Example #1
0
/**
 * Gets a sorted string representation of a variant.
 */
void bcf_variant2string_sorted(bcf_hdr_t *h, bcf1_t *v, kstring_t *var)
{
    bcf_print_liten(h,v);
    
    bcf_unpack(v, BCF_UN_STR);
    var->l = 0;
    kputs(bcf_get_chrom(h, v), var);
    kputc(':', var);
    kputw(bcf_get_pos1(v), var);
    kputc(':', var);
    
    if (v->n_allele==2)
    {
        kputs(bcf_get_alt(v, 0), var);
        kputc(',', var);
        kputs(bcf_get_alt(v, 1), var);
    }
    else
    {
        char** allele = bcf_get_allele(v);
        char** temp = (char**) malloc((bcf_get_n_allele(v)-1)*sizeof(char*));
        for (int32_t i=1; i<v->n_allele; ++i)
        {
            temp[i] = allele[i];
        }
        std::qsort(temp, bcf_get_n_allele(v), sizeof(char*), cmpstr);
        kputs(bcf_get_alt(v, 0), var);
        for (int32_t i=0; i<v->n_allele-1; ++i)
        {
            kputc(',', var);
            kputs(temp[i], var);
        }
        free(temp);
    }
}
/**
 * Extract reference sequence region for motif discovery in a fuzzy fashion.
 */
void CandidateRegionExtractor::extract_regions_by_fuzzy_alignment(bcf_hdr_t* h, bcf1_t* v,  Variant& variant)
{
    if (debug)
    {
        if (debug) std::cerr << "********************************************\n";
        std::cerr << "EXTRACTIING REGION BY FUZZY ALIGNMENT\n\n";
    }

    VNTR& vntr = variant.vntr;
    const char* chrom = bcf_get_chrom(h, v);

    int32_t min_beg1 = bcf_get_pos1(v);
    int32_t max_end1 = min_beg1;

    //merge candidate search region
    for (size_t i=1; i<bcf_get_n_allele(v); ++i)
    {
        std::string ref(bcf_get_alt(v, 0));
        std::string alt(bcf_get_alt(v, i));
        int32_t pos1 = bcf_get_pos1(v);

        trim(pos1, ref, alt);

        if (debug)
        {
            std::cerr << "indel fragment : " << (ref.size()<alt.size()? alt : ref) << "\n";
            std::cerr << "               : " << ref << ":" << alt << "\n";
        }

        min_beg1 = fuzzy_left_align(chrom, pos1, ref, alt, 3);
        max_end1 = fuzzy_right_align(chrom, pos1 + ref.size() - 1, ref, alt, 3);

        int32_t seq_len;
        char* seq = faidx_fetch_seq(fai, chrom, min_beg1-1, max_end1-1, &seq_len);
        if (debug)
        {
            std::cerr << "FUZZY REGION " << min_beg1 << "-" << max_end1 << " (" << max_end1-min_beg1+1 <<") " << "\n";
            std::cerr << "             " << seq << "\n";
        }

        if (seq_len) free(seq);
    }

    int32_t seq_len;
    char* seq = faidx_fetch_seq(fai, chrom, min_beg1-1, max_end1-1, &seq_len);

    if (debug)
    {
        std::cerr << "FINAL FUZZY REGION " << min_beg1 << "-" << max_end1 << " (" << max_end1-min_beg1+1 <<") " << "\n";
        std::cerr << "                   " << seq << "\n";
    }

    vntr.exact_repeat_tract = seq;
    vntr.exact_rbeg1 = min_beg1;

    if (seq_len) free(seq);
}
Example #3
0
/**
 * Gets a string representation of a variant.
 */
void bcf_variant2string(bcf_hdr_t *h, bcf1_t *v, kstring_t *var)
{
    bcf_unpack(v, BCF_UN_STR);
    var->l = 0;
    kputs(bcf_get_chrom(h, v), var);
    kputc(':', var);
    kputw(bcf_get_pos1(v), var);
    kputc(':', var);
    for (int32_t i=0; i<v->n_allele; ++i)
    {
        if (i) kputc(',', var);
        kputs(bcf_get_alt(v, i), var);
    }
}
Example #4
0
File: variant.cpp Project: atks/vt
/**
 * Gets a string representation of the variant.
 */
std::string Variant::get_variant_string()
{
    kstring_t var = {0,0,0};
    bcf_unpack(v, BCF_UN_STR);
    var.l = 0;
    kputs(bcf_get_chrom(h, v), &var);
    kputc(':', &var);
    kputw(bcf_get_pos1(v), &var);
    kputc(':', &var);
    for (size_t i=0; i<bcf_get_n_allele(v); ++i)
    {
        if (i) kputc('/', &var);
        kputs(bcf_get_alt(v, i), &var);
    }

    std::string str(var.s);

    if (var.m) free(var.s);

    return str;
}
Example #5
0
/**
 * Classifies variants.
 */
int32_t VariantManip::classify_variant(bcf_hdr_t *h, bcf1_t *v, Variant& var)
{
    bcf_unpack(v, BCF_UN_STR);
    const char* chrom = bcf_get_chrom(h, v);
    uint32_t pos1 = bcf_get_pos1(v);
    char** allele = bcf_get_allele(v);
    int32_t n_allele = bcf_get_n_allele(v);

    int32_t pos0 = pos1-1;
    var.ts = 0;
    var.tv = 0;
    var.ins = 0;
    var.del = 0;

    var.clear(); // this sets the type to VT_REF by default.

    bool homogeneous_length = true;

    char* ref = allele[0];
    int32_t rlen = strlen(ref);

    //if only ref allele, skip this entire for loop
    for (size_t i=1; i<n_allele; ++i)
    {
        int32_t type = VT_REF;

        //check for tags
        if (strchr(allele[i],'<'))
        {
            size_t len = strlen(allele[i]);
            if (len>=5)
            {
                //VN/d+
                if (allele[i][0]=='<' && allele[i][1]=='V' && allele[i][2]=='N' && allele[i][len-1]=='>' )
                {
                    for (size_t j=3; j<len-1; ++j)
                    {
                        if (allele[i][j]<'0' || allele[i][j]>'9')
                        {
                            type = VT_VNTR;
                        }
                    }
                }
                //VNTR
                else if (len==6 &&
                         allele[i][0]=='<' &&
                         allele[i][1]=='V' && allele[i][2]=='N' && allele[i][3]=='T' && allele[i][4]=='R' &&
                         allele[i][5]=='>' )
                {
                     type = VT_VNTR;
                }
                //ST/d+
                else if (allele[i][0]=='<' && allele[i][1]=='S' && allele[i][2]=='T' && allele[i][len-1]=='>' )
                {
                    for (size_t j=3; j<len-1; ++j)
                    {
                        if (allele[i][j]<'0' || allele[i][j]>'9')
                        {
                            type = VT_VNTR;
                        }
                    }
                }
                //STR
                else if (len==5 &&
                         allele[i][0]=='<' &&
                         allele[i][1]=='S' && allele[i][2]=='T' && allele[i][3]=='R' &&
                         allele[i][4]=='>' )
                {
                     type = VT_VNTR;
                }
            }
                        
            if (type==VT_VNTR)
            {
                type = VT_VNTR;
                var.type |= type;
                var.alleles.push_back(Allele(type));
            }
            else
            {
                type = VT_SV;
                var.type |= type;
                std::string sv_type(allele[i]);
                var.alleles.push_back(Allele(type, sv_type));
            }
        }
        else if (allele[i][0]=='.' || strcmp(allele[i],allele[0])==0)
        {
            type = VT_REF;
        }
        else
        {
            kstring_t REF = {0,0,0};
            kstring_t ALT = {0,0,0};

            ref = allele[0];
            char* alt = allele[i];
            int32_t alen = strlen(alt);

            if (rlen!=alen)
            {
                homogeneous_length = false;
            }

            //trimming
            //this is required in particular for the
            //characterization of multiallelics and
            //in general, any unnormalized variant
            int32_t rl = rlen;
            int32_t al = alen;
            //trim right
            while (rl!=1 && al!=1)
            {
                if (ref[rl-1]==alt[al-1])
                {
                    --rl;
                    --al;
                }
                else
                {
                    break;
                }
            }

            //trim left
            while (rl !=1 && al!=1)
            {
                if (ref[0]==alt[0])
                {
                    ++ref;
                    ++alt;
                    --rl;
                    --al;
                }
                else
                {
                    break;
                }
            }

            kputsn(ref, rl, &REF);
            kputsn(alt, al, &ALT);

            ref = REF.s;
            alt = ALT.s;

            int32_t mlen = std::min(rl, al);
            int32_t dlen = al-rl;
            int32_t diff = 0;
            int32_t ts = 0;
            int32_t tv = 0;

            if (mlen==1 && dlen)
            {
                char ls, le, ss;

                if (rl>al)
                {
                     ls = ref[0];
                     le = ref[rl-1];
                     ss = alt[0];
                }
                else
                {
                     ls = alt[0];
                     le = alt[al-1];
                     ss = ref[0];
                }

                if (ls!=ss && le!=ss)
                {
                    ++diff;

                    if ((ls=='G' && ss=='A') ||
                        (ls=='A' && ss=='G') ||
                        (ls=='C' && ss=='T') ||
                        (ls=='T' && ss=='C'))
                    {
                        ++ts;
                    }
                    else
                    {
                        ++tv;
                    }
                }
            }
            else
            {
                for (int32_t j=0; j<mlen; ++j)
                {
                    if (ref[j]!=alt[j])
                    {
                        ++diff;

                        if ((ref[j]=='G' && alt[j]=='A') ||
                            (ref[j]=='A' && alt[j]=='G') ||
                            (ref[j]=='C' && alt[j]=='T') ||
                            (ref[j]=='T' && alt[j]=='C'))
                        {
                            ++ts;
                        }
                        else
                        {
                            ++tv;
                        }
                    }
                }
            }

            //substitution variants
            if (mlen==diff)
            {
                type |= mlen==1 ? VT_SNP : VT_MNP;
            }

            //indel variants
            if (dlen)
            {
                type |= VT_INDEL;
            }

            //clumped SNPs and MNPs
            if (diff && diff < mlen) //internal gaps
            {
                type |= VT_CLUMPED;
            }

            var.type |= type;
            var.alleles.push_back(Allele(type, diff, alen, dlen, mlen, ts, tv));
            var.ts += ts;
            var.tv += tv;
            var.ins = dlen>0?1:0;
            var.del = dlen<0?1:0;

            if (REF.m) free(REF.s);
            if (ALT.m) free(ALT.s);
        }
    }

    if (var.type==VT_VNTR)
    {
        bcf_unpack(v, BCF_UN_INFO);
        
        //populate motif, motif len etc. etc.
//        char* str = NULL;
//        int32_t n = 0;
//        int32_t ret = bcf_get_info_string(h, v, "MOTIF", &str, &n);
//        if (ret>0) 
//        {
//            var.motif = std::string(str);
//            var.mlen = var.motif.size();
//        }
//        ret = bcf_get_info_string(h, v, "RU", &str, &n);
//        if (ret>0) 
//        {
//            var.ru = std::string(str);
//            var.mlen = var.ru.size();
//        }
//        if (n) free(str);
//        
//        int32_t* no = NULL;
//        n = 0;    
//        ret = bcf_get_info_int32(h, v, "RL", &no, &n);
//        if (ret>0) var.rlen = *no;
//        if (n) free(no);
//            
//        int32_t* fl = NULL;
//        n = 0;                                    
//        ret = bcf_get_info_int32(h, v, "REF", &fl, &n);
//        if (ret>0) var.rcn = *fl;
//        if (n) free(fl);                        
    }
    
    //additionally define MNPs by length of all alleles
    if (!(var.type&(VT_VNTR|VT_SV)) && var.type!=VT_REF)
    {
        if (homogeneous_length && rlen>1 && n_allele>1)
        {
            var.type |= VT_MNP;
        }
    }

    return var.type;
}
Example #6
0
/**
 * Detects near by STRs.
 */
bool VariantManip::detect_str(bcf_hdr_t *h, bcf1_t *v, Variant& variant)
{
    return detect_str(bcf_get_chrom(h, v), bcf_get_pos1(v), variant);
}
/**
 * Extract reference sequence region for motif discovery.
 *
 * The input is a VCF record that contains an indel.
 * 
 * If the the indel has multiple alleles, it will examine all
 * alleles.
 *
 * todo: is might be a good idea to combine this step with motif detection
 *       since there seems to be a need to have an iterative process here
 *       to ensure a good candidate motif is chosen. *  
 */
void CandidateRegionExtractor::extract_regions_by_exact_alignment(bcf_hdr_t* h, bcf1_t* v, Variant& variant)
{
    if (debug)
    {
        if (debug) std::cerr << "********************************************\n";
        std::cerr << "EXTRACTIING REGION BY EXACT LEFT AND RIGHT ALIGNMENT\n\n";
    }

    VNTR& vntr = variant.vntr;
    const char* chrom = bcf_get_chrom(h, v);

    int32_t min_beg1 = bcf_get_pos1(v);
    int32_t max_end1 = min_beg1;

    if (debug)
    {
       bcf_print_liten(h, v);
    }

    //merge candidate search region
    for (size_t i=1; i<bcf_get_n_allele(v); ++i)
    {
        std::string ref(bcf_get_alt(v, 0));
        std::string alt(bcf_get_alt(v, i));
        int32_t pos1 = bcf_get_pos1(v);

        //this prevents introduction of flanks that do not harbour the repeat unit
        trim(pos1, ref, alt);

        int32_t end1 = pos1 + ref.size() - 1;
        right_align(chrom, end1, ref, alt);

        int32_t beg1 = end1 - ref.size() + 1;
        left_align(chrom, beg1, ref, alt);

        min_beg1 = beg1<min_beg1 ? beg1 : min_beg1;
        max_end1 = end1>max_end1 ? end1 : max_end1;

        int32_t seq_len;
        char* seq = faidx_fetch_seq(fai, chrom, min_beg1-1, max_end1-1, &seq_len);

        if (debug)
        {
            std::cerr << "EXACT REGION " << min_beg1 << "-" << max_end1 << " (" << max_end1-min_beg1+1 <<") from " << pos1 << ":" << ref << ":" << alt << "\n";
            std::cerr << "             " << seq << "\n";
        }

        if (seq_len) free(seq);
    }

    int32_t seq_len;
    char* seq = faidx_fetch_seq(fai, chrom, min_beg1-1, max_end1-1, &seq_len);

    if (debug)
    {
        std::cerr << "FINAL EXACT REGION " << min_beg1 << "-" << max_end1 << " (" << max_end1-min_beg1+1 <<") " << "\n";
        std::cerr << "                   " << seq << "\n";
    }

    vntr.exact_repeat_tract = seq;
    vntr.rid = bcf_get_rid(v);
    vntr.exact_rbeg1 = min_beg1;
    vntr.exact_rend1 = max_end1;
    
    if (seq_len) free(seq);
}
Example #8
0
/**
 * Gets sequence name of a record.
 */
const char* BCFSyncedStreamReader::get_seqname(int32_t i, bcf1_t *v)
{
    return bcf_get_chrom(hdrs[i], v);
}
Example #9
0
File: variant.cpp Project: atks/vt
/**
 * Constructor.
 */
Variant::Variant(bcf_hdr_t* h, bcf1_t* v)
{
    this->h = h;
    this->v = v;

    type = classify(h, v);

    chrom = bcf_get_chrom(h, v);
    rid = bcf_get_rid(v);
    pos1 = bcf_get_pos1(v);

    no_overlapping_snps = 0;
    no_overlapping_indels = 0;
    no_overlapping_vntrs = 0;

    is_new_multiallelic =  false;

    //attempts to update relevant information on variants
    if (type==VT_SNP)
    {
        beg1 = bcf_get_pos1(v);
        end1 = bcf_get_pos1(v);
    }
    else if (type==VT_INDEL)
    {
        beg1 = bcf_get_pos1(v);
        end1 = bcf_get_info_int(h, v, "END", 0);

        //annotate ends
        if (!end1) end1 = bcf_get_end1(v);
    }
    //complex variants
    else if (type & (VT_SNP|VT_MNP|VT_INDEL|VT_CLUMPED))
    {
        beg1 = bcf_get_pos1(v);
        end1 = bcf_get_info_int(h, v, "END", 0);
        if (!end1) end1 = bcf_get_end1(v);
    }
    else if (type==VT_VNTR)
    {
        beg1 = bcf_get_pos1(v);
        end1 = bcf_get_info_int(h, v, "END", 0);
        if (!end1) end1 = bcf_get_end1(v);

        update_vntr_from_info_fields(h, v);

        vs.push_back(v);
        vntr_vs.push_back(v);
    }
    else if (type==VT_SV)
    {
        beg1 = bcf_get_pos1(v);
        end1 = bcf_get_info_int(h, v, "END", 0);
        if (!end1) end1 = bcf_get_end1(v);
    }
    else
    {
        std::cerr << "unexpected type in variant construction\n";
        print();
        exit(1);
    }
}
Example #10
0
File: variant.cpp Project: atks/vt
/**
 * Classifies variants.
 */
int32_t Variant::classify(bcf_hdr_t *h, bcf1_t *v)
{
    clear();

    this->h = h;
    this->v = v;

    bcf_unpack(v, BCF_UN_STR);
    chrom.assign(bcf_get_chrom(h, v));
    rid = bcf_get_rid(v);
    pos1 = bcf_get_pos1(v);
    end1 = bcf_get_end1(v);
    char** allele = bcf_get_allele(v);
    int32_t n_allele = bcf_get_n_allele(v);
    int32_t pos0 = pos1-1;

    bool homogeneous_length = true;
    char* ref = allele[0];
    int32_t rlen = strlen(ref);

    if (strchr(ref, 'N'))
    {
        contains_N = true;
    }

    //if only ref allele, skip this entire for loop
    for (size_t i=1; i<n_allele; ++i)
    {
        int32_t allele_type = VT_REF;

        //check for symbolic alternative alleles
        if (strchr(allele[i],'<'))
        {
            size_t len = strlen(allele[i]);
            if (len>=5)
            {
                //VN/d+
                if (allele[i][0]=='<' && allele[i][1]=='V' && allele[i][2]=='N' && allele[i][len-1]=='>' )
                {
                    for (size_t j=3; j<len-1; ++j)
                    {
                        if (allele[i][j]<'0' || allele[i][j]>'9')
                        {
                            allele_type = VT_VNTR;
                        }
                    }
                }
                //VNTR
                else if (len==6 &&
                         allele[i][0]=='<' &&
                         allele[i][1]=='V' && allele[i][2]=='N' && allele[i][3]=='T' && allele[i][4]=='R' &&
                         allele[i][5]=='>' )
                {
                     allele_type = VT_VNTR;
                }
                //STR
                else if (len==5 &&
                         allele[i][0]=='<' &&
                         allele[i][1]=='S' && allele[i][2]=='T' && allele[i][3]=='R' &&
                         allele[i][4]=='>' )
                {
                     allele_type = VT_VNTR;
                }
                //ST/d+
                else if (allele[i][0]=='<' && allele[i][1]=='S' && allele[i][2]=='T' && allele[i][len-1]=='>' )
                {
                    type = VT_VNTR;

                    for (size_t j=3; j<len-1; ++j)
                    {
                        if ((allele[i][j]<'0' || allele[i][j]>'9') && allele[i][j]!='.')
                        {
                            type = VT_SV;
                        }
                    }
                }
            }

            if (allele_type==VT_VNTR)
            {
                allele_type = VT_VNTR;
                type |= allele_type;
                alleles.push_back(Allele(allele_type));
            }
            else
            {
                allele_type = VT_SV;
                type |= allele_type;
                std::string sv_type(allele[i]);
                alleles.push_back(Allele(allele_type, sv_type));
            }
        }
        //checks for chromosomal breakpoints
        else if (strchr(allele[i],'[')||strchr(allele[i],']'))
        {
            allele_type = VT_SV;
            type |= allele_type;
            std::string sv_type("<BND>");
            alleles.push_back(Allele(allele_type, sv_type));
        }
        //non variant record
        else if (allele[i][0]=='.' || strcmp(allele[i],allele[0])==0)
        {
            type = VT_REF;
        }
        //explicit sequence of bases
        else
        {
            kstring_t REF = {0,0,0};
            kstring_t ALT = {0,0,0};

            ref = allele[0];
            char* alt = allele[i];
            int32_t alen = strlen(alt);

            if (strchr(alt, 'N'))
            {
                contains_N = true;
            }

            if (rlen!=alen)
            {
                homogeneous_length = false;
            }

            //trimming
            //this is required in particular for the
            //characterization of multiallelics and
            //in general, any unnormalized variant
            int32_t rl = rlen;
            int32_t al = alen;
            //trim right
            while (rl!=1 && al!=1)
            {
                if (ref[rl-1]==alt[al-1])
                {
                    --rl;
                    --al;
                }
                else
                {
                    break;
                }
            }

            //trim left
            while (rl !=1 && al!=1)
            {
                if (ref[0]==alt[0])
                {
                    ++ref;
                    ++alt;
                    --rl;
                    --al;
                }
                else
                {
                    break;
                }
            }

            kputsn(ref, rl, &REF);
            kputsn(alt, al, &ALT);

            ref = REF.s;
            alt = ALT.s;

            int32_t mlen = std::min(rl, al);
            int32_t dlen = al-rl;
            int32_t diff = 0;
            int32_t ts = 0;
            int32_t tv = 0;

            if (mlen==1 && dlen)
            {
                char ls, le, ss;

                if (rl>al)
                {
                     ls = ref[0];
                     le = ref[rl-1];
                     ss = alt[0];
                }
                else
                {
                     ls = alt[0];
                     le = alt[al-1];
                     ss = ref[0];
                }

                if (ls!=ss && le!=ss)
                {
                    ++diff;

                    if ((ls=='G' && ss=='A') ||
                        (ls=='A' && ss=='G') ||
                        (ls=='C' && ss=='T') ||
                        (ls=='T' && ss=='C'))
                    {
                        ++ts;
                    }
                    else
                    {
                        ++tv;
                    }
                }
            }
            else
            {
                for (int32_t j=0; j<mlen; ++j)
                {
                    if (ref[j]!=alt[j])
                    {
                        ++diff;

                        if ((ref[j]=='G' && alt[j]=='A') ||
                            (ref[j]=='A' && alt[j]=='G') ||
                            (ref[j]=='C' && alt[j]=='T') ||
                            (ref[j]=='T' && alt[j]=='C'))
                        {
                            ++ts;
                        }
                        else
                        {
                            ++tv;
                        }
                    }
                }
            }

            //substitution variants
            if (mlen==diff)
            {
                allele_type |= mlen==1 ? VT_SNP : VT_MNP;
            }

            //indel variants
            if (dlen)
            {
                allele_type |= VT_INDEL;
            }

            //clumped SNPs and MNPs
            if (diff && diff < mlen) //internal gaps
            {
                allele_type |= VT_CLUMPED;
            }

            type |= allele_type;
            alleles.push_back(Allele(type, diff, alen, dlen, mlen, ts, tv));
            ts += ts;
            tv += tv;
            ins = dlen>0?1:0;
            del = dlen<0?1:0;

            if (REF.m) free(REF.s);
            if (ALT.m) free(ALT.s);
        }
    }

    if (type==VT_VNTR)
    {
        update_vntr_from_info_fields(h, v);
    }

    //additionally define MNPs by length of all alleles
    if (!(type&(VT_VNTR|VT_SV)) && type!=VT_REF)
    {
        if (homogeneous_length && rlen>1 && n_allele>1)
        {
            type |= VT_MNP;
        }
    }

    return type;
}
Example #11
0
/**
 * Gets sequence name of a record.
 */
const char* BCFOrderedReader::get_seqname(bcf1_t *v)
{
    return bcf_get_chrom(hdr, v);
};