Example #1
0
void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
                  const BN_ULONG *b, size_t num_b) {
  if (num_r != num_a + num_b) {
    abort();
  }
  // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
  // hit that code.
  if (num_a == 8 && num_b == 8) {
    bn_mul_comba8(r, a, b);
  } else {
    bn_mul_normal(r, a, num_a, b, num_b);
  }
}
Example #2
0
int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
                 const BN_ULONG *b, size_t num_b) {
  if (num_r != num_a + num_b) {
    OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
    return 0;
  }
  // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
  // hit that code.
  if (num_a == 8 && num_b == 8) {
    bn_mul_comba8(r, a, b);
  } else {
    bn_mul_normal(r, a, num_a, b, num_b);
  }
  return 1;
}
Example #3
0
/* dnX may not be positive, but n2/2+dnX has to be */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
                      int dna, int dnb, BN_ULONG *t)
{
    int n = n2 / 2, c1, c2;
    int tna = n + dna, tnb = n + dnb;
    unsigned int neg, zero;
    BN_ULONG ln, lo, *p;

# ifdef BN_MUL_COMBA
#  if 0
    if (n2 == 4) {
        bn_mul_comba4(r, a, b);
        return;
    }
#  endif
    /*
     * Only call bn_mul_comba 8 if n2 == 8 and the two arrays are complete
     * [steve]
     */
    if (n2 == 8 && dna == 0 && dnb == 0) {
        bn_mul_comba8(r, a, b);
        return;
    }
# endif                         /* BN_MUL_COMBA */
    /* Else do normal multiply */
    if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
        bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
        if ((dna + dnb) < 0)
            memset(&r[2 * n2 + dna + dnb], 0,
                   sizeof(BN_ULONG) * -(dna + dnb));
        return;
    }
    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    zero = neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
        zero = 1;
        break;
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
        zero = 1;
        break;
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
        zero = 1;
        break;
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }

# ifdef BN_MUL_COMBA
    if (n == 4 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba4 could take
                                           * extra args to do this well */
        if (!zero)
            bn_mul_comba4(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 8);

        bn_mul_comba4(r, a, b);
        bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
    } else if (n == 8 && dna == 0 && dnb == 0) { /* XXX: bn_mul_comba8 could
                                                  * take extra args to do
                                                  * this well */
        if (!zero)
            bn_mul_comba8(&(t[n2]), t, &(t[n]));
        else
            memset(&t[n2], 0, sizeof(*t) * 16);

        bn_mul_comba8(r, a, b);
        bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
    } else
# endif                         /* BN_MUL_COMBA */
    {
        p = &(t[n2 * 2]);
        if (!zero)
            bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        else
            memset(&t[n2], 0, sizeof(*t) * n2);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}
Example #4
0
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
	{
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

# ifdef BN_COUNT
	fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
# endif
	n=n2/2;

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
# ifdef BN_MUL_COMBA
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
# endif
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
		}

	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
		{
		lp= &(t[n2+n]);
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
	if (oneg)
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
	else
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));

	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
	if (oneg)
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
	else
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	}
Example #5
0
File: mul.c Project: RobinWuDev/Qt
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
  int ret = 0;
  int top, al, bl;
  BIGNUM *rr;
  int i;
  BIGNUM *t = NULL;
  int j = 0, k;

  al = a->top;
  bl = b->top;

  if ((al == 0) || (bl == 0)) {
    BN_zero(r);
    return 1;
  }
  top = al + bl;

  BN_CTX_start(ctx);
  if ((r == a) || (r == b)) {
    if ((rr = BN_CTX_get(ctx)) == NULL) {
      goto err;
    }
  } else {
    rr = r;
  }
  rr->neg = a->neg ^ b->neg;

  i = al - bl;
  if (i == 0) {
    if (al == 8) {
      if (bn_wexpand(rr, 16) == NULL) {
        goto err;
      }
      rr->top = 16;
      bn_mul_comba8(rr->d, a->d, b->d);
      goto end;
    }
  }

  if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
    if (i >= -1 && i <= 1) {
      /* Find out the power of two lower or equal
         to the longest of the two numbers */
      if (i >= 0) {
        j = BN_num_bits_word((BN_ULONG)al);
      }
      if (i == -1) {
        j = BN_num_bits_word((BN_ULONG)bl);
      }
      j = 1 << (j - 1);
      assert(j <= al || j <= bl);
      k = j + j;
      t = BN_CTX_get(ctx);
      if (t == NULL) {
        goto err;
      }
      if (al > j || bl > j) {
        if (bn_wexpand(t, k * 4) == NULL) {
          goto err;
        }
        if (bn_wexpand(rr, k * 4) == NULL) {
          goto err;
        }
        bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
      } else {
        /* al <= j || bl <= j */
        if (bn_wexpand(t, k * 2) == NULL) {
          goto err;
        }
        if (bn_wexpand(rr, k * 2) == NULL) {
          goto err;
        }
        bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
      }
      rr->top = top;
      goto end;
    }
  }

  if (bn_wexpand(rr, top) == NULL) {
    goto err;
  }
  rr->top = top;
  bn_mul_normal(rr->d, a->d, al, b->d, bl);

end:
  bn_correct_top(rr);
  if (r != rr) {
    BN_copy(r, rr);
  }
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}
Example #6
0
// n+tn is the word length
// t needs to be n*4 is size, as does r
// tnX may not be negative but less than n
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
                                  const BN_ULONG *b, int n, int tna, int tnb,
                                  BN_ULONG *t) {
  int i, j, n2 = n * 2;
  int c1, c2, neg;
  BN_ULONG ln, lo, *p;

  if (n < 8) {
    bn_mul_normal(r, a, n + tna, b, n + tnb);
    return;
  }

  // r=(a[0]-a[1])*(b[1]-b[0])
  c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
  c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
  neg = 0;
  switch (c1 * 3 + c2) {
    case -4:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      break;
    case -3:
      // break;
    case -2:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
      neg = 1;
      break;
    case -1:
    case 0:
    case 1:
      // break;
    case 2:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      neg = 1;
      break;
    case 3:
      // break;
    case 4:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
      break;
  }

  if (n == 8) {
    bn_mul_comba8(&(t[n2]), t, &(t[n]));
    bn_mul_comba8(r, a, b);
    bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
    OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
  } else {
    p = &(t[n2 * 2]);
    bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    bn_mul_recursive(r, a, b, n, 0, 0, p);
    i = n / 2;
    // If there is only a bottom half to the number,
    // just do it
    if (tna > tnb) {
      j = tna - i;
    } else {
      j = tnb - i;
    }

    if (j == 0) {
      bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
      OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
    } else if (j > 0) {
      // eg, n == 16, i == 8 and tn == 11
      bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
      OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
                     sizeof(BN_ULONG) * (n2 - tna - tnb));
    } else {
      // (j < 0) eg, n == 16, i == 8 and tn == 5
      OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
      if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
          tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
      } else {
        for (;;) {
          i /= 2;
          // these simplified conditions work
          // exclusively because difference
          // between tna and tnb is 1 or 0
          if (i < tna || i < tnb) {
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
                                  tnb - i, p);
            break;
          } else if (i == tna || i == tnb) {
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
                             p);
            break;
          }
        }
      }
    }
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])

  c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

  if (neg) {
    // if t[32] is negative
    c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
  } else {
    // Might have a carry
    c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])
  // c1 holds the carry bits
  c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
  if (c1) {
    p = &(r[n + n2]);
    lo = *p;
    ln = lo + c1;
    *p = ln;

    // The overflow will stop before we over write
    // words we should not overwrite
    if (ln < (BN_ULONG)c1) {
      do {
        p++;
        lo = *p;
        ln = lo + 1;
        *p = ln;
      } while (ln == 0);
    }
  }
}
Example #7
0
// r is 2*n2 words in size,
// a and b are both n2 words in size.
// n2 must be a power of 2.
// We multiply and return the result.
// t must be 2*n2 words in size
// We calculate
// a[0]*b[0]
// a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
// a[1]*b[1]
// dnX may not be positive, but n2/2+dnX has to be
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
                             int n2, int dna, int dnb, BN_ULONG *t) {
  int n = n2 / 2, c1, c2;
  int tna = n + dna, tnb = n + dnb;
  unsigned int neg, zero;
  BN_ULONG ln, lo, *p;

  // Only call bn_mul_comba 8 if n2 == 8 and the
  // two arrays are complete [steve]
  if (n2 == 8 && dna == 0 && dnb == 0) {
    bn_mul_comba8(r, a, b);
    return;
  }

  // Else do normal multiply
  if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
    bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
    if ((dna + dnb) < 0) {
      OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
                     sizeof(BN_ULONG) * -(dna + dnb));
    }
    return;
  }

  // r=(a[0]-a[1])*(b[1]-b[0])
  c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
  c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
  zero = neg = 0;
  switch (c1 * 3 + c2) {
    case -4:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      break;
    case -3:
      zero = 1;
      break;
    case -2:
      bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
      neg = 1;
      break;
    case -1:
    case 0:
    case 1:
      zero = 1;
      break;
    case 2:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
      bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
      neg = 1;
      break;
    case 3:
      zero = 1;
      break;
    case 4:
      bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
      bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
      break;
  }

  if (n == 4 && dna == 0 && dnb == 0) {
    // XXX: bn_mul_comba4 could take extra args to do this well
    if (!zero) {
      bn_mul_comba4(&(t[n2]), t, &(t[n]));
    } else {
      OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
    }

    bn_mul_comba4(r, a, b);
    bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
  } else if (n == 8 && dna == 0 && dnb == 0) {
    // XXX: bn_mul_comba8 could take extra args to do this well
    if (!zero) {
      bn_mul_comba8(&(t[n2]), t, &(t[n]));
    } else {
      OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
    }

    bn_mul_comba8(r, a, b);
    bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
  } else {
    p = &(t[n2 * 2]);
    if (!zero) {
      bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
    } else {
      OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
    }
    bn_mul_recursive(r, a, b, n, 0, 0, p);
    bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])

  c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

  if (neg) {
    // if t[32] is negative
    c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
  } else {
    // Might have a carry
    c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
  }

  // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
  // r[10] holds (a[0]*b[0])
  // r[32] holds (b[1]*b[1])
  // c1 holds the carry bits
  c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
  if (c1) {
    p = &(r[n + n2]);
    lo = *p;
    ln = lo + c1;
    *p = ln;

    // The overflow will stop before we over write
    // words we should not overwrite
    if (ln < (BN_ULONG)c1) {
      do {
        p++;
        lo = *p;
        ln = lo + 1;
        *p = ln;
      } while (ln == 0);
    }
  }
}
Example #8
0
// bn_mul_part_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r|
// has length 4*|n|, |a| has length |n| + |tna|, |b| has length |n| + |tnb|, and
// |t| has length 8*|n|. |n| must be a power of two. Additionally, we must have
// 0 <= tna < n and 0 <= tnb < n, and |tna| and |tnb| must differ by at most
// one.
//
// TODO(davidben): Make this take |size_t| and perhaps the actual lengths of |a|
// and |b|.
static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
                                  const BN_ULONG *b, int n, int tna, int tnb,
                                  BN_ULONG *t) {
  // |n| is a power of two.
  assert(n != 0 && (n & (n - 1)) == 0);
  // Check |tna| and |tnb| are in range.
  assert(0 <= tna && tna < n);
  assert(0 <= tnb && tnb < n);
  assert(-1 <= tna - tnb && tna - tnb <= 1);

  int n2 = n * 2;
  if (n < 8) {
    bn_mul_normal(r, a, n + tna, b, n + tnb);
    OPENSSL_memset(r + n2 + tna + tnb, 0, n2 - tna - tnb);
    return;
  }

  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|. |a1|
  // and |b1| have size |tna| and |tnb|, respectively.
  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
  // for recursive calls.
  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
  //
  //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0

  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
  // themselves store the absolute value.
  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);

  // Compute:
  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
  // r0,r1 = a0 * b0
  // r2,r3 = a1 * b1
  if (n == 8) {
    bn_mul_comba8(&t[n2], t, &t[n]);
    bn_mul_comba8(r, a, b);

    bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
    // |bn_mul_normal| only writes |tna| + |tna| words. Zero the rest.
    OPENSSL_memset(&r[n2 + tna + tnb], 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
  } else {
    BN_ULONG *p = &t[n2 * 2];
    bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
    bn_mul_recursive(r, a, b, n, 0, 0, p);

    OPENSSL_memset(&r[n2], 0, sizeof(BN_ULONG) * n2);
    if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
        tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
      bn_mul_normal(&r[n2], &a[n], tna, &b[n], tnb);
    } else {
      int i = n;
      for (;;) {
        i /= 2;
        if (i < tna || i < tnb) {
          // E.g., n == 16, i == 8 and tna == 11. |tna| and |tnb| are within one
          // of each other, so if |tna| is larger and tna > i, then we know
          // tnb >= i, and this call is valid.
          bn_mul_part_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
          break;
        }
        if (i == tna || i == tnb) {
          // If there is only a bottom half to the number, just do it. We know
          // the larger of |tna - i| and |tnb - i| is zero. The other is zero or
          // -1 by because of |tna| and |tnb| differ by at most one.
          bn_mul_recursive(&r[n2], &a[n], &b[n], i, tna - i, tnb - i, p);
          break;
        }

        // This loop will eventually terminate when |i| falls below
        // |BN_MUL_RECURSIVE_SIZE_NORMAL| because we know one of |tna| and |tnb|
        // exceeds that.
      }
    }
  }

  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);

  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
  // The second term is stored as the absolute value, so we do this with a
  // constant-time select.
  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
  OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
                         crypto_word_t_too_small);
  c = constant_time_select_w(neg, c_neg, c_pos);

  // We now have our three components. Add them together.
  // r1,r2,c = r1,r2 + t2,t3,c
  c += bn_add_words(&r[n], &r[n], &t[n2], n2);

  // Propagate the carry bit to the end.
  for (int i = n + n2; i < n2 + n2; i++) {
    BN_ULONG old = r[i];
    r[i] = old + c;
    c = r[i] < old;
  }

  // The product should fit without carries.
  assert(c == 0);
}
Example #9
0
int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    int top, al, bl;
    BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    int i;
#endif
#ifdef BN_RECURSION
    BIGNUM *t = NULL;
    int j = 0, k;
#endif

    bn_check_top(a);
    bn_check_top(b);
    bn_check_top(r);

    al = a->top;
    bl = b->top;

    if ((al == 0) || (bl == 0)) {
        BN_zero(r);
        return 1;
    }
    top = al + bl;

    BN_CTX_start(ctx);
    if ((r == a) || (r == b)) {
        if ((rr = BN_CTX_get(ctx)) == NULL)
            goto err;
    } else
        rr = r;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    i = al - bl;
#endif
#ifdef BN_MUL_COMBA
    if (i == 0) {
# if 0
        if (al == 4) {
            if (bn_wexpand(rr, 8) == NULL)
                goto err;
            rr->top = 8;
            bn_mul_comba4(rr->d, a->d, b->d);
            goto end;
        }
# endif
        if (al == 8) {
            if (bn_wexpand(rr, 16) == NULL)
                goto err;
            rr->top = 16;
            bn_mul_comba8(rr->d, a->d, b->d);
            goto end;
        }
    }
#endif                          /* BN_MUL_COMBA */
#ifdef BN_RECURSION
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
        if (i >= -1 && i <= 1) {
            /*
             * Find out the power of two lower or equal to the longest of the
             * two numbers
             */
            if (i >= 0) {
                j = BN_num_bits_word((BN_ULONG)al);
            }
            if (i == -1) {
                j = BN_num_bits_word((BN_ULONG)bl);
            }
            j = 1 << (j - 1);
            assert(j <= al || j <= bl);
            k = j + j;
            t = BN_CTX_get(ctx);
            if (t == NULL)
                goto err;
            if (al > j || bl > j) {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d,
                                      j, al - j, bl - j, t->d);
            } else {            /* al <= j || bl <= j */

                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
            }
            rr->top = top;
            goto end;
        }
    }
#endif                          /* BN_RECURSION */
    if (bn_wexpand(rr, top) == NULL)
        goto err;
    rr->top = top;
    bn_mul_normal(rr->d, a->d, al, b->d, bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 end:
#endif
    rr->neg = a->neg ^ b->neg;
    rr->flags |= BN_FLG_FIXED_TOP;
    if (r != rr && BN_copy(r, rr) == NULL)
        goto err;

    ret = 1;
 err:
    bn_check_top(r);
    BN_CTX_end(ctx);
    return ret;
}
Example #10
0
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
 * We calculate
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
	{
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;

# ifdef BN_COUNT
	printf(" bn_mul_recursive %d * %d\n",n2,n2);
# endif
# ifdef BN_MUL_COMBA
#  if 0
	if (n2 == 4)
		{
		bn_mul_comba4(r,a,b);
		return;
		}
#  endif
	if (n2 == 8)
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
# endif /* BN_MUL_COMBA */
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
		}

# ifdef BN_MUL_COMBA
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
# endif /* BN_MUL_COMBA */
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
Example #11
0
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
	{
	int top,al,bl;
	BIGNUM *rr;
	int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif
#ifdef BN_RECURSION
	BIGNUM *t;
	int j,k;
#endif

#ifdef BN_COUNT
	printf("BN_mul %d * %d\n",a->top,b->top);
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);

	al=a->top;
	bl=b->top;

	if ((al == 0) || (bl == 0))
		{
		BN_zero(r);
		return(1);
		}
	top=al+bl;

	BN_CTX_start(ctx);
	if ((r == a) || (r == b))
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
	else
		rr = r;
	rr->neg=a->neg^b->neg;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
		{
# if 0
		if (al == 4)
			{
			if (bn_wexpand(rr,8) == NULL) goto err;
			rr->top=8;
			bn_mul_comba4(rr->d,a->d,b->d);
			goto end;
			}
# endif
		if (al == 8)
			{
			if (bn_wexpand(rr,16) == NULL) goto err;
			rr->top=16;
			bn_mul_comba8(rr->d,a->d,b->d);
			goto end;
			}
		}
#endif /* BN_MUL_COMBA */
#ifdef BN_RECURSION
	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
		{
		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
			{
			if (bn_wexpand(b,al) == NULL) goto err;
			b->d[bl]=0;
			bl++;
			i--;
			}
		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
			{
			if (bn_wexpand(a,bl) == NULL) goto err;
			a->d[al]=0;
			al++;
			i++;
			}
		if (i == 0)
			{
			/* symmetric and > 4 */
			/* 16 or larger */
			j=BN_num_bits_word((BN_ULONG)al);
			j=1<<(j-1);
			k=j+j;
			t = BN_CTX_get(ctx);
			if (al == j) /* exact multiple */
				{
				if (bn_wexpand(t,k*2) == NULL) goto err;
				if (bn_wexpand(rr,k*2) == NULL) goto err;
				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
				}
			else
				{
				if (bn_wexpand(a,k) == NULL) goto err;
				if (bn_wexpand(b,k) == NULL) goto err;
				if (bn_wexpand(t,k*4) == NULL) goto err;
				if (bn_wexpand(rr,k*4) == NULL) goto err;
				for (i=a->top; i<k; i++)
					a->d[i]=0;
				for (i=b->top; i<k; i++)
					b->d[i]=0;
				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
				}
			rr->top=top;
			goto end;
			}
		}
#endif /* BN_RECURSION */
	if (bn_wexpand(rr,top) == NULL) goto err;
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
end:
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
	ret=1;
err:
	BN_CTX_end(ctx);
	return(ret);
	}
Example #12
0
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
	     int n, BN_ULONG *t)
	{
	int c1,c2,i,j,n2=n*2;
	unsigned int neg;
	BN_ULONG ln,lo,*p;

# ifdef BN_COUNT
	printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
# endif
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
		}
		/* The zero case isn't yet implemented here. The speedup
		   would probably be negligible. */
# if 0
	if (n == 4)
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
	else
# endif
	if (n == 8)
		{
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
	else
		{
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
Example #13
0
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    int top, al, bl;
    BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    int i;
#endif
#ifdef BN_RECURSION
    BIGNUM *t = NULL;
    int j = 0, k;
#endif

#ifdef BN_COUNT
    fprintf(stderr, "BN_mul %d * %d\n", a->top, b->top);
#endif

    bn_check_top(a);
    bn_check_top(b);
    bn_check_top(r);

    al = a->top;
    bl = b->top;

    if ((al == 0) || (bl == 0)) {
        BN_zero(r);
        return (1);
    }
    top = al + bl;

    BN_CTX_start(ctx);
    if ((r == a) || (r == b)) {
        if ((rr = BN_CTX_get(ctx)) == NULL)
            goto err;
    } else
/* Changes for cryptlib - pcg */
		{
		/* Usually we can set:
			rr = r;
		   but in the cases where t gets large (see the check further down
		   for overflow due to k * 2 / k * 4) the value of rr needs to be
		   large as well.  We can't predict in advance when this will occur 
		   so we have to use an extended-size bignum for rr in all cases */
		rr = ( BIGNUM * ) BN_CTX_get_ext( ctx, BIGNUM_EXT_MUL1 );
		if( rr == NULL )
			goto err;
		}
/* End changes for cryptlib - pcg */
    rr->neg = a->neg ^ b->neg;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    i = al - bl;
#endif
#ifdef BN_MUL_COMBA
    if (i == 0) {
# if 0
        if (al == 4) {
            if (bn_wexpand(rr, 8) == NULL)
                goto err;
            rr->top = 8;
            bn_mul_comba4(rr->d, a->d, b->d);
            goto end;
        }
# endif
        if (al == 8) {
            if (bn_wexpand(rr, 16) == NULL)
                goto err;
            rr->top = 16;
            bn_mul_comba8(rr->d, a->d, b->d);
            goto end;
        }
    }
#endif                          /* BN_MUL_COMBA */
#ifdef BN_RECURSION
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
        if (i >= -1 && i <= 1) {
            /*
             * Find out the power of two lower or equal to the longest of the
             * two numbers
             */
            if (i >= 0) {
                j = BN_num_bits_word((BN_ULONG)al);
            }
            if (i == -1) {
                j = BN_num_bits_word((BN_ULONG)bl);
            }
            j = 1 << (j - 1);
            assert(j <= al || j <= bl);
            k = j + j;
/* Changes for cryptlib - pcg */
			if( ( k * 2 > BIGNUM_ALLOC_WORDS ) || \
				( ( al > j || bl > j ) && ( k * 4 > BIGNUM_ALLOC_WORDS ) ) )
				{
				/* We're about to expand the temporary bignum that we're 
				   using to an enormous size, get a special extended-size 
				   bignum that won't result in a storage size-check error
				   when used */
				t = BN_CTX_get_ext( ctx, BIGNUM_EXT_MUL2 );
				}
			else
				t = BN_CTX_get(ctx);
/* End changes for cryptlib - pcg */
            if (t == NULL)
                goto err;
            if (al > j || bl > j) {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d,
                                      j, al - j, bl - j, t->d);
            } else {            /* al <= j || bl <= j */

                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
            }
            rr->top = top;
            goto end;
        }
# if 0
        if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) {
            BIGNUM *tmp_bn = (BIGNUM *)b;
            if (bn_wexpand(tmp_bn, al) == NULL)
                goto err;
            tmp_bn->d[bl] = 0;
            bl++;
            i--;
        } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
            BIGNUM *tmp_bn = (BIGNUM *)a;
            if (bn_wexpand(tmp_bn, bl) == NULL)
                goto err;
            tmp_bn->d[al] = 0;
            al++;
            i++;
        }
        if (i == 0) {
            /* symmetric and > 4 */
            /* 16 or larger */
            j = BN_num_bits_word((BN_ULONG)al);
            j = 1 << (j - 1);
            k = j + j;
            t = BN_CTX_get(ctx);
            if (al == j) {      /* exact multiple */
                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, al, t->d);
            } else {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d, al - j, j, t->d);
            }
            rr->top = top;
            goto end;
        }
# endif
    }
#endif                          /* BN_RECURSION */
    if (bn_wexpand(rr, top) == NULL)
        goto err;
    rr->top = top;
    bn_mul_normal(rr->d, a->d, al, b->d, bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 end:
#endif
    bn_correct_top(rr);
    if (r != rr)
        BN_copy(r, rr);
    ret = 1;
 err:
    bn_check_top(r);
	BN_CTX_end_ext( ctx, BIGNUM_EXT_MUL1 );			/* pcg */
    return (ret);
}
Example #14
0
// bn_mul_impl implements |BN_mul| and |bn_mul_consttime|. Note this function
// breaks |BIGNUM| invariants and may return a negative zero. This is handled by
// the callers.
static int bn_mul_impl(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
                       BN_CTX *ctx) {
  int al = a->width;
  int bl = b->width;
  if (al == 0 || bl == 0) {
    BN_zero(r);
    return 1;
  }

  int ret = 0;
  BIGNUM *rr;
  BN_CTX_start(ctx);
  if (r == a || r == b) {
    rr = BN_CTX_get(ctx);
    if (rr == NULL) {
      goto err;
    }
  } else {
    rr = r;
  }
  rr->neg = a->neg ^ b->neg;

  int i = al - bl;
  if (i == 0) {
    if (al == 8) {
      if (!bn_wexpand(rr, 16)) {
        goto err;
      }
      rr->width = 16;
      bn_mul_comba8(rr->d, a->d, b->d);
      goto end;
    }
  }

  int top = al + bl;
  static const int kMulNormalSize = 16;
  if (al >= kMulNormalSize && bl >= kMulNormalSize) {
    if (-1 <= i && i <= 1) {
      // Find the larger power of two less than or equal to the larger length.
      int j;
      if (i >= 0) {
        j = BN_num_bits_word((BN_ULONG)al);
      } else {
        j = BN_num_bits_word((BN_ULONG)bl);
      }
      j = 1 << (j - 1);
      assert(j <= al || j <= bl);
      BIGNUM *t = BN_CTX_get(ctx);
      if (t == NULL) {
        goto err;
      }
      if (al > j || bl > j) {
        // We know |al| and |bl| are at most one from each other, so if al > j,
        // bl >= j, and vice versa. Thus we can use |bn_mul_part_recursive|.
        assert(al >= j && bl >= j);
        if (!bn_wexpand(t, j * 8) ||
            !bn_wexpand(rr, j * 4)) {
          goto err;
        }
        bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
      } else {
        // al <= j && bl <= j. Additionally, we know j <= al or j <= bl, so one
        // of al - j or bl - j is zero. The other, by the bound on |i| above, is
        // zero or -1. Thus, we can use |bn_mul_recursive|.
        if (!bn_wexpand(t, j * 4) ||
            !bn_wexpand(rr, j * 2)) {
          goto err;
        }
        bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
      }
      rr->width = top;
      goto end;
    }
  }

  if (!bn_wexpand(rr, top)) {
    goto err;
  }
  rr->width = top;
  bn_mul_normal(rr->d, a->d, al, b->d, bl);

end:
  if (r != rr && !BN_copy(r, rr)) {
    goto err;
  }
  ret = 1;

err:
  BN_CTX_end(ctx);
  return ret;
}
Example #15
0
/* tnX may not be negative but less than n */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
                           int tna, int tnb, BN_ULONG *t)
{
    int i, j, n2 = n * 2;
    int c1, c2, neg;
    BN_ULONG ln, lo, *p;

    if (n < 8) {
        bn_mul_normal(r, a, n + tna, b, n + tnb);
        return;
    }

    /* r=(a[0]-a[1])*(b[1]-b[0]) */
    c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
    c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
    neg = 0;
    switch (c1 * 3 + c2) {
    case -4:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        break;
    case -3:
    case -2:
        bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
        neg = 1;
        break;
    case -1:
    case 0:
    case 1:
    case 2:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
        bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
        neg = 1;
        break;
    case 3:
    case 4:
        bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
        bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
        break;
    }
    /*
     * The zero case isn't yet implemented here. The speedup would probably
     * be negligible.
     */
# if 0
    if (n == 4) {
        bn_mul_comba4(&(t[n2]), t, &(t[n]));
        bn_mul_comba4(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tn, &(b[n]), tn);
        memset(&r[n2 + tn * 2], 0, sizeof(*r) * (n2 - tn * 2));
    } else
# endif
    if (n == 8) {
        bn_mul_comba8(&(t[n2]), t, &(t[n]));
        bn_mul_comba8(r, a, b);
        bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
        memset(&r[n2 + tna + tnb], 0, sizeof(*r) * (n2 - tna - tnb));
    } else {
        p = &(t[n2 * 2]);
        bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
        bn_mul_recursive(r, a, b, n, 0, 0, p);
        i = n / 2;
        /*
         * If there is only a bottom half to the number, just do it
         */
        if (tna > tnb)
            j = tna - i;
        else
            j = tnb - i;
        if (j == 0) {
            bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]),
                             i, tna - i, tnb - i, p);
            memset(&r[n2 + i * 2], 0, sizeof(*r) * (n2 - i * 2));
        } else if (j > 0) {     /* eg, n == 16, i == 8 and tn == 11 */
            bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]),
                                  i, tna - i, tnb - i, p);
            memset(&(r[n2 + tna + tnb]), 0,
                   sizeof(BN_ULONG) * (n2 - tna - tnb));
        } else {                /* (j < 0) eg, n == 16, i == 8 and tn == 5 */

            memset(&r[n2], 0, sizeof(*r) * n2);
            if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
                && tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
                bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
            } else {
                for (;;) {
                    i /= 2;
                    /*
                     * these simplified conditions work exclusively because
                     * difference between tna and tnb is 1 or 0
                     */
                    if (i < tna || i < tnb) {
                        bn_mul_part_recursive(&(r[n2]),
                                              &(a[n]), &(b[n]),
                                              i, tna - i, tnb - i, p);
                        break;
                    } else if (i == tna || i == tnb) {
                        bn_mul_recursive(&(r[n2]),
                                         &(a[n]), &(b[n]),
                                         i, tna - i, tnb - i, p);
                        break;
                    }
                }
            }
        }
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     */

    c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));

    if (neg) {                  /* if t[32] is negative */
        c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
    } else {
        /* Might have a carry */
        c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
    }

    /*-
     * t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
     * r[10] holds (a[0]*b[0])
     * r[32] holds (b[1]*b[1])
     * c1 holds the carry bits
     */
    c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
    if (c1) {
        p = &(r[n + n2]);
        lo = *p;
        ln = (lo + c1) & BN_MASK2;
        *p = ln;

        /*
         * The overflow will stop before we over write words we should not
         * overwrite
         */
        if (ln < (BN_ULONG)c1) {
            do {
                p++;
                lo = *p;
                ln = (lo + 1) & BN_MASK2;
                *p = ln;
            } while (ln == 0);
        }
    }
}
Example #16
0
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
	{
	int top,al,bl;
	BIGNUM *rr;
	int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif

#ifdef BN_COUNT
	printf("BN_mul %d * %d\n",a->top,b->top);
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);

	al=a->top;
	bl=b->top;

	if ((al == 0) || (bl == 0))
		{
		BN_zero(r);
		return(1);
		}
	top=al+bl;

	BN_CTX_start(ctx);
	if ((r == a) || (r == b))
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
	else
		rr = r;
	rr->neg=a->neg^b->neg;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
		{
# if 0
		if (al == 4)
			{
			if (bn_wexpand(rr,8) == NULL) goto err;
			rr->top=8;
			bn_mul_comba4(rr->d,a->d,b->d);
			goto end;
			}
# endif
		if (al == 8)
			{
			if (bn_wexpand(rr,16) == NULL) goto err;
			rr->top=16;
			bn_mul_comba8(rr->d,a->d,b->d);
			goto end;
			}
		}
#endif /* BN_MUL_COMBA */
	if (bn_wexpand(rr,top) == NULL) goto err;
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
end:
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
	ret=1;
err:
	BN_CTX_end(ctx);
	return(ret);
	}
Example #17
0
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
    int ret = 0;
    int top, al, bl;
    BIGNUM *rr;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    int i;
#endif
#ifdef BN_RECURSION
    BIGNUM *t = NULL;
    int j = 0, k;
#endif

    bn_check_top(a);
    bn_check_top(b);
    bn_check_top(r);

    al = a->top;
    bl = b->top;

    if ((al == 0) || (bl == 0)) {
        BN_zero(r);
        return (1);
    }
    top = al + bl;

    BN_CTX_start(ctx);
    if ((r == a) || (r == b)) {
        if ((rr = BN_CTX_get(ctx)) == NULL)
            goto err;
    } else
        rr = r;

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
    i = al - bl;
#endif
#ifdef BN_MUL_COMBA
    if (i == 0) {
# if 0
        if (al == 4) {
            if (bn_wexpand(rr, 8) == NULL)
                goto err;
            rr->top = 8;
            bn_mul_comba4(rr->d, a->d, b->d);
            goto end;
        }
# endif
        if (al == 8) {
            if (bn_wexpand(rr, 16) == NULL)
                goto err;
            rr->top = 16;
            bn_mul_comba8(rr->d, a->d, b->d);
            goto end;
        }
    }
#endif                          /* BN_MUL_COMBA */
#ifdef BN_RECURSION
    if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL)) {
        if (i >= -1 && i <= 1) {
            /*
             * Find out the power of two lower or equal to the longest of the
             * two numbers
             */
            if (i >= 0) {
                j = BN_num_bits_word((BN_ULONG)al);
            }
            if (i == -1) {
                j = BN_num_bits_word((BN_ULONG)bl);
            }
            j = 1 << (j - 1);
            assert(j <= al || j <= bl);
            k = j + j;
            t = BN_CTX_get(ctx);
            if (t == NULL)
                goto err;
            if (al > j || bl > j) {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d,
                                      j, al - j, bl - j, t->d);
            } else {            /* al <= j || bl <= j */

                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
            }
            rr->top = top;
            goto end;
        }
# if 0
        if (i == 1 && !BN_get_flags(b, BN_FLG_STATIC_DATA)) {
            BIGNUM *tmp_bn = (BIGNUM *)b;
            if (bn_wexpand(tmp_bn, al) == NULL)
                goto err;
            tmp_bn->d[bl] = 0;
            bl++;
            i--;
        } else if (i == -1 && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
            BIGNUM *tmp_bn = (BIGNUM *)a;
            if (bn_wexpand(tmp_bn, bl) == NULL)
                goto err;
            tmp_bn->d[al] = 0;
            al++;
            i++;
        }
        if (i == 0) {
            /* symmetric and > 4 */
            /* 16 or larger */
            j = BN_num_bits_word((BN_ULONG)al);
            j = 1 << (j - 1);
            k = j + j;
            t = BN_CTX_get(ctx);
            if (al == j) {      /* exact multiple */
                if (bn_wexpand(t, k * 2) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 2) == NULL)
                    goto err;
                bn_mul_recursive(rr->d, a->d, b->d, al, t->d);
            } else {
                if (bn_wexpand(t, k * 4) == NULL)
                    goto err;
                if (bn_wexpand(rr, k * 4) == NULL)
                    goto err;
                bn_mul_part_recursive(rr->d, a->d, b->d, al - j, j, t->d);
            }
            rr->top = top;
            goto end;
        }
# endif
    }
#endif                          /* BN_RECURSION */
    if (bn_wexpand(rr, top) == NULL)
        goto err;
    rr->top = top;
    bn_mul_normal(rr->d, a->d, al, b->d, bl);

#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
 end:
#endif
    rr->neg = a->neg ^ b->neg;
    bn_correct_top(rr);
    if (r != rr && BN_copy(r, rr) == NULL)
        goto err;

    ret = 1;
 err:
    bn_check_top(r);
    BN_CTX_end(ctx);
    return (ret);
}
Example #18
0
// bn_mul_recursive sets |r| to |a| * |b|, using |t| as scratch space. |r| has
// length 2*|n2|, |a| has length |n2| + |dna|, |b| has length |n2| + |dnb|, and
// |t| has length 4*|n2|. |n2| must be a power of two. Finally, we must have
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dna| <= 0 and
// -|BN_MUL_RECURSIVE_SIZE_NORMAL|/2 <= |dnb| <= 0.
//
// TODO(davidben): Simplify and |size_t| the calling convention around lengths
// here.
static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
                             int n2, int dna, int dnb, BN_ULONG *t) {
  // |n2| is a power of two.
  assert(n2 != 0 && (n2 & (n2 - 1)) == 0);
  // Check |dna| and |dnb| are in range.
  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dna && dna <= 0);
  assert(-BN_MUL_RECURSIVE_SIZE_NORMAL/2 <= dnb && dnb <= 0);

  // Only call bn_mul_comba 8 if n2 == 8 and the
  // two arrays are complete [steve]
  if (n2 == 8 && dna == 0 && dnb == 0) {
    bn_mul_comba8(r, a, b);
    return;
  }

  // Else do normal multiply
  if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
    bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
    if (dna + dnb < 0) {
      OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
                     sizeof(BN_ULONG) * -(dna + dnb));
    }
    return;
  }

  // Split |a| and |b| into a0,a1 and b0,b1, where a0 and b0 have size |n|.
  // Split |t| into t0,t1,t2,t3, each of size |n|, with the remaining 4*|n| used
  // for recursive calls.
  // Split |r| into r0,r1,r2,r3. We must contribute a0*b0 to r0,r1, a0*a1+b0*b1
  // to r1,r2, and a1*b1 to r2,r3. The middle term we will compute as:
  //
  //   a0*a1 + b0*b1 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0
  //
  // Note that we know |n| >= |BN_MUL_RECURSIVE_SIZE_NORMAL|/2 above, so
  // |tna| and |tnb| are non-negative.
  int n = n2 / 2, tna = n + dna, tnb = n + dnb;

  // t0 = a0 - a1 and t1 = b1 - b0. The result will be multiplied, so we XOR
  // their sign masks, giving the sign of (a0 - a1)*(b1 - b0). t0 and t1
  // themselves store the absolute value.
  BN_ULONG neg = bn_abs_sub_part_words(t, a, &a[n], tna, n - tna, &t[n2]);
  neg ^= bn_abs_sub_part_words(&t[n], &b[n], b, tnb, tnb - n, &t[n2]);

  // Compute:
  // t2,t3 = t0 * t1 = |(a0 - a1)*(b1 - b0)|
  // r0,r1 = a0 * b0
  // r2,r3 = a1 * b1
  if (n == 4 && dna == 0 && dnb == 0) {
    bn_mul_comba4(&t[n2], t, &t[n]);

    bn_mul_comba4(r, a, b);
    bn_mul_comba4(&r[n2], &a[n], &b[n]);
  } else if (n == 8 && dna == 0 && dnb == 0) {
    bn_mul_comba8(&t[n2], t, &t[n]);

    bn_mul_comba8(r, a, b);
    bn_mul_comba8(&r[n2], &a[n], &b[n]);
  } else {
    BN_ULONG *p = &t[n2 * 2];
    bn_mul_recursive(&t[n2], t, &t[n], n, 0, 0, p);
    bn_mul_recursive(r, a, b, n, 0, 0, p);
    bn_mul_recursive(&r[n2], &a[n], &b[n], n, dna, dnb, p);
  }

  // t0,t1,c = r0,r1 + r2,r3 = a0*b0 + a1*b1
  BN_ULONG c = bn_add_words(t, r, &r[n2], n2);

  // t2,t3,c = t0,t1,c + neg*t2,t3 = (a0 - a1)*(b1 - b0) + a1*b1 + a0*b0.
  // The second term is stored as the absolute value, so we do this with a
  // constant-time select.
  BN_ULONG c_neg = c - bn_sub_words(&t[n2 * 2], t, &t[n2], n2);
  BN_ULONG c_pos = c + bn_add_words(&t[n2], t, &t[n2], n2);
  bn_select_words(&t[n2], neg, &t[n2 * 2], &t[n2], n2);
  OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
                         crypto_word_t_too_small);
  c = constant_time_select_w(neg, c_neg, c_pos);

  // We now have our three components. Add them together.
  // r1,r2,c = r1,r2 + t2,t3,c
  c += bn_add_words(&r[n], &r[n], &t[n2], n2);

  // Propagate the carry bit to the end.
  for (int i = n + n2; i < n2 + n2; i++) {
    BN_ULONG old = r[i];
    r[i] = old + c;
    c = r[i] < old;
  }

  // The product should fit without carries.
  assert(c == 0);
}