Example #1
0
static bool read_touches_graph(const read_t *r, const dBGraph *db_graph,
                               LoadingStats *stats)
{
  bool found = false;
  BinaryKmer bkmer; Nucleotide nuc; dBNode node;
  const size_t kmer_size = db_graph->kmer_size;
  size_t i, num_contigs = 0, num_kmers_loaded = 0;
  size_t search_pos = 0, start, end = 0, contig_len;

  if(r->seq.end >= kmer_size)
  {
    while((start = seq_contig_start(r, search_pos, kmer_size, 0,0)) < r->seq.end &&
          !found)
    {
      end = seq_contig_end(r, start, kmer_size, 0, 0, &search_pos);
      contig_len = end - start;
      __sync_fetch_and_add((volatile size_t*)&stats->total_bases_loaded, contig_len);

      num_contigs++;

      bkmer = binary_kmer_from_str(r->seq.b + start, kmer_size);
      num_kmers_loaded++;
      node = db_graph_find(db_graph, bkmer);
      if(node.key != HASH_NOT_FOUND) { found = true; break; }

      for(i = start+kmer_size; i < end; i++)
      {
        nuc = dna_char_to_nuc(r->seq.b[i]);
        bkmer = binary_kmer_left_shift_add(bkmer, kmer_size, nuc);
        num_kmers_loaded++;
        node = db_graph_find(db_graph, bkmer);
        if(node.key != HASH_NOT_FOUND) { found = true; break; }
      }
    }
  }

  // Update stats
  __sync_fetch_and_add((volatile size_t*)&stats->total_bases_read, r->seq.end);
  __sync_fetch_and_add((volatile size_t*)&stats->num_kmers_loaded, num_kmers_loaded);
  __sync_fetch_and_add((volatile size_t*)&stats->num_kmers_novel, num_kmers_loaded - found);
  __sync_fetch_and_add((volatile size_t*)&stats->num_good_reads, num_contigs > 0);
  __sync_fetch_and_add((volatile size_t*)&stats->num_bad_reads, num_contigs == 0);

  return found;
}
Example #2
0
//
// Integrity checks
//
// Check an array of nodes denote a contigous path
bool db_node_check_nodes(const dBNode *nodes, size_t num,
                            const dBGraph *db_graph)
{
  if(num == 0) return true;

  const size_t kmer_size = db_graph->kmer_size;
  BinaryKmer bkmer0, bkmer1, tmp;
  Nucleotide nuc;
  size_t i;

  bkmer0 = db_node_oriented_bkmer(db_graph, nodes[0]);

  for(i = 0; i+1 < num; i++)
  {
    bkmer1 = db_node_oriented_bkmer(db_graph, nodes[i+1]);
    nuc = binary_kmer_last_nuc(bkmer1);
    tmp = binary_kmer_left_shift_add(bkmer0, kmer_size, nuc);
    ctx_assert_ret(binary_kmers_are_equal(tmp, bkmer1));
    bkmer0 = bkmer1;
  }

  return true;
}
Example #3
0
// Extend a supernode, nlist[offset] must already be set
// Walk along nodes starting from node/or, storing the supernode in nlist
// Returns the number of nodes added, adds no more than `limit`
// return false if out of space and limit > 0
bool supernode_extend(dBNodeBuffer *nbuf, size_t limit,
                         const dBGraph *db_graph)
{
  ctx_assert(nbuf->len > 0);

  const size_t kmer_size = db_graph->kmer_size;
  dBNode node0 = nbuf->data[0], node1 = nbuf->data[nbuf->len-1], node = node1;

  BinaryKmer bkmer = db_node_oriented_bkmer(db_graph, node);
  Edges edges = db_node_get_edges_union(db_graph, node.key);
  Nucleotide nuc;

  while(edges_has_precisely_one_edge(edges, node.orient, &nuc))
  {
    bkmer = binary_kmer_left_shift_add(bkmer, kmer_size, nuc);
    node = db_graph_find(db_graph, bkmer);
    edges = db_node_get_edges_union(db_graph, node.key);

    ctx_assert(node.key != HASH_NOT_FOUND);

    if(edges_has_precisely_one_edge(edges, rev_orient(node.orient), &nuc))
    {
      if(node.key == node0.key || node.key == nbuf->data[nbuf->len-1].key) {
        // don't create a loop A->B->A or a->b->B->A
        break;
      }

      if(limit && nbuf->len >= limit) return false;

      db_node_buf_add(nbuf, node);
    }
    else break;
  }

  return true;
}
Example #4
0
// if colour is -1 aligns to all colours, otherwise aligns to given colour only
// Returns number of kmers lost from the end
static size_t db_alignment_from_read(dBAlignment *aln, const read_t *r,
                                     uint8_t qcutoff, uint8_t hp_cutoff,
                                     const dBGraph *db_graph, int colour)
{
  size_t contig_start, contig_end = 0, search_start = 0;
  const size_t kmer_size = db_graph->kmer_size;

  BinaryKmer bkmer, tmp_key;
  Nucleotide nuc;
  hkey_t node;
  size_t i, offset, nxtbse;

  dBNodeBuffer *nodes = &aln->nodes;
  Int32Buffer *rpos = &aln->rpos;

  ctx_assert(nodes->len == rpos->len);
  size_t n = nodes->len, init_len = n;

  db_node_buf_capacity(nodes, n + r->seq.end);
  int32_buf_capacity(rpos, n + r->seq.end);

  while((contig_start = seq_contig_start(r, search_start, kmer_size,
                                         qcutoff, hp_cutoff)) < r->seq.end)
  {
    contig_end = seq_contig_end(r, contig_start, kmer_size,
                                qcutoff, hp_cutoff, &search_start);

    const char *contig = r->seq.b + contig_start;
    size_t contig_len = contig_end - contig_start;

    bkmer = binary_kmer_from_str(contig, kmer_size);
    bkmer = binary_kmer_right_shift_one_base(bkmer);

    for(offset=contig_start, nxtbse=kmer_size-1; nxtbse < contig_len; nxtbse++,offset++)
    {
      nuc = dna_char_to_nuc(contig[nxtbse]);
      bkmer = binary_kmer_left_shift_add(bkmer, kmer_size, nuc);
      tmp_key = binary_kmer_get_key(bkmer, kmer_size);
      node = hash_table_find(&db_graph->ht, tmp_key);

      if(node != HASH_NOT_FOUND &&
         (colour == -1 || db_node_has_col(db_graph, node, colour)))
      {
        nodes->b[n].key = node;
        nodes->b[n].orient = bkmer_get_orientation(bkmer, tmp_key);
        rpos->b[n] = offset;
        n++;
      }
    }
  }

  // Return number of bases from the last kmer found until read end
  size_t ret = (n == init_len ? r->seq.end /* No kmers found */
                              : r->seq.end - (rpos->b[n-1] + kmer_size));

  nodes->len = rpos->len = n;

  // Check for sequence gaps
  for(i = init_len; i+1 < nodes->len; i++) {
    if(rpos->b[i]+1 < rpos->b[i+1]) {
      aln->seq_gaps = true;
      break;
    }
  }

  return ret;
}