/********************************************************************** * save_best_state * * Save this state away to be compared later. **********************************************************************/ void save_best_state(CHUNKS_RECORD *chunks_record) { STATE state; SEARCH_STATE chunk_groups; int num_joints; if (save_priorities) { num_joints = chunks_record->ratings->dimension() - 1; state.part1 = 0xffffffff; state.part2 = 0xffffffff; chunk_groups = bin_to_chunks (&state, num_joints); display_segmentation (chunks_record->chunks, chunk_groups); memfree(chunk_groups); cprintf ("Enter the correct segmentation > "); fflush(stdout); state.part1 = 0; scanf ("%x", &state.part2); chunk_groups = bin_to_chunks (&state, num_joints); display_segmentation (chunks_record->chunks, chunk_groups); memfree(chunk_groups); window_wait(segm_window); /* == 'n') */ if (known_best_state) free_state(known_best_state); known_best_state = new_state (&state); } }
BLOB_CHOICE_LIST *Wordrec::classify_piece(TBLOB *pieces, const DENORM& denorm, SEAMS seams, inT16 start, inT16 end, BlamerBundle *blamer_bundle) { BLOB_CHOICE_LIST *choices; TBLOB *blob; inT16 x; join_pieces(pieces, seams, start, end); for (blob = pieces, x = 0; x < start; x++) { blob = blob->next; } choices = classify_blob(blob, denorm, "pieces:", White, blamer_bundle); break_pieces(blob, seams, start, end); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations > 2) { STATE current_state; SEARCH_STATE chunk_groups; set_n_ones (¤t_state, array_count(seams)); chunk_groups = bin_to_chunks(¤t_state, array_count(seams)); display_segmentation(pieces, chunk_groups); window_wait(segm_window); memfree(chunk_groups); } #endif return (choices); }
BLOB_CHOICE_LIST *Wordrec::classify_piece(TBLOB *pieces, SEAMS seams, inT16 start, inT16 end) { STATE current_state; BLOB_CHOICE_LIST *choices; TBLOB *pblob; TBLOB *blob; TBLOB *nblob; inT16 x; SEARCH_STATE chunk_groups; set_n_ones (¤t_state, array_count (seams)); join_pieces(pieces, seams, start, end); for (blob = pieces, pblob = NULL, x = 0; x < start; x++) { pblob = blob; blob = blob->next; } for (nblob = blob->next; x < end; x++) nblob = nblob->next; choices = classify_blob (pblob, blob, nblob, NULL, "pieces:", White); break_pieces(blob, seams, start, end); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations > 2) { chunk_groups = bin_to_chunks (¤t_state, array_count (seams)); display_segmentation(pieces, chunk_groups); window_wait(segm_window); memfree(chunk_groups); } #endif return (choices); }
/** * @name evaluate_state * * Evaluate the segmentation that is represented by this state in the * best first search. Add this state to the "states_seen" list. */ inT16 Wordrec::evaluate_state(CHUNKS_RECORD *chunks_record, SEARCH_RECORD *the_search, DANGERR *fixpt) { BLOB_CHOICE_LIST_VECTOR *char_choices; SEARCH_STATE chunk_groups; float rating_limit = the_search->best_choice->rating(); inT16 keep_going = TRUE; PIECES_STATE widths; the_search->num_states++; chunk_groups = bin_to_chunks(the_search->this_state, the_search->num_joints); bin_to_pieces (the_search->this_state, the_search->num_joints, widths); getDict().LogNewSegmentation(widths); char_choices = evaluate_chunks(chunks_record, chunk_groups); wordseg_rating_adjust_factor = -1.0f; if (char_choices != NULL && char_choices->length() > 0) { // Compute the segmentation cost and include the cost in word rating. // TODO(dsl): We should change the SEARCH_RECORD to store this cost // from state evaluation and avoid recomputing it here. prioritize_state(chunks_record, the_search); wordseg_rating_adjust_factor = the_search->segcost_bias; getDict().permute_characters(*char_choices, rating_limit, the_search->best_choice, the_search->raw_choice); bool replaced = false; if (getDict().AcceptableChoice(char_choices, the_search->best_choice, *(the_search->raw_choice), fixpt, ASSOCIATOR_CALLER, &replaced)) { keep_going = FALSE; } } wordseg_rating_adjust_factor = -1.0f; #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { display_segmentation (chunks_record->chunks, chunk_groups); if (wordrec_display_segmentations > 1) window_wait(segm_window); } #endif if (rating_limit != the_search->best_choice->rating()) { the_search->before_best = the_search->num_states; the_search->best_state->part1 = the_search->this_state->part1; the_search->best_state->part2 = the_search->this_state->part2; replace_char_widths(chunks_record, chunk_groups); } else if (char_choices != NULL) fixpt->index = -1; if (char_choices != NULL) delete char_choices; memfree(chunk_groups); return (keep_going); }
/********************************************************************** * classify_piece * * Create a larger piece from a collection of smaller ones. Classify * it and return the results. Take the large piece apart to leave * the collection of small pieces un modified. **********************************************************************/ CHOICES classify_piece(TBLOB *pieces, SEAMS seams, INT16 start, INT16 end, INT32 fx, STATE *this_state, STATE *best_state, INT32 pass, INT32 blob_index) { STATE current_state; CHOICES choices; TBLOB *pblob; TBLOB *blob; TBLOB *nblob; INT16 x; SEARCH_STATE chunk_groups; set_n_ones (¤t_state, array_count (seams)); join_pieces(pieces, seams, start, end); for (blob = pieces, pblob = NULL, x = 0; x < start; x++) { pblob = blob; blob = blob->next; } for (nblob = blob->next; x < end; x++) nblob = nblob->next; choices = classify_blob (pblob, blob, nblob, NULL, fx, "pieces:", White, this_state, best_state, pass, blob_index); break_pieces(blob, seams, start, end); #ifndef GRAPHICS_DISABLED if (display_segmentations > 2) { chunk_groups = bin_to_chunks (¤t_state, array_count (seams)); display_segmentation(pieces, chunk_groups); window_wait(segm_window); memfree(chunk_groups); } #endif return (choices); }
/** * rebuild_current_state * * Transfers the given state to the word's output fields: rebuild_word, * best_state, box_word, and returns the corresponding blob choices. */ BLOB_CHOICE_LIST_VECTOR *Wordrec::rebuild_current_state( WERD_RES *word, STATE *state, BLOB_CHOICE_LIST_VECTOR *old_choices, MATRIX *ratings) { // Initialize search_state, num_joints, x, y. int num_joints = array_count(word->seam_array); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { print_state("Rebuilding state", state, num_joints); } #endif // Setup the rebuild_word ready for the output blobs. if (word->rebuild_word != NULL) delete word->rebuild_word; word->rebuild_word = new TWERD; // Setup the best_state. word->best_state.clear(); SEARCH_STATE search_state = bin_to_chunks(state, num_joints); // See which index is which below for information on x and y. int x = 0; int y; for (int i = 1; i <= search_state[0]; i++) { y = x + search_state[i]; x = y + 1; } y = count_blobs(word->chopped_word->blobs) - 1; // Initialize char_choices, expanded_fragment_lengths: // e.g. if fragment_lengths = {1 1 2 3 1}, // expanded_fragment_lengths_str = {1 1 2 2 3 3 3 1}. BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR(); STRING expanded_fragment_lengths_str = ""; bool state_has_fragments = false; const char *fragment_lengths = NULL; if (word->best_choice->length() > 0) { fragment_lengths = word->best_choice->fragment_lengths(); } if (fragment_lengths) { for (int i = 0; i < word->best_choice->length(); ++i) { *char_choices += NULL; word->best_state.push_back(0); if (fragment_lengths[i] > 1) { state_has_fragments = true; } for (int j = 0; j < fragment_lengths[i]; ++j) { expanded_fragment_lengths_str += fragment_lengths[i]; } } } else { for (int i = 0; i <= search_state[0]; ++i) { expanded_fragment_lengths_str += (char)1; *char_choices += NULL; word->best_state.push_back(0); } } // Set up variables for concatenating fragments. const char *word_lengths_ptr = NULL; const char *word_ptr = NULL; if (state_has_fragments) { // Make word_lengths_ptr point to the last element in // best_choice->unichar_lengths(). word_lengths_ptr = word->best_choice->unichar_lengths().string(); word_lengths_ptr += (strlen(word_lengths_ptr)-1); // Make word_str point to the beginning of the last // unichar in best_choice->unichar_string(). word_ptr = word->best_choice->unichar_string().string(); word_ptr += (strlen(word_ptr)-*word_lengths_ptr); } const char *expanded_fragment_lengths = expanded_fragment_lengths_str.string(); char unichar[UNICHAR_LEN + 1]; // Populate char_choices list such that it corresponds to search_state. // // If we are rebuilding a state that contains character fragments: // -- combine blobs that belong to character fragments // -- re-classify the blobs to obtain choices list for the merged blob // -- ensure that correct classification appears in the new choices list // NOTE: a choice composed form original fragment choices will be always // added to the new choices list for each character composed from // fragments (even if the choice for the corresponding character appears // in the re-classified choices list of for the newly merged blob). int ss_index = search_state[0]; // Which index is which? // char_choices_index refers to the finished product: there is one for each // blob/unicharset entry in the final word. // ss_index refers to the search_state, and indexes a group (chunk) of blobs // that were classified together for the best state. // old_choice_index is a copy of ss_index, and accesses the old_choices, // which correspond to chunks in the best state. old_choice_index gets // set to -1 on a fragment set, as there is no corresponding chunk in // the best state. // x and y refer to the underlying blobs and are the first and last blob // indices in a chunk. for (int char_choices_index = char_choices->length() - 1; char_choices_index >= 0; --char_choices_index) { // The start and end of the blob to rebuild. int true_x = x; int true_y = y; // The fake merged fragment choice. BLOB_CHOICE* merged_choice = NULL; // Test for and combine fragments first. int fragment_pieces = expanded_fragment_lengths[ss_index]; int old_choice_index = ss_index; if (fragment_pieces > 1) { strncpy(unichar, word_ptr, *word_lengths_ptr); unichar[*word_lengths_ptr] = '\0'; merged_choice = rebuild_fragments(unichar, expanded_fragment_lengths, old_choice_index, old_choices); old_choice_index = -1; } while (fragment_pieces > 0) { true_x = x; // Move left to the previous blob. y = x - 1; x = y - search_state[ss_index--]; --fragment_pieces; } word->best_state[char_choices_index] = true_y + 1 - true_x; BLOB_CHOICE_LIST *current_choices = join_blobs_and_classify( word, true_x, true_y, old_choice_index, ratings, old_choices); if (merged_choice != NULL) { // Insert merged_blob into current_choices, such that current_choices // are still sorted in non-descending order by rating. ASSERT_HOST(!current_choices->empty()); BLOB_CHOICE_IT choice_it(current_choices); for (choice_it.mark_cycle_pt(); !choice_it.cycled_list() && merged_choice->rating() > choice_it.data()->rating(); choice_it.forward()) choice_it.add_before_stay_put(merged_choice); } // Get rid of fragments in current_choices. BLOB_CHOICE_IT choice_it(current_choices); for (choice_it.mark_cycle_pt(); !choice_it.cycled_list(); choice_it.forward()) { if (getDict().getUnicharset().get_fragment( choice_it.data()->unichar_id())) { delete choice_it.extract(); } } char_choices->set(current_choices, char_choices_index); // Update word_ptr and word_lengths_ptr. if (word_lengths_ptr != NULL && word_ptr != NULL) { word_lengths_ptr--; word_ptr -= (*word_lengths_ptr); } } old_choices->delete_data_pointers(); delete old_choices; memfree(search_state); return char_choices; }
/** * @name evaluate_state * * Evaluate the segmentation that is represented by this state in the * best first search. Add this state to the "states_seen" list. */ inT16 Wordrec::evaluate_state(CHUNKS_RECORD *chunks_record, SEARCH_RECORD *the_search, DANGERR *fixpt, BlamerBundle *blamer_bundle) { BLOB_CHOICE_LIST_VECTOR *char_choices; SEARCH_STATE chunk_groups; float rating_limit = the_search->best_choice->rating(); bool keep_going = true; PIECES_STATE widths; the_search->num_states++; chunk_groups = bin_to_chunks(the_search->this_state, the_search->num_joints); bin_to_pieces (the_search->this_state, the_search->num_joints, widths); if (wordrec_debug_level > 1) { log_state("Evaluating state", the_search->num_joints, the_search->this_state); } getDict().LogNewSegmentation(widths); char_choices = evaluate_chunks(chunks_record, chunk_groups, blamer_bundle); getDict().SetWordsegRatingAdjustFactor(-1.0f); bool updated_best_choice = false; if (char_choices != NULL && char_choices->length() > 0) { // Compute the segmentation cost and include the cost in word rating. // TODO(dsl): We should change the SEARCH_RECORD to store this cost // from state evaluation and avoid recomputing it here. prioritize_state(chunks_record, the_search); getDict().SetWordsegRatingAdjustFactor(the_search->segcost_bias); updated_best_choice = getDict().permute_characters(*char_choices, the_search->best_choice, the_search->raw_choice); bool replaced = false; if (updated_best_choice) { if (getDict().AcceptableChoice(char_choices, the_search->best_choice, NULL, ASSOCIATOR_CALLER, &replaced)) { keep_going = false; } CopyCharChoices(*char_choices, the_search->best_char_choices); } } getDict().SetWordsegRatingAdjustFactor(-1.0f); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { display_segmentation (chunks_record->chunks, chunk_groups); if (wordrec_display_segmentations > 1) window_wait(segm_window); } #endif if (rating_limit != the_search->best_choice->rating()) { ASSERT_HOST(updated_best_choice); the_search->before_best = the_search->num_states; the_search->best_state->part1 = the_search->this_state->part1; the_search->best_state->part2 = the_search->this_state->part2; replace_char_widths(chunks_record, chunk_groups); } else { ASSERT_HOST(!updated_best_choice); if (char_choices != NULL) fixpt->clear(); } if (char_choices != NULL) delete char_choices; memfree(chunk_groups); return (keep_going); }
/** * rebuild_current_state * * Evaluate the segmentation that is represented by this state in the * best first search. Add this state to the "states_seen" list. */ BLOB_CHOICE_LIST_VECTOR *Wordrec::rebuild_current_state( TBLOB *blobs, SEAMS seam_list, STATE *state, BLOB_CHOICE_LIST_VECTOR *old_choices, int fx, bool force_rebuild, const WERD_CHOICE &best_choice, const MATRIX *ratings) { // Initialize search_state, num_joints, x, y. int num_joints = array_count(seam_list); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { print_state("Rebuiling state", state, num_joints); } #endif SEARCH_STATE search_state = bin_to_chunks(state, num_joints); int x = 0; int y; int i; for (i = 1; i <= search_state[0]; i++) { y = x + search_state[i]; x = y + 1; } y = count_blobs (blobs) - 1; // Initialize char_choices, expanded_fragment_lengths: // e.g. if fragment_lengths = {1 1 2 3 1}, // expanded_fragment_lengths_str = {1 1 2 2 3 3 3 1}. BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR(); STRING expanded_fragment_lengths_str = ""; bool state_has_fragments = false; const char *fragment_lengths = NULL; if (best_choice.length() > 0) { fragment_lengths = best_choice.fragment_lengths(); } if (fragment_lengths) { for (int i = 0; i < best_choice.length(); ++i) { *char_choices += NULL; if (fragment_lengths[i] > 1) { state_has_fragments = true; } for (int j = 0; j < fragment_lengths[i]; ++j) { expanded_fragment_lengths_str += fragment_lengths[i]; } } } else { for (i = 0; i <= search_state[0]; ++i) { expanded_fragment_lengths_str += (char)1; *char_choices += NULL; } } // Finish early if force_rebuld is false and there are no fragments to merge. if (!force_rebuild && !state_has_fragments) { delete char_choices; memfree(search_state); return old_choices; } // Set up variables for concatenating fragments. const char *word_lengths_ptr = NULL; const char *word_ptr = NULL; if (state_has_fragments) { // Make word_lengths_ptr point to the last element in // best_choice->unichar_lengths(). word_lengths_ptr = best_choice.unichar_lengths().string(); word_lengths_ptr += (strlen(word_lengths_ptr)-1); // Make word_str point to the beginning of the last // unichar in best_choice->unichar_string(). word_ptr = best_choice.unichar_string().string(); word_ptr += (strlen(word_ptr)-*word_lengths_ptr); } const char *expanded_fragment_lengths = expanded_fragment_lengths_str.string(); bool merging_fragment = false; int true_y = -1; char unichar[UNICHAR_LEN + 1]; int fragment_pieces = -1; float rating = 0.0; float certainty = -MAX_FLOAT32; // Populate char_choices list such that it corresponds to search_state. // // If we are rebuilding a state that contains character fragments: // -- combine blobs that belong to character fragments // -- re-classify the blobs to obtain choices list for the merged blob // -- ensure that correct classification appears in the new choices list // NOTE: a choice composed form original fragment choices will be always // added to the new choices list for each character composed from // fragments (even if the choice for the corresponding character appears // in the re-classified choices list of for the newly merged blob). BLOB_CHOICE_IT temp_it; int char_choices_index = char_choices->length() - 1; for (i = search_state[0]; i >= 0; i--) { BLOB_CHOICE_LIST *current_choices = join_blobs_and_classify( blobs, seam_list, x, y, fx, ratings, old_choices); // Combine character fragments. if (expanded_fragment_lengths[i] > 1) { // Start merging character fragments. if (!merging_fragment) { merging_fragment = true; true_y = y; fragment_pieces = expanded_fragment_lengths[i]; rating = 0.0; certainty = -MAX_FLOAT32; strncpy(unichar, word_ptr, *word_lengths_ptr); unichar[*word_lengths_ptr] = '\0'; } // Take into account the fact that we could have joined pieces // since we first recorded the ending point of a fragment (true_y). true_y -= y - x; // Populate fragment with updated values and look for the // fragment with the same values in current_choices. // Update rating and certainty of the character being composed. fragment_pieces--; CHAR_FRAGMENT fragment; fragment.set_all(unichar, fragment_pieces, expanded_fragment_lengths[i]); temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list(); temp_it.forward()) { const CHAR_FRAGMENT *current_fragment = getDict().getUnicharset().get_fragment(temp_it.data()->unichar_id()); if (current_fragment && fragment.equals(current_fragment)) { rating += temp_it.data()->rating(); if (temp_it.data()->certainty() > certainty) { certainty = temp_it.data()->certainty(); } break; } } assert(!temp_it.cycled_list()); // make sure we found the fragment // Free current_choices for the fragmented character. delete current_choices; // Finish composing character from fragments. if (fragment_pieces == 0) { // Populate current_choices with the classification of // the blob merged from blobs of each character fragment. current_choices = join_blobs_and_classify(blobs, seam_list, x, true_y, fx, ratings, NULL); BLOB_CHOICE *merged_choice = new BLOB_CHOICE(getDict().getUnicharset().unichar_to_id(unichar), rating, certainty, 0, NO_PERM); // Insert merged_blob into current_choices, such that current_choices // are still sorted in non-descending order by rating. ASSERT_HOST(!current_choices->empty()); temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list() && merged_choice->rating() > temp_it.data()->rating(); temp_it.forward()); temp_it.add_before_stay_put(merged_choice); // Done merging this fragmented character. merging_fragment = false; } } if (!merging_fragment) { // Get rid of fragments in current_choices. temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list(); temp_it.forward()) { if (getDict().getUnicharset().get_fragment( temp_it.data()->unichar_id())) { delete temp_it.extract(); } } char_choices->set(current_choices, char_choices_index); char_choices_index--; // Update word_ptr and word_lengths_ptr. if (word_lengths_ptr != NULL && word_ptr != NULL) { word_lengths_ptr--; word_ptr -= (*word_lengths_ptr); } } y = x - 1; x = y - search_state[i]; } old_choices->delete_data_pointers(); delete old_choices; memfree(search_state); return (char_choices); }