (log_buffer[i] - '0');
				//	i++;
				//}
				if (isdigit(log_buffer[i])) {
					priority = (log_buffer[i] - '0');
					i++;
				}
				if (log_buffer[i] == '>')
					i++;
				start = &log_buffer[i];
			}
			while (log_buffer[i] != '\n')
				i++;
			log_buffer[i] = '\0';
			syslog(priority, "%s", start);
			i++;
		}
	}

	return EXIT_FAILURE;
}
Example #10
0
int crond_main(int argc ATTRIBUTE_UNUSED, char **argv)
{
	unsigned opt;

	INIT_G();

	/* "-b after -f is ignored", and so on for every pair a-b */
	opt_complementary = "f-b:b-f:S-L:L-S" USE_DEBUG_CROND_OPTION(":d-l")
			":l+:d+"; /* -l and -d have numeric param */
	opt = getopt32(argv, "l:L:fbSc:" USE_DEBUG_CROND_OPTION("d:"),
			&LogLevel, &LogFile, &CDir
			USE_DEBUG_CROND_OPTION(,&LogLevel));
	/* both -d N and -l N set the same variable: LogLevel */

	if (!(opt & OPT_f)) {
		/* close stdin, stdout, stderr.
		 * close unused descriptors - don't need them. */
		bb_daemonize_or_rexec(DAEMON_CLOSE_EXTRA_FDS, argv);
	}

	if (!DebugOpt && LogFile == NULL) {
		/* logging to syslog */
		openlog(applet_name, LOG_CONS | LOG_PID, LOG_CRON);
		logmode = LOGMODE_SYSLOG;
	}

	xchdir(CDir);
	//signal(SIGHUP, SIG_IGN); /* ? original crond dies on HUP... */
	setenv("SHELL", DEFAULT_SHELL, 1); /* once, for all future children */
	crondlog(LVL9 "crond (busybox "BB_VER") started, log level %d", LogLevel);
	SynchronizeDir();

	/* main loop - synchronize to 1 second after the minute, minimum sleep
	 * of 1 second. */
	{
		time_t t1 = time(NULL);
		time_t t2;
		long dt;
		int rescan = 60;
		int sleep_time = 60;

		write_pidfile("/var/run/crond.pid");
		for (;;) {
			sleep((sleep_time + 1) - (time(NULL) % sleep_time));

			t2 = time(NULL);
			dt = (long)t2 - (long)t1;

			/*
			 * The file 'cron.update' is checked to determine new cron
			 * jobs.  The directory is rescanned once an hour to deal
			 * with any screwups.
			 *
			 * check for disparity.  Disparities over an hour either way
			 * result in resynchronization.  A reverse-indexed disparity
			 * less then an hour causes us to effectively sleep until we
			 * match the original time (i.e. no re-execution of jobs that
			 * have just been run).  A forward-indexed disparity less then
			 * an hour causes intermediate jobs to be run, but only once
			 * in the worst case.
			 *
			 * when running jobs, the inequality used is greater but not
			 * equal to t1, and less then or equal to t2.
			 */
			if (--rescan == 0) {
				rescan = 60;
				SynchronizeDir();
			}
			CheckUpdates();
			if (DebugOpt)
				crondlog(LVL5 "wakeup dt=%ld", dt);
			if (dt < -60 * 60 || dt > 60 * 60) {
				crondlog(WARN9 "time disparity of %d minutes detected", dt / 60);
			} else if (dt > 0) {
				TestJobs(t1, t2);
				RunJobs();
				sleep(5);
				if (CheckJobs() > 0) {
					sleep_time = 10;
				} else {
					sleep_time = 60;
				}
			}
			t1 = t2;
		}
	}
	return 0; /* not reached */
}
Example #11
0
int acpid_main(int argc UNUSED_PARAM, char **argv)
{
	int nfd;
	int opts;
	struct pollfd *pfd;
	const char *opt_dir = "/etc/acpi";
	const char *opt_input = "/dev/input/event";
	const char *opt_logfile = "/var/log/acpid.log";
	const char *opt_action = "/etc/acpid.conf";
	const char *opt_map = "/etc/acpi.map";
#if ENABLE_FEATURE_PIDFILE
	const char *opt_pidfile = "/var/run/acpid.pid";
#endif

	INIT_G();

	opt_complementary = "df:e--e";
	opts = getopt32(argv, "c:de:fl:a:M:" IF_FEATURE_PIDFILE("p:") IF_FEATURE_ACPID_COMPAT("g:m:s:S:v"),
		&opt_dir, &opt_input, &opt_logfile, &opt_action, &opt_map
		IF_FEATURE_PIDFILE(, &opt_pidfile)
		IF_FEATURE_ACPID_COMPAT(, NULL, NULL, NULL, NULL)
	);

	if (!(opts & OPT_f)) {
		/* No -f "Foreground", we go to background */
		bb_daemonize_or_rexec(DAEMON_CLOSE_EXTRA_FDS, argv);
	}

	if (!(opts & OPT_d)) {
		/* No -d "Debug", we log to log file.
		 * This includes any output from children.
		 */
		xmove_fd(xopen(opt_logfile, O_WRONLY | O_CREAT | O_TRUNC), STDOUT_FILENO);
		xdup2(STDOUT_FILENO, STDERR_FILENO);
		/* Also, acpid's messages (but not children) will go to syslog too */
		openlog(applet_name, LOG_PID, LOG_DAEMON);
		logmode = LOGMODE_SYSLOG | LOGMODE_STDIO;
	}
	/* else: -d "Debug", log is not redirected */

	parse_conf_file(opt_action);
	parse_map_file(opt_map);

	xchdir(opt_dir);

	bb_signals((1 << SIGCHLD), SIG_IGN);
	bb_signals(BB_FATAL_SIGS, record_signo);

	pfd = NULL;
	nfd = 0;
	while (1) {
		int fd;
		char *dev_event;

		dev_event = xasprintf((opts & OPT_e) ? "%s" : "%s%u", opt_input, nfd);
		fd = open(dev_event, O_RDONLY | O_NONBLOCK);
		if (fd < 0) {
			if (nfd == 0)
				bb_simple_perror_msg_and_die(dev_event);
			break;
		}
		free(dev_event);
		pfd = xrealloc_vector(pfd, 1, nfd);
		pfd[nfd].fd = fd;
		pfd[nfd].events = POLLIN;
		nfd++;
	}

	write_pidfile(opt_pidfile);

	while (safe_poll(pfd, nfd, -1) > 0) {
		int i;
		for (i = 0; i < nfd; i++) {
			const char *event;

			if (!(pfd[i].revents & POLLIN)) {
				if (pfd[i].revents == 0)
					continue; /* this fd has nothing */

				/* Likely POLLERR, POLLHUP, POLLNVAL.
				 * Do not listen on this fd anymore.
				 */
				close(pfd[i].fd);
				nfd--;
				for (; i < nfd; i++)
					pfd[i].fd = pfd[i + 1].fd;
				break; /* do poll() again */
			}

			event = NULL;
			if (option_mask32 & OPT_e) {
				char *buf;
				int len;

				buf = xmalloc_reads(pfd[i].fd, NULL);
				/* buf = "button/power PWRB 00000080 00000000" */
				len = strlen(buf) - 9;
				if (len >= 0)
					buf[len] = '\0';
				event = find_action(NULL, buf);
				free(buf);
			} else {
				struct input_event ev;

				if (sizeof(ev) != full_read(pfd[i].fd, &ev, sizeof(ev)))
					continue;

				if (ev.value != 1 && ev.value != 0)
					continue;

				event = find_action(&ev, NULL);
			}
			if (!event)
				continue;
			// spawn event handler
			process_event(event);
		}
	}

	if (ENABLE_FEATURE_CLEAN_UP) {
		while (nfd--)
			close(pfd[nfd].fd);
		free(pfd);
	}
	remove_pidfile(opt_pidfile);

	return EXIT_SUCCESS;
}
Example #12
0
File: zcip.c Project: sdg7/wl500g
int zcip_main(int argc UNUSED_PARAM, char **argv)
{
	int state;
	char *r_opt;
	unsigned opts;

	// ugly trick, but I want these zeroed in one go
	struct {
		const struct in_addr null_ip;
		const struct ether_addr null_addr;
		struct in_addr ip;
		struct ifreq ifr;
		int timeout_ms; /* must be signed */
		unsigned conflicts;
		unsigned nprobes;
		unsigned nclaims;
		int ready;
	} L;
#define null_ip    (L.null_ip   )
#define null_addr  (L.null_addr )
#define ip         (L.ip        )
#define ifr        (L.ifr       )
#define timeout_ms (L.timeout_ms)
#define conflicts  (L.conflicts )
#define nprobes    (L.nprobes   )
#define nclaims    (L.nclaims   )
#define ready      (L.ready     )

	memset(&L, 0, sizeof(L));
	INIT_G();

#define FOREGROUND (opts & 1)
#define QUIT       (opts & 2)
	// parse commandline: prog [options] ifname script
	// exactly 2 args; -v accumulates and implies -f
	opt_complementary = "=2:vv:vf";
	opts = getopt32(argv, "fqr:p:v", &r_opt, &pidfile, &verbose);
#if !BB_MMU
	// on NOMMU reexec early (or else we will rerun things twice)
	if (!FOREGROUND)
		bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
#endif
	// open an ARP socket
	// (need to do it before openlog to prevent openlog from taking
	// fd 3 (sock_fd==3))
	xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
	if (!FOREGROUND) {
		// do it before all bb_xx_msg calls
		openlog(applet_name, 0, LOG_DAEMON);
		logmode |= LOGMODE_SYSLOG;
	}
	if (opts & 4) { // -r n.n.n.n
		if (inet_aton(r_opt, &ip) == 0
		 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != LINKLOCAL_ADDR
		) {
			bb_error_msg_and_die("invalid link address");
		}
	}
	argv += optind - 1;

	/* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
	/* We need to make space for script argument: */
	argv[0] = argv[1];
	argv[1] = argv[2];
	/* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
#define argv_intf (argv[0])

	xsetenv("interface", argv_intf);

	// initialize the interface (modprobe, ifup, etc)
	if (run(argv, "init", NULL))
		return EXIT_FAILURE;

	// initialize saddr
	// saddr is: { u16 sa_family; u8 sa_data[14]; }
	//memset(&saddr, 0, sizeof(saddr));
	//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
	safe_strncpy(saddr.sa_data, argv_intf, sizeof(saddr.sa_data));

	// bind to the interface's ARP socket
	xbind(sock_fd, &saddr, sizeof(saddr));

	// get the interface's ethernet address
	//memset(&ifr, 0, sizeof(ifr));
	strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
	xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
	memcpy(&eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);

	// start with some stable ip address, either a function of
	// the hardware address or else the last address we used.
	// we are taking low-order four bytes, as top-order ones
	// aren't random enough.
	// NOTE: the sequence of addresses we try changes only
	// depending on when we detect conflicts.
	{
		uint32_t t;
		move_from_unaligned32(t, ((char *)&eth_addr + 2));
		srand(t);
	}
	if (ip.s_addr == 0)
		ip.s_addr = pick();

	// FIXME cases to handle:
	//  - zcip already running!
	//  - link already has local address... just defend/update

	// daemonize now; don't delay system startup
	if (!FOREGROUND) {
#if BB_MMU
		bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
#endif
		if (verbose)
			bb_info_msg("start, interface %s", argv_intf);
	}

	write_pidfile(pidfile);
	bb_signals(BB_FATAL_SIGS, cleanup);

	// run the dynamic address negotiation protocol,
	// restarting after address conflicts:
	//  - start with some address we want to try
	//  - short random delay
	//  - arp probes to see if another host uses it
	//  - arp announcements that we're claiming it
	//  - use it
	//  - defend it, within limits
	// exit if:
	// - address is successfully obtained and -q was given:
	//   run "<script> config", then exit with exitcode 0
	// - poll error (when does this happen?)
	// - read error (when does this happen?)
	// - sendto error (in arp()) (when does this happen?)
	// - revents & POLLERR (link down). run "<script> deconfig" first
	state = PROBE;
	while (1) {
		struct pollfd fds[1];
		unsigned deadline_us;
		struct arp_packet p;
		int source_ip_conflict;
		int target_ip_conflict;

		fds[0].fd = sock_fd;
		fds[0].events = POLLIN;
		fds[0].revents = 0;

		// poll, being ready to adjust current timeout
		if (!timeout_ms) {
			timeout_ms = random_delay_ms(PROBE_WAIT);
			// FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
			// make the kernel filter out all packets except
			// ones we'd care about.
		}
		// set deadline_us to the point in time when we timeout
		deadline_us = MONOTONIC_US() + timeout_ms * 1000;

		VDBG("...wait %d %s nprobes=%u, nclaims=%u\n",
				timeout_ms, argv_intf, nprobes, nclaims);

		switch (safe_poll(fds, 1, timeout_ms)) {

		default:
			//bb_perror_msg("poll"); - done in safe_poll
			cleanup(EXIT_FAILURE);

		// timeout
		case 0:
			VDBG("state = %d\n", state);
			switch (state) {
			case PROBE:
				// timeouts in the PROBE state mean no conflicting ARP packets
				// have been received, so we can progress through the states
				if (nprobes < PROBE_NUM) {
					nprobes++;
					VDBG("probe/%u %s@%s\n",
							nprobes, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ null_ip,
							&null_addr, ip);
					timeout_ms = PROBE_MIN * 1000;
					timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
				}
				else {
					// Switch to announce state.
					state = ANNOUNCE;
					nclaims = 0;
					VDBG("announce/%u %s@%s\n",
							nclaims, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ ip,
							&eth_addr, ip);
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
				}
				break;
			case RATE_LIMIT_PROBE:
				// timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
				// have been received, so we can move immediately to the announce state
				state = ANNOUNCE;
				nclaims = 0;
				VDBG("announce/%u %s@%s\n",
						nclaims, argv_intf, inet_ntoa(ip));
				arp(/* ARPOP_REQUEST, */
						/* &eth_addr, */ ip,
						&eth_addr, ip);
				timeout_ms = ANNOUNCE_INTERVAL * 1000;
				break;
			case ANNOUNCE:
				// timeouts in the ANNOUNCE state mean no conflicting ARP packets
				// have been received, so we can progress through the states
				if (nclaims < ANNOUNCE_NUM) {
					nclaims++;
					VDBG("announce/%u %s@%s\n",
							nclaims, argv_intf, inet_ntoa(ip));
					arp(/* ARPOP_REQUEST, */
							/* &eth_addr, */ ip,
							&eth_addr, ip);
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
				}
				else {
					// Switch to monitor state.
					state = MONITOR;
					// link is ok to use earlier
					// FIXME update filters
					run(argv, "config", &ip);
					ready = 1;
					conflicts = 0;
					timeout_ms = -1; // Never timeout in the monitor state.

					// NOTE: all other exit paths
					// should deconfig ...
					if (QUIT)
						cleanup(EXIT_SUCCESS);
				}
				break;
			case DEFEND:
				// We won!  No ARP replies, so just go back to monitor.
				state = MONITOR;
				timeout_ms = -1;
				conflicts = 0;
				break;
			default:
				// Invalid, should never happen.  Restart the whole protocol.
				state = PROBE;
				ip.s_addr = pick();
				timeout_ms = 0;
				nprobes = 0;
				nclaims = 0;
				break;
			} // switch (state)
			break; // case 0 (timeout)

		// packets arriving, or link went down
		case 1:
			// We need to adjust the timeout in case we didn't receive
			// a conflicting packet.
			if (timeout_ms > 0) {
				unsigned diff = deadline_us - MONOTONIC_US();
				if ((int)(diff) < 0) {
					// Current time is greater than the expected timeout time.
					// Should never happen.
					VDBG("missed an expected timeout\n");
					timeout_ms = 0;
				} else {
					VDBG("adjusting timeout\n");
					timeout_ms = (diff / 1000) | 1; /* never 0 */
				}
			}

			if ((fds[0].revents & POLLIN) == 0) {
				if (fds[0].revents & POLLERR) {
					// FIXME: links routinely go down;
					// this shouldn't necessarily exit.
					bb_error_msg("iface %s is down", argv_intf);
					if (ready) {
						run(argv, "deconfig", &ip);
					}
					cleanup(EXIT_FAILURE);
				}
				continue;
			}

			// read ARP packet
			if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
				bb_perror_msg(bb_msg_read_error);
				cleanup(EXIT_FAILURE);
			}
			if (p.eth.ether_type != htons(ETHERTYPE_ARP))
				continue;
#ifdef DEBUG
			{
				struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
				struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
				struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
				struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
				VDBG("%s recv arp type=%d, op=%d,\n",
					argv_intf, ntohs(p.eth.ether_type),
					ntohs(p.arp.arp_op));
				VDBG("\tsource=%s %s\n",
					ether_ntoa(sha),
					inet_ntoa(*spa));
				VDBG("\ttarget=%s %s\n",
					ether_ntoa(tha),
					inet_ntoa(*tpa));
			}
#endif
			if (p.arp.arp_op != htons(ARPOP_REQUEST)
			 && p.arp.arp_op != htons(ARPOP_REPLY))
				continue;

			source_ip_conflict = 0;
			target_ip_conflict = 0;

			if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0
			 && memcmp(&p.arp.arp_sha, &eth_addr, ETH_ALEN) != 0
			) {
				source_ip_conflict = 1;
			}
			if (p.arp.arp_op == htons(ARPOP_REQUEST)
			 && memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0
			 && memcmp(&p.arp.arp_tha, &eth_addr, ETH_ALEN) != 0
			) {
				target_ip_conflict = 1;
			}

			VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n",
				state, source_ip_conflict, target_ip_conflict);
			switch (state) {
			case PROBE:
			case ANNOUNCE:
				// When probing or announcing, check for source IP conflicts
				// and other hosts doing ARP probes (target IP conflicts).
				if (source_ip_conflict || target_ip_conflict) {
					conflicts++;
					if (conflicts >= MAX_CONFLICTS) {
						VDBG("%s ratelimit\n", argv_intf);
						timeout_ms = RATE_LIMIT_INTERVAL * 1000;
						state = RATE_LIMIT_PROBE;
					}

					// restart the whole protocol
					ip.s_addr = pick();
					timeout_ms = 0;
					nprobes = 0;
					nclaims = 0;
				}
				break;
			case MONITOR:
				// If a conflict, we try to defend with a single ARP probe.
				if (source_ip_conflict) {
					VDBG("monitor conflict -- defending\n");
					state = DEFEND;
					timeout_ms = DEFEND_INTERVAL * 1000;
					arp(/* ARPOP_REQUEST, */
						/* &eth_addr, */ ip,
						&eth_addr, ip);
				}
				break;
			case DEFEND:
				// Well, we tried.  Start over (on conflict).
				if (source_ip_conflict) {
					state = PROBE;
					VDBG("defend conflict -- starting over\n");
					ready = 0;
					run(argv, "deconfig", &ip);

					// restart the whole protocol
					ip.s_addr = pick();
					timeout_ms = 0;
					nprobes = 0;
					nclaims = 0;
				}
				break;
			default:
				// Invalid, should never happen.  Restart the whole protocol.
				VDBG("invalid state -- starting over\n");
				state = PROBE;
				ip.s_addr = pick();
				timeout_ms = 0;
				nprobes = 0;
				nclaims = 0;
				break;
			} // switch state
			break; // case 1 (packets arriving)
		} // switch poll
	} // while (1)
#undef argv_intf
}
Example #13
0
int zcip_main(int argc UNUSED_PARAM, char **argv)
{
	char *r_opt;
	const char *l_opt = "169.254.0.0";
	int state;
	int nsent;
	unsigned opts;

	// Ugly trick, but I want these zeroed in one go
	struct {
		const struct ether_addr null_ethaddr;
		struct ifreq ifr;
		uint32_t chosen_nip;
		int conflicts;
		int timeout_ms; // must be signed
		int verbose;
	} L;
#define null_ethaddr (L.null_ethaddr)
#define ifr          (L.ifr         )
#define chosen_nip   (L.chosen_nip  )
#define conflicts    (L.conflicts   )
#define timeout_ms   (L.timeout_ms  )
#define verbose      (L.verbose     )

	memset(&L, 0, sizeof(L));
	INIT_G();

#define FOREGROUND (opts & 1)
#define QUIT       (opts & 2)
	// Parse commandline: prog [options] ifname script
	// exactly 2 args; -v accumulates and implies -f
	opt_complementary = "=2:vv:vf";
	opts = getopt32(argv, "fqr:l:v", &r_opt, &l_opt, &verbose);
#if !BB_MMU
	// on NOMMU reexec early (or else we will rerun things twice)
	if (!FOREGROUND)
		bb_daemonize_or_rexec(0 /*was: DAEMON_CHDIR_ROOT*/, argv);
#endif
	// Open an ARP socket
	// (need to do it before openlog to prevent openlog from taking
	// fd 3 (sock_fd==3))
	xmove_fd(xsocket(AF_PACKET, SOCK_PACKET, htons(ETH_P_ARP)), sock_fd);
	if (!FOREGROUND) {
		// do it before all bb_xx_msg calls
		openlog(applet_name, 0, LOG_DAEMON);
		logmode |= LOGMODE_SYSLOG;
	}
	bb_logenv_override();

	{ // -l n.n.n.n
		struct in_addr net;
		if (inet_aton(l_opt, &net) == 0
		 || (net.s_addr & htonl(IN_CLASSB_NET)) != net.s_addr
		) {
			bb_error_msg_and_die("invalid network address");
		}
		G.localnet_ip = ntohl(net.s_addr);
	}
	if (opts & 4) { // -r n.n.n.n
		struct in_addr ip;
		if (inet_aton(r_opt, &ip) == 0
		 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != G.localnet_ip
		) {
			bb_error_msg_and_die("invalid link address");
		}
		chosen_nip = ip.s_addr;
	}
	argv += optind - 1;

	/* Now: argv[0]:junk argv[1]:intf argv[2]:script argv[3]:NULL */
	/* We need to make space for script argument: */
	argv[0] = argv[1];
	argv[1] = argv[2];
	/* Now: argv[0]:intf argv[1]:script argv[2]:junk argv[3]:NULL */
#define argv_intf (argv[0])

	xsetenv("interface", argv_intf);

	// Initialize the interface (modprobe, ifup, etc)
	if (run(argv, "init", 0))
		return EXIT_FAILURE;

	// Initialize G.iface_sockaddr
	// G.iface_sockaddr is: { u16 sa_family; u8 sa_data[14]; }
	//memset(&G.iface_sockaddr, 0, sizeof(G.iface_sockaddr));
	//TODO: are we leaving sa_family == 0 (AF_UNSPEC)?!
	safe_strncpy(G.iface_sockaddr.sa_data, argv_intf, sizeof(G.iface_sockaddr.sa_data));

	// Bind to the interface's ARP socket
	xbind(sock_fd, &G.iface_sockaddr, sizeof(G.iface_sockaddr));

	// Get the interface's ethernet address
	//memset(&ifr, 0, sizeof(ifr));
	strncpy_IFNAMSIZ(ifr.ifr_name, argv_intf);
	xioctl(sock_fd, SIOCGIFHWADDR, &ifr);
	memcpy(&G.our_ethaddr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);

	// Start with some stable ip address, either a function of
	// the hardware address or else the last address we used.
	// we are taking low-order four bytes, as top-order ones
	// aren't random enough.
	// NOTE: the sequence of addresses we try changes only
	// depending on when we detect conflicts.
	{
		uint32_t t;
		move_from_unaligned32(t, ((char *)&G.our_ethaddr + 2));
		t += getpid();
		srand(t);
	}
	// FIXME cases to handle:
	//  - zcip already running!
	//  - link already has local address... just defend/update

	// Daemonize now; don't delay system startup
	if (!FOREGROUND) {
#if BB_MMU
		bb_daemonize(0 /*was: DAEMON_CHDIR_ROOT*/);
#endif
		bb_info_msg("start, interface %s", argv_intf);
	}

	// Run the dynamic address negotiation protocol,
	// restarting after address conflicts:
	//  - start with some address we want to try
	//  - short random delay
	//  - arp probes to see if another host uses it
	//    00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 tell 0.0.0.0
	//  - arp announcements that we're claiming it
	//    00:04:e2:64:23:c2 > ff:ff:ff:ff:ff:ff arp who-has 169.254.194.171 (00:04:e2:64:23:c2) tell 169.254.194.171
	//  - use it
	//  - defend it, within limits
	// exit if:
	// - address is successfully obtained and -q was given:
	//   run "<script> config", then exit with exitcode 0
	// - poll error (when does this happen?)
	// - read error (when does this happen?)
	// - sendto error (in send_arp_request()) (when does this happen?)
	// - revents & POLLERR (link down). run "<script> deconfig" first
	if (chosen_nip == 0) {
 new_nip_and_PROBE:
		chosen_nip = pick_nip();
	}
	nsent = 0;
	state = PROBE;
	while (1) {
		struct pollfd fds[1];
		unsigned deadline_us;
		struct arp_packet p;
		int ip_conflict;
		int n;

		fds[0].fd = sock_fd;
		fds[0].events = POLLIN;
		fds[0].revents = 0;

		// Poll, being ready to adjust current timeout
		if (!timeout_ms) {
			timeout_ms = random_delay_ms(PROBE_WAIT);
			// FIXME setsockopt(sock_fd, SO_ATTACH_FILTER, ...) to
			// make the kernel filter out all packets except
			// ones we'd care about.
		}
		// Set deadline_us to the point in time when we timeout
		deadline_us = MONOTONIC_US() + timeout_ms * 1000;

		VDBG("...wait %d %s nsent=%u\n",
				timeout_ms, argv_intf, nsent);

		n = safe_poll(fds, 1, timeout_ms);
		if (n < 0) {
			//bb_perror_msg("poll"); - done in safe_poll
			return EXIT_FAILURE;
		}
		if (n == 0) { // timed out?
			VDBG("state:%d\n", state);
			switch (state) {
			case PROBE:
				// No conflicting ARP packets were seen:
				// we can progress through the states
				if (nsent < PROBE_NUM) {
					nsent++;
					VDBG("probe/%u %s@%s\n",
							nsent, argv_intf, nip_to_a(chosen_nip));
					timeout_ms = PROBE_MIN * 1000;
					timeout_ms += random_delay_ms(PROBE_MAX - PROBE_MIN);
					send_arp_request(0, &null_ethaddr, chosen_nip);
					continue;
				}
  				// Switch to announce state
				nsent = 0;
				state = ANNOUNCE;
				goto send_announce;
			case ANNOUNCE:
				// No conflicting ARP packets were seen:
				// we can progress through the states
				if (nsent < ANNOUNCE_NUM) {
 send_announce:
					nsent++;
					VDBG("announce/%u %s@%s\n",
							nsent, argv_intf, nip_to_a(chosen_nip));
					timeout_ms = ANNOUNCE_INTERVAL * 1000;
					send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip);
					continue;
				}
				// Switch to monitor state
				// FIXME update filters
				run(argv, "config", chosen_nip);
				// NOTE: all other exit paths should deconfig...
				if (QUIT)
					return EXIT_SUCCESS;
				// fall through: switch to MONITOR
			default:
			// case DEFEND:
			// case MONITOR: (shouldn't happen, MONITOR timeout is infinite)
				// Defend period ended with no ARP replies - we won
				timeout_ms = -1; // never timeout in monitor state
				state = MONITOR;
				continue;
			}
		}

		// Packet arrived, or link went down.
		// We need to adjust the timeout in case we didn't receive
		// a conflicting packet.
		if (timeout_ms > 0) {
			unsigned diff = deadline_us - MONOTONIC_US();
			if ((int)(diff) < 0) {
				// Current time is greater than the expected timeout time.
				diff = 0;
			}
			VDBG("adjusting timeout\n");
			timeout_ms = (diff / 1000) | 1; // never 0
		}

		if ((fds[0].revents & POLLIN) == 0) {
			if (fds[0].revents & POLLERR) {
				// FIXME: links routinely go down;
				// this shouldn't necessarily exit.
				bb_error_msg("iface %s is down", argv_intf);
				if (state >= MONITOR) {
					// Only if we are in MONITOR or DEFEND
					run(argv, "deconfig", chosen_nip);
				}
				return EXIT_FAILURE;
			}
			continue;
		}

		// Read ARP packet
		if (safe_read(sock_fd, &p, sizeof(p)) < 0) {
			bb_perror_msg_and_die(bb_msg_read_error);
		}

		if (p.eth.ether_type != htons(ETHERTYPE_ARP))
			continue;
		if (p.arp.arp_op != htons(ARPOP_REQUEST)
		 && p.arp.arp_op != htons(ARPOP_REPLY)
		) {
			continue;
		}
#ifdef DEBUG
		{
			struct ether_addr *sha = (struct ether_addr *) p.arp.arp_sha;
			struct ether_addr *tha = (struct ether_addr *) p.arp.arp_tha;
			struct in_addr *spa = (struct in_addr *) p.arp.arp_spa;
			struct in_addr *tpa = (struct in_addr *) p.arp.arp_tpa;
			VDBG("source=%s %s\n", ether_ntoa(sha),	inet_ntoa(*spa));
			VDBG("target=%s %s\n", ether_ntoa(tha),	inet_ntoa(*tpa));
		}
#endif
		ip_conflict = 0;
		if (memcmp(&p.arp.arp_sha, &G.our_ethaddr, ETH_ALEN) != 0) {
			if (memcmp(p.arp.arp_spa, &chosen_nip, 4) == 0) {
				// A probe or reply with source_ip == chosen ip
				ip_conflict = 1;
			}
			if (p.arp.arp_op == htons(ARPOP_REQUEST)
			 && memcmp(p.arp.arp_spa, &const_int_0, 4) == 0
			 && memcmp(p.arp.arp_tpa, &chosen_nip, 4) == 0
			) {
				// A probe with source_ip == 0.0.0.0, target_ip == chosen ip:
				// another host trying to claim this ip!
				ip_conflict |= 2;
			}
		}
		VDBG("state:%d ip_conflict:%d\n", state, ip_conflict);
		if (!ip_conflict)
			continue;

		// Either src or target IP conflict exists
		if (state <= ANNOUNCE) {
			// PROBE or ANNOUNCE
			conflicts++;
			timeout_ms = PROBE_MIN * 1000
				+ CONFLICT_MULTIPLIER * random_delay_ms(conflicts);
			goto new_nip_and_PROBE;
		}

		// MONITOR or DEFEND: only src IP conflict is a problem
		if (ip_conflict & 1) {
			if (state == MONITOR) {
				// Src IP conflict, defend with a single ARP probe
				VDBG("monitor conflict - defending\n");
				timeout_ms = DEFEND_INTERVAL * 1000;
				state = DEFEND;
				send_arp_request(chosen_nip, &G.our_ethaddr, chosen_nip);
				continue;
			}
			// state == DEFEND
			// Another src IP conflict, start over
			VDBG("defend conflict - starting over\n");
			run(argv, "deconfig", chosen_nip);
			conflicts = 0;
			timeout_ms = 0;
			goto new_nip_and_PROBE;
		}
		// Note: if we only have a target IP conflict here (ip_conflict & 2),
		// IOW: if we just saw this sort of ARP packet:
		//  aa:bb:cc:dd:ee:ff > xx:xx:xx:xx:xx:xx arp who-has <chosen_nip> tell 0.0.0.0
		// we expect _kernel_ to respond to that, because <chosen_nip>
		// is (expected to be) configured on this iface.
	} // while (1)
#undef argv_intf
}
Example #14
0
int lpd_main(int argc UNUSED_PARAM, char *argv[])
{
	int spooling = spooling; // for compiler
	char *s, *queue;
	char *filenames[2];

	// goto spool directory
	if (*++argv)
		xchdir(*argv++);

	// error messages of xfuncs will be sent over network
	xdup2(STDOUT_FILENO, STDERR_FILENO);

	// nullify ctrl/data filenames
	memset(filenames, 0, sizeof(filenames));

	// read command
	s = queue = xmalloc_read_stdin();
	// we understand only "receive job" command
	if (2 != *queue) {
 unsupported_cmd:
		printf("Command %02x %s\n",
			(unsigned char)s[0], "is not supported");
		goto err_exit;
	}

	// parse command: "2 | QUEUE_NAME | '\n'"
	queue++;
	// protect against "/../" attacks
	// *strchrnul(queue, '\n') = '\0'; - redundant, sane() will do
	if (!*sane(queue))
		return EXIT_FAILURE;

	// queue is a directory -> chdir to it and enter spooling mode
	spooling = chdir(queue) + 1; // 0: cannot chdir, 1: done
	// we don't free(s), we might need "queue" var later

	while (1) {
		char *fname;
		int fd;
		// int is easier than ssize_t: can use xatoi_u,
		// and can correctly display error returns (-1)
		int expected_len, real_len;

		// signal OK
		safe_write(STDOUT_FILENO, "", 1);

		// get subcommand
		// valid s must be of form: "SUBCMD | LEN | space | FNAME"
		// N.B. we bail out on any error
		s = xmalloc_read_stdin();
		if (!s) { // (probably) EOF
			char *p, *q, var[2];

			// non-spooling mode or no spool helper specified
			if (!spooling || !*argv)
				return EXIT_SUCCESS; // the only non-error exit
			// spooling mode but we didn't see both ctrlfile & datafile
			if (spooling != 7)
				goto err_exit; // reject job

			// spooling mode and spool helper specified -> exec spool helper
			// (we exit 127 if helper cannot be executed)
			var[1] = '\0';
			// read and delete ctrlfile
			q = xmalloc_xopen_read_close(filenames[0], NULL);
			unlink(filenames[0]);
			// provide datafile name
			// we can use leaky setenv since we are about to exec or exit
			xsetenv("DATAFILE", filenames[1]);
			// parse control file by "\n"
			while ((p = strchr(q, '\n')) != NULL && isalpha(*q)) {
				*p++ = '\0';
				// q is a line of <SYM><VALUE>,
				// we are setting environment string <SYM>=<VALUE>.
				// Ignoring "l<datafile>", exporting others:
				if (*q != 'l') {
					var[0] = *q++;
					xsetenv(var, q);
				}
				q = p; // next line
			}
			// helper should not talk over network.
			// this call reopens stdio fds to "/dev/null"
			// (no daemonization is done)
			bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO | DAEMON_ONLY_SANITIZE, NULL);
			BB_EXECVP(*argv, argv);
			exit(127);
		}

		// validate input.
		// we understand only "control file" or "data file" cmds
		if (2 != s[0] && 3 != s[0])
			goto unsupported_cmd;
		if (spooling & (1 << (s[0]-1))) {
			printf("Duplicated subcommand\n");
			goto err_exit;
		}
		// get filename
		*strchrnul(s, '\n') = '\0';
		fname = strchr(s, ' ');
		if (!fname) {
// bad_fname:
			printf("No or bad filename\n");
			goto err_exit;
		}
		*fname++ = '\0';
//		// s[0]==2: ctrlfile, must start with 'c'
//		// s[0]==3: datafile, must start with 'd'
//		if (fname[0] != s[0] + ('c'-2))
//			goto bad_fname;
		// get length
		expected_len = bb_strtou(s + 1, NULL, 10);
		if (errno || expected_len < 0) {
			printf("Bad length\n");
			goto err_exit;
		}
		if (2 == s[0] && expected_len > 16 * 1024) {
			// SECURITY:
			// ctrlfile can't be big (we want to read it back later!)
			printf("File is too big\n");
			goto err_exit;
		}

		// open the file
		if (spooling) {
			// spooling mode: dump both files
			// job in flight has mode 0200 "only writable"
			sane(fname);
			fd = open3_or_warn(fname, O_CREAT | O_WRONLY | O_TRUNC | O_EXCL, 0200);
			if (fd < 0)
				goto err_exit;
			filenames[s[0] - 2] = xstrdup(fname);
		} else {
			// non-spooling mode:
			// 2: control file (ignoring), 3: data file
			fd = -1;
			if (3 == s[0])
				fd = xopen(queue, O_RDWR | O_APPEND);
		}

		// signal OK
		safe_write(STDOUT_FILENO, "", 1);

		// copy the file
		real_len = bb_copyfd_size(STDIN_FILENO, fd, expected_len);
		if (real_len != expected_len) {
			printf("Expected %d but got %d bytes\n",
				expected_len, real_len);
			goto err_exit;
		}
		// get EOF indicator, see whether it is NUL (ok)
		// (and don't trash s[0]!)
		if (safe_read(STDIN_FILENO, &s[1], 1) != 1 || s[1] != 0) {
			// don't send error msg to peer - it obviously
			// doesn't follow the protocol, so probably
			// it can't understand us either
			goto err_exit;
		}

		if (spooling) {
			// chmod completely downloaded file as "readable+writable"
			fchmod(fd, 0600);
			// accumulate dump state
			// N.B. after all files are dumped spooling should be 1+2+4==7
			spooling |= (1 << (s[0]-1)); // bit 1: ctrlfile; bit 2: datafile
		}

		free(s);
		close(fd); // NB: can do close(-1). Who cares?

		// NB: don't do "signal OK" write here, it will be done
		// at the top of the loop
	} // while (1)

 err_exit:
	// don't keep corrupted files
	if (spooling) {
#define i spooling
		for (i = 2; --i >= 0; )
			if (filenames[i])
				unlink(filenames[i]);
	}
	return EXIT_FAILURE;
}
int udhcpd_main(int argc, char **argv)
{
	fd_set rfds;
	struct timeval tv;
	int server_socket = -1, bytes, retval, max_sock;
	struct dhcpMessage packet;
	uint8_t *state, *server_id, *requested;
	uint32_t server_id_align, requested_align, static_lease_ip;
	unsigned timeout_end;
	unsigned num_ips;
	unsigned opt;
	struct option_set *option;
	struct dhcpOfferedAddr *lease, static_lease;

	opt = getopt32(argv, "fS");
	argv += optind;

	if (!(opt & 1)) { /* no -f */
		bb_daemonize_or_rexec(0, argv);
		logmode &= ~LOGMODE_STDIO;
	}

	if (opt & 2) { /* -S */
		openlog(applet_name, LOG_PID, LOG_LOCAL0);
		logmode |= LOGMODE_SYSLOG;
	}

	/* Would rather not do read_config before daemonization -
	 * otherwise NOMMU machines will parse config twice */
	read_config(argv[0] ? argv[0] : DHCPD_CONF_FILE);

	/* Make sure fd 0,1,2 are open */
	bb_sanitize_stdio();
	/* Equivalent of doing a fflush after every \n */
	setlinebuf(stdout);

	/* Create pidfile */
	write_pidfile(server_config.pidfile);
	/* if (!..) bb_perror_msg("cannot create pidfile %s", pidfile); */

	bb_info_msg("%s (v"BB_VER") started", applet_name);

	option = find_option(server_config.options, DHCP_LEASE_TIME);
	server_config.lease = LEASE_TIME;
	if (option) {
		memcpy(&server_config.lease, option->data + 2, 4);
		server_config.lease = ntohl(server_config.lease);
	}

	/* Sanity check */
	num_ips = server_config.end_ip - server_config.start_ip + 1;
	if (server_config.max_leases > num_ips) {
		bb_error_msg("max_leases=%u is too big, setting to %u",
			(unsigned)server_config.max_leases, num_ips);
		server_config.max_leases = num_ips;
	}

	leases = xzalloc(server_config.max_leases * sizeof(*leases));
	read_leases(server_config.lease_file);

	if (read_interface(server_config.interface, &server_config.ifindex,
			   &server_config.server, server_config.arp)) {
		retval = 1;
		goto ret;
	}

	/* Setup the signal pipe */
	udhcp_sp_setup();

	timeout_end = monotonic_sec() + server_config.auto_time;
	while (1) { /* loop until universe collapses */

		if (server_socket < 0) {
			server_socket = listen_socket(/*INADDR_ANY,*/ SERVER_PORT,
					server_config.interface);
		}

		max_sock = udhcp_sp_fd_set(&rfds, server_socket);
		if (server_config.auto_time) {
			tv.tv_sec = timeout_end - monotonic_sec();
			tv.tv_usec = 0;
		}
		retval = 0;
		if (!server_config.auto_time || tv.tv_sec > 0) {
			retval = select(max_sock + 1, &rfds, NULL, NULL,
					server_config.auto_time ? &tv : NULL);
		}
		if (retval == 0) {
			write_leases();
			timeout_end = monotonic_sec() + server_config.auto_time;
			continue;
		}
		if (retval < 0 && errno != EINTR) {
			DEBUG("error on select");
			continue;
		}

		switch (udhcp_sp_read(&rfds)) {
		case SIGUSR1:
			bb_info_msg("Received a SIGUSR1");
			write_leases();
			/* why not just reset the timeout, eh */
			timeout_end = monotonic_sec() + server_config.auto_time;
			continue;
		case SIGTERM:
			bb_info_msg("Received a SIGTERM");
			goto ret0;
		case 0: break;		/* no signal */
		default: continue;	/* signal or error (probably EINTR) */
		}

		bytes = udhcp_recv_packet(&packet, server_socket); /* this waits for a packet - idle */
		if (bytes < 0) {
			if (bytes == -1 && errno != EINTR) {
				DEBUG("error on read, %s, reopening socket", strerror(errno));
				close(server_socket);
				server_socket = -1;
			}
			continue;
		}

		state = get_option(&packet, DHCP_MESSAGE_TYPE);
		if (state == NULL) {
			bb_error_msg("cannot get option from packet, ignoring");
			continue;
		}

		/* Look for a static lease */
		static_lease_ip = getIpByMac(server_config.static_leases, &packet.chaddr);

		if (static_lease_ip) {
			bb_info_msg("Found static lease: %x", static_lease_ip);

			memcpy(&static_lease.chaddr, &packet.chaddr, 16);
			static_lease.yiaddr = static_lease_ip;
			static_lease.expires = 0;

			lease = &static_lease;
		} else {
			lease = find_lease_by_chaddr(packet.chaddr);
		}

		switch (state[0]) {
		case DHCPDISCOVER:
			DEBUG("Received DISCOVER");

			if (sendOffer(&packet) < 0) {
				bb_error_msg("send OFFER failed");
			}
            /* circle test Stat. add by wangpu begin */
            g_offercount ++;
            printf("Circle test: [DHCPS] send OFFER packet num:[%d]\n",g_offercount);
            memset(g_acCmd,0,sizeof(g_acCmd));
            memset(g_interface,0,sizeof(g_interface));
            sprintf(g_interface,"%s",server_config.interface);
            sprintf(g_acCmd,"echo %d > /var/circle/%s",g_offercount,g_interface);
            system(g_acCmd);
            /* circle test Stat. add by wangpu end */
			break;
		case DHCPREQUEST:
			DEBUG("received REQUEST");
			#if 0
			/* ?¡¤??2a¨º? add by wangpu begin */
			   g_offercount ++;
               printf("Circle test: [DHCPS] send OFFER packet num:[%d]\n",g_offercount);
			   memset(g_acCmd,0,sizeof(g_acCmd));
			   memset(g_interface,0,sizeof(g_interface));
			   sprintf(g_interface,"%s",server_config.interface);
			   sprintf(g_acCmd,"echo %d > /var/circle/%s",g_offercount,g_interface);
		       system(g_acCmd);
		    /* ?¡¤??2a¨º? add by wangpu begin */
            #endif
			requested = get_option(&packet, DHCP_REQUESTED_IP);
			server_id = get_option(&packet, DHCP_SERVER_ID);

			if (requested) memcpy(&requested_align, requested, 4);
			if (server_id) memcpy(&server_id_align, server_id, 4);

			if (lease) {
				if (server_id) {
					/* SELECTING State */
					DEBUG("server_id = %08x", ntohl(server_id_align));
					if (server_id_align == server_config.server && requested
					 && requested_align == lease->yiaddr
					) {
						sendACK(&packet, lease->yiaddr);
					}
				} else if (requested) {
					/* INIT-REBOOT State */
					if (lease->yiaddr == requested_align)
						sendACK(&packet, lease->yiaddr);
					else
						sendNAK(&packet);
				} else if (lease->yiaddr == packet.ciaddr) {
					/* RENEWING or REBINDING State */
					sendACK(&packet, lease->yiaddr);
				} else {
					/* don't know what to do!!!! */
					sendNAK(&packet);
				}

			/* what to do if we have no record of the client */
			} else if (server_id) {
				/* SELECTING State */

			} else if (requested) {
				/* INIT-REBOOT State */
				lease = find_lease_by_yiaddr(requested_align);
				if (lease) {
					if (lease_expired(lease)) {
						/* probably best if we drop this lease */
						memset(lease->chaddr, 0, 16);
					/* make some contention for this address */
					} else
						sendNAK(&packet);
				} else {
					uint32_t r = ntohl(requested_align);
					if (r < server_config.start_ip
				         || r > server_config.end_ip
					) {
						sendNAK(&packet);
					}
					/* else remain silent */
				}

			} else {
				/* RENEWING or REBINDING State */
			}
			break;
		case DHCPDECLINE:
			DEBUG("Received DECLINE");
			if (lease) {
				memset(lease->chaddr, 0, 16);
				lease->expires = time(0) + server_config.decline_time;
			}
			break;
		case DHCPRELEASE:
			DEBUG("Received RELEASE");
			if (lease)
				lease->expires = time(0);
			break;
		case DHCPINFORM:
			DEBUG("Received INFORM");
			send_inform(&packet);
			break;
		default:
			bb_info_msg("Unsupported DHCP message (%02x) - ignoring", state[0]);
		}
	}
 ret0:
	retval = 0;
 ret:
	/*if (server_config.pidfile) - server_config.pidfile is never NULL */
		remove_pidfile(server_config.pidfile);
	return retval;
}
Example #16
0
int openvt_main(int argc UNUSED_PARAM, char **argv)
{
	char vtname[sizeof(VC_FORMAT) + sizeof(int)*3];
	struct vt_stat vtstat;
	char *str_c;
	int vtno;
	int flags;
	enum {
		OPT_c = (1 << 0),
		OPT_w = (1 << 1),
		OPT_s = (1 << 2),
		OPT_l = (1 << 3),
		OPT_f = (1 << 4),
		OPT_v = (1 << 5),
	};

	/* "+" - stop on first non-option */
	flags = getopt32(argv, "+c:wslfv", &str_c);
	argv += optind;

	if (flags & OPT_c) {
		/* Check for illegal vt number: < 1 or > 63 */
		vtno = xatou_range(str_c, 1, 63);
	} else {
		vtno = find_free_vtno();
	}

	/* Grab new VT */
	sprintf(vtname, VC_FORMAT, vtno);
	/* (Try to) clean up stray open fds above fd 2 */
	bb_daemonize_or_rexec(DAEMON_CLOSE_EXTRA_FDS | DAEMON_ONLY_SANITIZE, NULL);
	close(STDIN_FILENO);
	/*setsid(); - BAD IDEA: after we exit, child is SIGHUPed... */
	xopen(vtname, O_RDWR);
	xioctl(STDIN_FILENO, VT_GETSTATE, &vtstat);

	if (flags & OPT_s) {
		console_make_active(STDIN_FILENO, vtno);
	}

	if (!argv[0]) {
		argv--;
		argv[0] = getenv("SHELL");
		if (!argv[0])
			argv[0] = (char *) DEFAULT_SHELL;
		/*argv[1] = NULL; - already is */
	}

	xdup2(STDIN_FILENO, STDOUT_FILENO);
	xdup2(STDIN_FILENO, STDERR_FILENO);

#ifdef BLOAT
	{
	/* Handle -l (login shell) option */
	const char *prog = argv[0];
	if (flags & OPT_l)
		argv[0] = xasprintf("-%s", argv[0]);
	}
#endif

	vfork_child(argv);
	if (flags & OPT_w) {
		/* We have only one child, wait for it */
		safe_waitpid(-1, NULL, 0); /* loops on EINTR */
		if (flags & OPT_s) {
			console_make_active(STDIN_FILENO, vtstat.v_active);
			// Compat: even with -c N (try to) disallocate:
			// # /usr/app/kbd-1.12/bin/openvt -f -c 9 -ws sleep 5
			// openvt: could not deallocate console 9
			xioctl(STDIN_FILENO, VT_DISALLOCATE, (void*)(ptrdiff_t)vtno);
		}
	}
	return EXIT_SUCCESS;
}
Example #17
0
int timeout_main(int argc UNUSED_PARAM, char **argv)
{
	int signo;
	int status;
	int parent = 0;
	int timeout = 10;
	pid_t pid;
#if !BB_MMU
	char *sv1, *sv2;
#endif
	const char *opt_s = "TERM";

	/* -p option is not documented, it is needed to support NOMMU. */

	/* -t SECONDS; -p PARENT_PID */
	opt_complementary = "t+" USE_FOR_NOMMU(":p+");
	/* '+': stop at first non-option */
	getopt32(argv, "+s:t:" USE_FOR_NOMMU("p:"), &opt_s, &timeout, &parent);
	/*argv += optind; - no, wait for bb_daemonize_or_rexec! */
	signo = get_signum(opt_s);
	if (signo < 0)
		bb_error_msg_and_die("unknown signal '%s'", opt_s);

	/* We want to create a grandchild which will watch
	 * and kill the grandparent. Other methods:
	 * making parent watch child disrupts parent<->child link
	 * (example: "tcpsvd 0.0.0.0 1234 timeout service_prog" -
	 * it's better if service_prog is a child of tcpsvd!),
	 * making child watch parent results in programs having
	 * unexpected children. */

	if (parent) /* we were re-execed, already grandchild */
		goto grandchild;
	if (!argv[optind]) /* no PROG? */
		bb_show_usage();

#if !BB_MMU
	sv1 = argv[optind];
	sv2 = argv[optind + 1];
#endif
	pid = xvfork();
	if (pid == 0) {
		/* Child: spawn grandchild and exit */
		parent = getppid();
#if !BB_MMU
		argv[optind] = xasprintf("-p%u", parent);
		argv[optind + 1] = NULL;
#endif
		/* NB: exits with nonzero on error: */
		bb_daemonize_or_rexec(0, argv);
		/* Here we are grandchild. Sleep, then kill grandparent */
 grandchild:
		/* Just sleep(HUGE_NUM); kill(parent) may kill wrong process! */
		while (1) {
			sleep(1);
			if (--timeout <= 0)
				break;
			if (kill(parent, 0)) {
				/* process is gone */
				return EXIT_SUCCESS;
			}
		}
		kill(parent, signo);
		return EXIT_SUCCESS;
	}

	/* Parent */
	wait(&status); /* wait for child to die */
	/* Did intermediate [v]fork or exec fail? */
	if (!WIFEXITED(status) || WEXITSTATUS(status) != 0)
		return EXIT_FAILURE;
	/* Ok, exec a program as requested */
	argv += optind;
#if !BB_MMU
	argv[0] = sv1;
	argv[1] = sv2;
#endif
	BB_EXECVP_or_die(argv);
}
Example #18
0
int crond_main(int argc UNUSED_PARAM, char **argv)
{
	time_t t2;
	unsigned rescan;
	unsigned sleep_time;
	unsigned opts;

	INIT_G();

	/* "-b after -f is ignored", and so on for every pair a-b */
	opt_complementary = "f-b:b-f:S-L:L-S" IF_FEATURE_CROND_D(":d-l")
			/* -l and -d have numeric param */
			":l+" IF_FEATURE_CROND_D(":d+");
	opts = getopt32(argv, "l:L:fbSc:" IF_FEATURE_CROND_D("d:"),
			&G.log_level, &G.log_filename, &G.crontab_dir_name
			IF_FEATURE_CROND_D(,&G.log_level));
	/* both -d N and -l N set the same variable: G.log_level */

	if (!(opts & OPT_f)) {
		/* close stdin, stdout, stderr.
		 * close unused descriptors - don't need them. */
		bb_daemonize_or_rexec(DAEMON_CLOSE_EXTRA_FDS, argv);
	}

	if (!(opts & OPT_d) && G.log_filename == NULL) {
		/* logging to syslog */
		openlog(applet_name, LOG_CONS | LOG_PID, LOG_CRON);
		logmode = LOGMODE_SYSLOG;
	}

	//signal(SIGHUP, SIG_IGN); /* ? original crond dies on HUP... */

	reopen_logfile_to_stderr();
	xchdir(G.crontab_dir_name);
	log8("crond (busybox "BB_VER") started, log level %d", G.log_level);
	rescan_crontab_dir();
	write_pidfile(CONFIG_PID_FILE_PATH "/crond.pid");

	/* Main loop */
	t2 = time(NULL);
	rescan = 60;
	sleep_time = 60;
	for (;;) {
		struct stat sbuf;
		time_t t1;
		long dt;

		/* Synchronize to 1 minute, minimum 1 second */
		t1 = t2;
		sleep(sleep_time - (time(NULL) % sleep_time));
		t2 = time(NULL);
		dt = (long)t2 - (long)t1;

		reopen_logfile_to_stderr();

		/*
		 * The file 'cron.update' is checked to determine new cron
		 * jobs.  The directory is rescanned once an hour to deal
		 * with any screwups.
		 *
		 * Check for time jump.  Disparities over an hour either way
		 * result in resynchronization.  A negative disparity
		 * less than an hour causes us to effectively sleep until we
		 * match the original time (i.e. no re-execution of jobs that
		 * have just been run).  A positive disparity less than
		 * an hour causes intermediate jobs to be run, but only once
		 * in the worst case.
		 *
		 * When running jobs, the inequality used is greater but not
		 * equal to t1, and less then or equal to t2.
		 */
		if (stat(G.crontab_dir_name, &sbuf) != 0)
			sbuf.st_mtime = 0; /* force update (once) if dir was deleted */
		if (G.crontab_dir_mtime != sbuf.st_mtime) {
			G.crontab_dir_mtime = sbuf.st_mtime;
			rescan = 1;
		}
		if (--rescan == 0) {
			rescan = 60;
			rescan_crontab_dir();
		}
		process_cron_update_file();
		log5("wakeup dt=%ld", dt);
		if (dt < -60 * 60 || dt > 60 * 60) {
			bb_error_msg("time disparity of %ld minutes detected", dt / 60);
			/* and we do not run any jobs in this case */
		} else if (dt > 0) {
			/* Usual case: time advances forward, as expected */
			flag_starting_jobs(t1, t2);
			start_jobs();
			sleep_time = 60;
			if (check_completions() > 0) {
				/* some jobs are still running */
				sleep_time = 10;
			}
		}
		/* else: time jumped back, do not run any jobs */
	} /* for (;;) */

	return 0; /* not reached */
}
Example #19
0
int start_stop_daemon_main(int argc UNUSED_PARAM, char **argv)
{
	unsigned opt;
	char *signame;
	char *startas;
	char *chuid;
#ifdef OLDER_VERSION_OF_X
	struct stat execstat;
#endif
#if ENABLE_FEATURE_START_STOP_DAEMON_FANCY
//	char *retry_arg = NULL;
//	int retries = -1;
	char *opt_N;
#endif

	INIT_G();

#if ENABLE_FEATURE_START_STOP_DAEMON_LONG_OPTIONS
	applet_long_options = start_stop_daemon_longopts;
#endif

	/* -K or -S is required; they are mutually exclusive */
	/* -p is required if -m is given */
	/* -xpun (at least one) is required if -K is given */
	/* -xa (at least one) is required if -S is given */
	/* -q turns off -v */
	opt_complementary = "K:S:K--S:S--K:m?p:K?xpun:S?xa"
		IF_FEATURE_START_STOP_DAEMON_FANCY("q-v");
	opt = getopt32(argv, "KSbqtma:n:s:u:c:x:p:"
		IF_FEATURE_START_STOP_DAEMON_FANCY("ovN:R:"),
		&startas, &cmdname, &signame, &userspec, &chuid, &execname, &pidfile
		IF_FEATURE_START_STOP_DAEMON_FANCY(,&opt_N)
		/* We accept and ignore -R <param> / --retry <param> */
		IF_FEATURE_START_STOP_DAEMON_FANCY(,NULL)
	);

	if (opt & OPT_s) {
		signal_nr = get_signum(signame);
		if (signal_nr < 0) bb_show_usage();
	}

	if (!(opt & OPT_a))
		startas = execname;
	if (!execname) /* in case -a is given and -x is not */
		execname = startas;
	if (execname) {
		G.execname_sizeof = strlen(execname) + 1;
		G.execname_cmpbuf = xmalloc(G.execname_sizeof + 1);
	}

//	IF_FEATURE_START_STOP_DAEMON_FANCY(
//		if (retry_arg)
//			retries = xatoi_positive(retry_arg);
//	)
	//argc -= optind;
	argv += optind;

	if (userspec) {
		user_id = bb_strtou(userspec, NULL, 10);
		if (errno)
			user_id = xuname2uid(userspec);
	}
	/* Both start and stop need to know current processes */
	do_procinit();

	if (opt & CTX_STOP) {
		int i = do_stop();
		return (opt & OPT_OKNODO) ? 0 : (i <= 0);
	}

	if (G.found_procs) {
		if (!QUIET)
			printf("%s is already running\n%u\n", execname, (unsigned)G.found_procs->pid);
		return !(opt & OPT_OKNODO);
	}

#ifdef OLDER_VERSION_OF_X
	if (execname)
		xstat(execname, &execstat);
#endif

	*--argv = startas;
	if (opt & OPT_BACKGROUND) {
#if BB_MMU
		bb_daemonize(DAEMON_DEVNULL_STDIO + DAEMON_CLOSE_EXTRA_FDS + DAEMON_DOUBLE_FORK);
		/* DAEMON_DEVNULL_STDIO is superfluous -
		 * it's always done by bb_daemonize() */
#else
		pid_t pid = xvfork();
		if (pid != 0) {
			/* parent */
			/* why _exit? the child may have changed the stack,
			 * so "return 0" may do bad things */
			_exit(EXIT_SUCCESS);
		}
		/* Child */
		setsid(); /* detach from controlling tty */
		/* Redirect stdio to /dev/null, close extra FDs.
		 * We do not actually daemonize because of DAEMON_ONLY_SANITIZE */
		bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO
			+ DAEMON_CLOSE_EXTRA_FDS
			+ DAEMON_ONLY_SANITIZE,
			NULL /* argv, unused */ );
#endif
	}
	if (opt & OPT_MAKEPID) {
		/* User wants _us_ to make the pidfile */
		write_pidfile(pidfile);
	}
	if (opt & OPT_c) {
		struct bb_uidgid_t ugid;
		parse_chown_usergroup_or_die(&ugid, chuid);
		if (ugid.uid != (uid_t) -1L) {
			struct passwd *pw = xgetpwuid(ugid.uid);
			if (ugid.gid != (gid_t) -1L)
				pw->pw_gid = ugid.gid;
			/* initgroups, setgid, setuid: */
			change_identity(pw);
		} else if (ugid.gid != (gid_t) -1L) {
			xsetgid(ugid.gid);
			setgroups(1, &ugid.gid);
		}
	}
#if ENABLE_FEATURE_START_STOP_DAEMON_FANCY
	if (opt & OPT_NICELEVEL) {
		/* Set process priority */
		int prio = getpriority(PRIO_PROCESS, 0) + xatoi_range(opt_N, INT_MIN/2, INT_MAX/2);
		if (setpriority(PRIO_PROCESS, 0, prio) < 0) {
			bb_perror_msg_and_die("setpriority(%d)", prio);
		}
	}
#endif
	execvp(startas, argv);
	bb_perror_msg_and_die("can't execute '%s'", startas);
}