/* * insert a name into a directory, doing overflow properly if there is a hash * collision. data_size indicates how big the item inserted should be. On * success a struct btrfs_dir_item pointer is returned, otherwise it is * an ERR_PTR. * * The name is not copied into the dir item, you have to do that yourself. */ static struct btrfs_dir_item *insert_with_overflow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 data_size, const char *name, int name_len) { int ret; char *ptr; struct btrfs_item *item; struct extent_buffer *leaf; ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); if (ret == -EEXIST) { struct btrfs_dir_item *di; di = btrfs_match_dir_item_name(root, path, name, name_len); if (di) return ERR_PTR(-EEXIST); btrfs_extend_item(trans, root, path, data_size); } else if (ret < 0) return ERR_PTR(ret); WARN_ON(ret > 0); leaf = path->nodes[0]; item = btrfs_item_nr(leaf, path->slots[0]); ptr = btrfs_item_ptr(leaf, path->slots[0], char); BUG_ON(data_size > btrfs_item_size(leaf, item)); ptr += btrfs_item_size(leaf, item) - data_size; return (struct btrfs_dir_item *)ptr; }
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret = 0; int slot; u32 cur; u32 len; u32 name_len; u64 parent = 0; int found = 0; struct extent_buffer *eb; struct btrfs_item *item; struct btrfs_inode_ref *iref; struct btrfs_key found_key; while (!ret) { ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, &found_key); if (ret < 0) break; if (ret) { ret = found ? 0 : -ENOENT; break; } ++found; parent = found_key.offset; slot = path->slots[0]; eb = btrfs_clone_extent_buffer(path->nodes[0]); if (!eb) { ret = -ENOMEM; break; } extent_buffer_get(eb); btrfs_release_path(path); item = btrfs_item_nr(slot); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { name_len = btrfs_inode_ref_name_len(eb, iref); /* path must be released before calling iterate()! */ pr_debug("following ref at offset %u for inode %llu in " "tree %llu\n", cur, found_key.objectid, fs_root->objectid); ret = iterate(parent, name_len, (unsigned long)(iref + 1), eb, ctx); if (ret) break; len = sizeof(*iref) + name_len; iref = (struct btrfs_inode_ref *)((char *)iref + len); } free_extent_buffer(eb); } btrfs_release_path(path); return ret; }
static int copy_one_inline(struct btrfs_root *root, int fd, struct btrfs_path *path, u64 pos) { struct extent_buffer *leaf = path->nodes[0]; struct btrfs_file_extent_item *fi; char buf[4096]; char *outbuf; u64 ram_size; ssize_t done; unsigned long ptr; int ret; int len; int inline_item_len; int compress; fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); ptr = btrfs_file_extent_inline_start(fi); len = btrfs_file_extent_ram_bytes(leaf, fi); inline_item_len = btrfs_file_extent_inline_item_len(leaf, btrfs_item_nr(path->slots[0])); read_extent_buffer(leaf, buf, ptr, inline_item_len); compress = btrfs_file_extent_compression(leaf, fi); if (compress == BTRFS_COMPRESS_NONE) { done = pwrite(fd, buf, len, pos); if (done < len) { fprintf(stderr, "Short inline write, wanted %d, did " "%zd: %d\n", len, done, errno); return -1; } return 0; } ram_size = btrfs_file_extent_ram_bytes(leaf, fi); outbuf = calloc(1, ram_size); if (!outbuf) { error("not enough memory"); return -ENOMEM; } ret = decompress(root, buf, outbuf, inline_item_len, &ram_size, compress); if (ret) { free(outbuf); return ret; } done = pwrite(fd, outbuf, ram_size, pos); free(outbuf); if (done < ram_size) { fprintf(stderr, "Short compressed inline write, wanted %Lu, " "did %zd: %d\n", ram_size, done, errno); return -1; } return 0; }
void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l) { int i; char *str; struct btrfs_item *item; struct btrfs_dir_item *di; struct btrfs_inode_item *ii; struct btrfs_file_extent_item *fi; struct btrfs_block_group_item *bi; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_inode_ref *iref; struct btrfs_inode_extref *iref2; struct btrfs_dev_extent *dev_extent; struct btrfs_disk_key disk_key; struct btrfs_block_group_item bg_item; struct btrfs_dir_log_item *dlog; struct btrfs_qgroup_info_item *qg_info; struct btrfs_qgroup_limit_item *qg_limit; struct btrfs_qgroup_status_item *qg_status; u32 nr = btrfs_header_nritems(l); u64 objectid; u32 type; printf("leaf %llu items %d free space %d generation %llu owner %llu\n", (unsigned long long)btrfs_header_bytenr(l), nr, btrfs_leaf_free_space(root, l), (unsigned long long)btrfs_header_generation(l), (unsigned long long)btrfs_header_owner(l)); print_uuids(l); fflush(stdout); for (i = 0 ; i < nr ; i++) { item = btrfs_item_nr(l, i); btrfs_item_key(l, &disk_key, i); objectid = btrfs_disk_key_objectid(&disk_key); type = btrfs_disk_key_type(&disk_key); printf("\titem %d ", i); btrfs_print_key(&disk_key); printf(" itemoff %d itemsize %d\n", btrfs_item_offset(l, item), btrfs_item_size(l, item)); if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) print_free_space_header(l, i); switch (type) { case BTRFS_INODE_ITEM_KEY: ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); printf("\t\tinode generation %llu transid %llu size %llu block group %llu mode %o links %u\n", (unsigned long long)btrfs_inode_generation(l, ii), (unsigned long long)btrfs_inode_transid(l, ii), (unsigned long long)btrfs_inode_size(l, ii), (unsigned long long)btrfs_inode_block_group(l,ii), btrfs_inode_mode(l, ii), btrfs_inode_nlink(l, ii)); break; case BTRFS_INODE_REF_KEY: iref = btrfs_item_ptr(l, i, struct btrfs_inode_ref); print_inode_ref_item(l, item, iref); break; case BTRFS_INODE_EXTREF_KEY: iref2 = btrfs_item_ptr(l, i, struct btrfs_inode_extref); print_inode_extref_item(l, item, iref2); break; case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_XATTR_ITEM_KEY: di = btrfs_item_ptr(l, i, struct btrfs_dir_item); print_dir_item(l, item, di); break; case BTRFS_DIR_LOG_INDEX_KEY: case BTRFS_DIR_LOG_ITEM_KEY: dlog = btrfs_item_ptr(l, i, struct btrfs_dir_log_item); printf("\t\tdir log end %Lu\n", (unsigned long long)btrfs_dir_log_end(l, dlog)); break; case BTRFS_ORPHAN_ITEM_KEY: printf("\t\torphan item\n"); break; case BTRFS_ROOT_ITEM_KEY: print_root(l, i); break; case BTRFS_ROOT_REF_KEY: print_root_ref(l, i, "ref"); break; case BTRFS_ROOT_BACKREF_KEY: print_root_ref(l, i, "backref"); break; case BTRFS_EXTENT_ITEM_KEY: print_extent_item(l, i, 0); break; case BTRFS_METADATA_ITEM_KEY: print_extent_item(l, i, 1); break; case BTRFS_TREE_BLOCK_REF_KEY: printf("\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printf("\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = btrfs_item_ptr(l, i, struct btrfs_extent_data_ref); printf("\t\textent data backref root %llu " "objectid %llu offset %llu count %u\n", (unsigned long long)btrfs_extent_data_ref_root(l, dref), (unsigned long long)btrfs_extent_data_ref_objectid(l, dref), (unsigned long long)btrfs_extent_data_ref_offset(l, dref), btrfs_extent_data_ref_count(l, dref)); break; case BTRFS_SHARED_DATA_REF_KEY: sref = btrfs_item_ptr(l, i, struct btrfs_shared_data_ref); printf("\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(l, sref)); break; case BTRFS_EXTENT_REF_V0_KEY: #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 print_extent_ref_v0(l, i); #else BUG(); #endif break; case BTRFS_CSUM_ITEM_KEY: printf("\t\tcsum item\n"); break; case BTRFS_EXTENT_CSUM_KEY: printf("\t\textent csum item\n"); break; case BTRFS_EXTENT_DATA_KEY: fi = btrfs_item_ptr(l, i, struct btrfs_file_extent_item); print_file_extent_item(l, item, fi); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: bi = btrfs_item_ptr(l, i, struct btrfs_block_group_item); read_extent_buffer(l, &bg_item, (unsigned long)bi, sizeof(bg_item)); printf("\t\tblock group used %llu chunk_objectid %llu flags %llu\n", (unsigned long long)btrfs_block_group_used(&bg_item), (unsigned long long)btrfs_block_group_chunk_objectid(&bg_item), (unsigned long long)btrfs_block_group_flags(&bg_item)); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(l, btrfs_item_ptr(l, i, struct btrfs_chunk)); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(l, btrfs_item_ptr(l, i, struct btrfs_dev_item)); break; case BTRFS_DEV_EXTENT_KEY: dev_extent = btrfs_item_ptr(l, i, struct btrfs_dev_extent); printf("\t\tdev extent chunk_tree %llu\n" "\t\tchunk objectid %llu chunk offset %llu " "length %llu\n", (unsigned long long) btrfs_dev_extent_chunk_tree(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_objectid(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_offset(l, dev_extent), (unsigned long long) btrfs_dev_extent_length(l, dev_extent)); break; case BTRFS_QGROUP_STATUS_KEY: qg_status = btrfs_item_ptr(l, i, struct btrfs_qgroup_status_item); printf("\t\tversion %llu generation %llu flags %#llx " "scan %lld\n", (unsigned long long) btrfs_qgroup_status_version(l, qg_status), (unsigned long long) btrfs_qgroup_status_generation(l, qg_status), (unsigned long long) btrfs_qgroup_status_flags(l, qg_status), (unsigned long long) btrfs_qgroup_status_scan(l, qg_status)); break; case BTRFS_QGROUP_RELATION_KEY: break; case BTRFS_QGROUP_INFO_KEY: qg_info = btrfs_item_ptr(l, i, struct btrfs_qgroup_info_item); printf("\t\tgeneration %llu\n" "\t\treferenced %lld referenced compressed %lld\n" "\t\texclusive %lld exclusive compressed %lld\n", (unsigned long long) btrfs_qgroup_info_generation(l, qg_info), (long long) btrfs_qgroup_info_referenced(l, qg_info), (long long) btrfs_qgroup_info_referenced_compressed(l, qg_info), (long long) btrfs_qgroup_info_exclusive(l, qg_info), (long long) btrfs_qgroup_info_exclusive_compressed(l, qg_info)); break; case BTRFS_QGROUP_LIMIT_KEY: qg_limit = btrfs_item_ptr(l, i, struct btrfs_qgroup_limit_item); printf("\t\tflags %llx\n" "\t\tmax referenced %lld max exclusive %lld\n" "\t\trsv referenced %lld rsv exclusive %lld\n", (unsigned long long) btrfs_qgroup_limit_flags(l, qg_limit), (long long) btrfs_qgroup_limit_max_referenced(l, qg_limit), (long long) btrfs_qgroup_limit_max_exclusive(l, qg_limit), (long long) btrfs_qgroup_limit_rsv_referenced(l, qg_limit), (long long) btrfs_qgroup_limit_rsv_exclusive(l, qg_limit)); break; case BTRFS_STRING_ITEM_KEY: /* dirty, but it's simple */ str = l->data + btrfs_item_ptr_offset(l, i); printf("\t\titem data %.*s\n", btrfs_item_size(l, item), str); break; case BTRFS_DEV_STATS_KEY: printf("\t\tdevice stats\n"); break; }; fflush(stdout); } }
int make_btrfs(int fd, const char *device, const char *label, u64 blocks[7], u64 num_bytes, u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, u64 features) { struct btrfs_super_block super; struct extent_buffer *buf; struct btrfs_root_item root_item; struct btrfs_disk_key disk_key; struct btrfs_extent_item *extent_item; struct btrfs_inode_item *inode_item; struct btrfs_chunk *chunk; struct btrfs_dev_item *dev_item; struct btrfs_dev_extent *dev_extent; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; u8 *ptr; int i; int ret; u32 itemoff; u32 nritems = 0; u64 first_free; u64 ref_root; u32 array_size; u32 item_size; int skinny_metadata = !!(features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA); first_free = BTRFS_SUPER_INFO_OFFSET + sectorsize * 2 - 1; first_free &= ~((u64)sectorsize - 1); memset(&super, 0, sizeof(super)); num_bytes = (num_bytes / sectorsize) * sectorsize; uuid_generate(super.fsid); uuid_generate(super.dev_item.uuid); uuid_generate(chunk_tree_uuid); btrfs_set_super_bytenr(&super, blocks[0]); btrfs_set_super_num_devices(&super, 1); btrfs_set_super_magic(&super, BTRFS_MAGIC); btrfs_set_super_generation(&super, 1); btrfs_set_super_root(&super, blocks[1]); btrfs_set_super_chunk_root(&super, blocks[3]); btrfs_set_super_total_bytes(&super, num_bytes); btrfs_set_super_bytes_used(&super, 6 * leafsize); btrfs_set_super_sectorsize(&super, sectorsize); btrfs_set_super_leafsize(&super, leafsize); btrfs_set_super_nodesize(&super, nodesize); btrfs_set_super_stripesize(&super, stripesize); btrfs_set_super_csum_type(&super, BTRFS_CSUM_TYPE_CRC32); btrfs_set_super_chunk_root_generation(&super, 1); btrfs_set_super_cache_generation(&super, -1); btrfs_set_super_incompat_flags(&super, features); if (label) strncpy(super.label, label, BTRFS_LABEL_SIZE - 1); buf = malloc(sizeof(*buf) + max(sectorsize, leafsize)); /* create the tree of root objects */ memset(buf->data, 0, leafsize); buf->len = leafsize; btrfs_set_header_bytenr(buf, blocks[1]); btrfs_set_header_nritems(buf, 4); btrfs_set_header_generation(buf, 1); btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID); write_extent_buffer(buf, super.fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); write_extent_buffer(buf, chunk_tree_uuid, (unsigned long) btrfs_header_chunk_tree_uuid(buf), BTRFS_UUID_SIZE); /* create the items for the root tree */ memset(&root_item, 0, sizeof(root_item)); inode_item = &root_item.inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, leafsize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_refs(&root_item, 1); btrfs_set_root_used(&root_item, leafsize); btrfs_set_root_generation(&root_item, 1); memset(&disk_key, 0, sizeof(disk_key)); btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, 0); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[2]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[4]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[5]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_FS_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; itemoff = itemoff - sizeof(root_item); btrfs_set_root_bytenr(&root_item, blocks[6]); btrfs_set_disk_key_objectid(&disk_key, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(root_item)); write_extent_buffer(buf, &root_item, btrfs_item_ptr_offset(buf, nritems), sizeof(root_item)); nritems++; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[1]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the items for the extent tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize); for (i = 1; i < 7; i++) { item_size = sizeof(struct btrfs_extent_item); if (!skinny_metadata) item_size += sizeof(struct btrfs_tree_block_info); BUG_ON(blocks[i] < first_free); BUG_ON(blocks[i] < blocks[i - 1]); /* create extent item */ itemoff -= item_size; btrfs_set_disk_key_objectid(&disk_key, blocks[i]); if (skinny_metadata) { btrfs_set_disk_key_type(&disk_key, BTRFS_METADATA_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, 0); } else { btrfs_set_disk_key_type(&disk_key, BTRFS_EXTENT_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, leafsize); } btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); extent_item = btrfs_item_ptr(buf, nritems, struct btrfs_extent_item); btrfs_set_extent_refs(buf, extent_item, 1); btrfs_set_extent_generation(buf, extent_item, 1); btrfs_set_extent_flags(buf, extent_item, BTRFS_EXTENT_FLAG_TREE_BLOCK); nritems++; /* create extent ref */ ref_root = reference_root_table[i]; btrfs_set_disk_key_objectid(&disk_key, blocks[i]); btrfs_set_disk_key_offset(&disk_key, ref_root); btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), 0); nritems++; } btrfs_set_header_bytenr(buf, blocks[2]); btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[2]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the chunk tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; item_size = sizeof(*dev_item); itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - item_size; /* first device 1 (there is no device 0) */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 1); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item); btrfs_set_device_id(buf, dev_item, 1); btrfs_set_device_generation(buf, dev_item, 0); btrfs_set_device_total_bytes(buf, dev_item, num_bytes); btrfs_set_device_bytes_used(buf, dev_item, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_device_io_align(buf, dev_item, sectorsize); btrfs_set_device_io_width(buf, dev_item, sectorsize); btrfs_set_device_sector_size(buf, dev_item, sectorsize); btrfs_set_device_type(buf, dev_item, 0); write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); write_extent_buffer(buf, super.fsid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item, sizeof(*dev_item)); nritems++; item_size = btrfs_chunk_item_size(1); itemoff = itemoff - item_size; /* then we have chunk 0 */ btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), item_size); chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk); btrfs_set_chunk_length(buf, chunk, BTRFS_MKFS_SYSTEM_GROUP_SIZE); btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID); btrfs_set_chunk_stripe_len(buf, chunk, 64 * 1024); btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM); btrfs_set_chunk_io_align(buf, chunk, sectorsize); btrfs_set_chunk_io_width(buf, chunk, sectorsize); btrfs_set_chunk_sector_size(buf, chunk, sectorsize); btrfs_set_chunk_num_stripes(buf, chunk, 1); btrfs_set_stripe_devid_nr(buf, chunk, 0, 1); btrfs_set_stripe_offset_nr(buf, chunk, 0, 0); nritems++; write_extent_buffer(buf, super.dev_item.uuid, (unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe), BTRFS_UUID_SIZE); /* copy the key for the chunk to the system array */ ptr = super.sys_chunk_array; array_size = sizeof(disk_key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); /* copy the chunk to the system array */ read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size); array_size += item_size; ptr += item_size; btrfs_set_super_sys_array_size(&super, array_size); btrfs_set_header_bytenr(buf, blocks[3]); btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[3]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the device tree */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); nritems = 0; itemoff = __BTRFS_LEAF_DATA_SIZE(leafsize) - sizeof(struct btrfs_dev_extent); btrfs_set_disk_key_objectid(&disk_key, 1); btrfs_set_disk_key_offset(&disk_key, 0); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY); btrfs_set_item_key(buf, &disk_key, nritems); btrfs_set_item_offset(buf, btrfs_item_nr(nritems), itemoff); btrfs_set_item_size(buf, btrfs_item_nr(nritems), sizeof(struct btrfs_dev_extent)); dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(buf, dev_extent, BTRFS_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_objectid(buf, dev_extent, BTRFS_FIRST_CHUNK_TREE_OBJECTID); btrfs_set_dev_extent_chunk_offset(buf, dev_extent, 0); write_extent_buffer(buf, chunk_tree_uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent), BTRFS_UUID_SIZE); btrfs_set_dev_extent_length(buf, dev_extent, BTRFS_MKFS_SYSTEM_GROUP_SIZE); nritems++; btrfs_set_header_bytenr(buf, blocks[4]); btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID); btrfs_set_header_nritems(buf, nritems); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[4]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* create the FS root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[5]); btrfs_set_header_owner(buf, BTRFS_FS_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[5]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* finally create the csum root */ memset(buf->data+sizeof(struct btrfs_header), 0, leafsize-sizeof(struct btrfs_header)); btrfs_set_header_bytenr(buf, blocks[6]); btrfs_set_header_owner(buf, BTRFS_CSUM_TREE_OBJECTID); btrfs_set_header_nritems(buf, 0); csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, leafsize, blocks[6]); if (ret != leafsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } /* and write out the super block */ BUG_ON(sizeof(super) > sectorsize); memset(buf->data, 0, sectorsize); memcpy(buf->data, &super, sizeof(super)); buf->len = sectorsize; csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0); ret = pwrite(fd, buf->data, sectorsize, blocks[0]); if (ret != sectorsize) { ret = (ret < 0 ? -errno : -EIO); goto out; } ret = 0; out: free(buf); return ret; }
static int do_setxattr(struct btrfs_trans_handle *trans, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct btrfs_dir_item *di = NULL; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_path *path; size_t name_len = strlen(name); int ret = 0; if (name_len + size > BTRFS_MAX_XATTR_SIZE(root)) return -ENOSPC; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->skip_release_on_error = 1; if (!value) { di = btrfs_lookup_xattr(trans, root, path, btrfs_ino(inode), name, name_len, -1); if (!di && (flags & XATTR_REPLACE)) ret = -ENODATA; else if (IS_ERR(di)) ret = PTR_ERR(di); else if (di) ret = btrfs_delete_one_dir_name(trans, root, path, di); goto out; } /* * For a replace we can't just do the insert blindly. * Do a lookup first (read-only btrfs_search_slot), and return if xattr * doesn't exist. If it exists, fall down below to the insert/replace * path - we can't race with a concurrent xattr delete, because the VFS * locks the inode's i_mutex before calling setxattr or removexattr. */ if (flags & XATTR_REPLACE) { ASSERT(inode_is_locked(inode)); di = btrfs_lookup_xattr(NULL, root, path, btrfs_ino(inode), name, name_len, 0); if (!di) ret = -ENODATA; else if (IS_ERR(di)) ret = PTR_ERR(di); if (ret) goto out; btrfs_release_path(path); di = NULL; } ret = btrfs_insert_xattr_item(trans, root, path, btrfs_ino(inode), name, name_len, value, size); if (ret == -EOVERFLOW) { /* * We have an existing item in a leaf, split_leaf couldn't * expand it. That item might have or not a dir_item that * matches our target xattr, so lets check. */ ret = 0; btrfs_assert_tree_locked(path->nodes[0]); di = btrfs_match_dir_item_name(root, path, name, name_len); if (!di && !(flags & XATTR_REPLACE)) { ret = -ENOSPC; goto out; } } else if (ret == -EEXIST) { ret = 0; di = btrfs_match_dir_item_name(root, path, name, name_len); ASSERT(di); /* logic error */ } else if (ret) { goto out; } if (di && (flags & XATTR_CREATE)) { ret = -EEXIST; goto out; } if (di) { /* * We're doing a replace, and it must be atomic, that is, at * any point in time we have either the old or the new xattr * value in the tree. We don't want readers (getxattr and * listxattrs) to miss a value, this is specially important * for ACLs. */ const int slot = path->slots[0]; struct extent_buffer *leaf = path->nodes[0]; const u16 old_data_len = btrfs_dir_data_len(leaf, di); const u32 item_size = btrfs_item_size_nr(leaf, slot); const u32 data_size = sizeof(*di) + name_len + size; struct btrfs_item *item; unsigned long data_ptr; char *ptr; if (size > old_data_len) { if (btrfs_leaf_free_space(root, leaf) < (size - old_data_len)) { ret = -ENOSPC; goto out; } } if (old_data_len + name_len + sizeof(*di) == item_size) { /* No other xattrs packed in the same leaf item. */ if (size > old_data_len) btrfs_extend_item(root, path, size - old_data_len); else if (size < old_data_len) btrfs_truncate_item(root, path, data_size, 1); } else { /* There are other xattrs packed in the same item. */ ret = btrfs_delete_one_dir_name(trans, root, path, di); if (ret) goto out; btrfs_extend_item(root, path, data_size); } item = btrfs_item_nr(slot); ptr = btrfs_item_ptr(leaf, slot, char); ptr += btrfs_item_size(leaf, item) - data_size; di = (struct btrfs_dir_item *)ptr; btrfs_set_dir_data_len(leaf, di, size); data_ptr = ((unsigned long)(di + 1)) + name_len; write_extent_buffer(leaf, value, data_ptr, size); btrfs_mark_buffer_dirty(leaf); } else { /* * Insert, and we had space for the xattr, so path->slots[0] is * where our xattr dir_item is and btrfs_insert_xattr_item() * filled it. */ }
void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l) { int i; u32 type; u32 nr = btrfs_header_nritems(l); struct btrfs_item *item; struct btrfs_root_item *ri; struct btrfs_dir_item *di; struct btrfs_inode_item *ii; struct btrfs_block_group_item *bi; struct btrfs_file_extent_item *fi; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_dev_extent *dev_extent; struct btrfs_key key; struct btrfs_key found_key; printk(KERN_INFO "leaf %llu total ptrs %d free space %d\n", (unsigned long long)btrfs_header_bytenr(l), nr, btrfs_leaf_free_space(root, l)); for (i = 0 ; i < nr ; i++) { item = btrfs_item_nr(l, i); btrfs_item_key_to_cpu(l, &key, i); type = btrfs_key_type(&key); printk(KERN_INFO "\titem %d key (%llu %x %llu) itemoff %d " "itemsize %d\n", i, (unsigned long long)key.objectid, type, (unsigned long long)key.offset, btrfs_item_offset(l, item), btrfs_item_size(l, item)); switch (type) { case BTRFS_INODE_ITEM_KEY: ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); printk(KERN_INFO "\t\tinode generation %llu size %llu " "mode %o\n", (unsigned long long) btrfs_inode_generation(l, ii), (unsigned long long)btrfs_inode_size(l, ii), btrfs_inode_mode(l, ii)); break; case BTRFS_DIR_ITEM_KEY: di = btrfs_item_ptr(l, i, struct btrfs_dir_item); btrfs_dir_item_key_to_cpu(l, di, &found_key); printk(KERN_INFO "\t\tdir oid %llu type %u\n", (unsigned long long)found_key.objectid, btrfs_dir_type(l, di)); break; case BTRFS_ROOT_ITEM_KEY: ri = btrfs_item_ptr(l, i, struct btrfs_root_item); printk(KERN_INFO "\t\troot data bytenr %llu refs %u\n", (unsigned long long) btrfs_disk_root_bytenr(l, ri), btrfs_disk_root_refs(l, ri)); break; case BTRFS_EXTENT_ITEM_KEY: print_extent_item(l, i); break; case BTRFS_TREE_BLOCK_REF_KEY: printk(KERN_INFO "\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printk(KERN_INFO "\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = btrfs_item_ptr(l, i, struct btrfs_extent_data_ref); print_extent_data_ref(l, dref); break; case BTRFS_SHARED_DATA_REF_KEY: sref = btrfs_item_ptr(l, i, struct btrfs_shared_data_ref); printk(KERN_INFO "\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(l, sref)); break; case BTRFS_EXTENT_DATA_KEY: fi = btrfs_item_ptr(l, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(l, fi) == BTRFS_FILE_EXTENT_INLINE) { printk(KERN_INFO "\t\tinline extent data " "size %u\n", btrfs_file_extent_inline_len(l, fi)); break; } printk(KERN_INFO "\t\textent data disk bytenr %llu " "nr %llu\n", (unsigned long long) btrfs_file_extent_disk_bytenr(l, fi), (unsigned long long) btrfs_file_extent_disk_num_bytes(l, fi)); printk(KERN_INFO "\t\textent data offset %llu " "nr %llu ram %llu\n", (unsigned long long) btrfs_file_extent_offset(l, fi), (unsigned long long) btrfs_file_extent_num_bytes(l, fi), (unsigned long long) btrfs_file_extent_ram_bytes(l, fi)); break; case BTRFS_EXTENT_REF_V0_KEY: #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 print_extent_ref_v0(l, i); #else BUG(); #endif break; case BTRFS_BLOCK_GROUP_ITEM_KEY: bi = btrfs_item_ptr(l, i, struct btrfs_block_group_item); printk(KERN_INFO "\t\tblock group used %llu\n", (unsigned long long) btrfs_disk_block_group_used(l, bi)); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(l, btrfs_item_ptr(l, i, struct btrfs_chunk)); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(l, btrfs_item_ptr(l, i, struct btrfs_dev_item)); break; case BTRFS_DEV_EXTENT_KEY: dev_extent = btrfs_item_ptr(l, i, struct btrfs_dev_extent); printk(KERN_INFO "\t\tdev extent chunk_tree %llu\n" "\t\tchunk objectid %llu chunk offset %llu " "length %llu\n", (unsigned long long) btrfs_dev_extent_chunk_tree(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_objectid(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_offset(l, dev_extent), (unsigned long long) btrfs_dev_extent_length(l, dev_extent)); }; } }
static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret = 0; int slot; u32 cur; u32 len; u32 name_len; u64 parent = 0; int found = 0; struct extent_buffer *eb; struct btrfs_item *item; struct btrfs_inode_ref *iref; struct btrfs_key found_key; while (!ret) { path->leave_spinning = 1; ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, &found_key); if (ret < 0) break; if (ret) { ret = found ? 0 : -ENOENT; break; } ++found; parent = found_key.offset; slot = path->slots[0]; eb = path->nodes[0]; /* make sure we can use eb after releasing the path */ atomic_inc(&eb->refs); btrfs_tree_read_lock(eb); btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); btrfs_release_path(path); item = btrfs_item_nr(eb, slot); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { name_len = btrfs_inode_ref_name_len(eb, iref); /* path must be released before calling iterate()! */ pr_debug("following ref at offset %u for inode %llu in " "tree %llu\n", cur, (unsigned long long)found_key.objectid, (unsigned long long)fs_root->objectid); ret = iterate(parent, name_len, (unsigned long)(iref + 1), eb, ctx); if (ret) break; len = sizeof(*iref) + name_len; iref = (struct btrfs_inode_ref *)((char *)iref + len); } btrfs_tree_read_unlock_blocking(eb); free_extent_buffer(eb); } btrfs_release_path(path); return ret; }
/* * at mount time we want to find all the old transaction snapshots that were in * the process of being deleted if we crashed. This is any root item with an * offset lower than the latest root. They need to be queued for deletion to * finish what was happening when we crashed. */ int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid) { struct btrfs_root *dead_root; struct btrfs_item *item; struct btrfs_root_item *ri; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path *path; int ret; u32 nritems; struct extent_buffer *leaf; int slot; key.objectid = objectid; btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; again: ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto err; while (1) { leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; if (slot >= nritems) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; } item = btrfs_item_nr(leaf, slot); btrfs_item_key_to_cpu(leaf, &key, slot); if (btrfs_key_type(&key) != BTRFS_ROOT_ITEM_KEY) goto next; if (key.objectid < objectid) goto next; if (key.objectid > objectid) break; ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item); if (btrfs_disk_root_refs(leaf, ri) != 0) goto next; memcpy(&found_key, &key, sizeof(key)); key.offset++; btrfs_release_path(root, path); dead_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, &found_key); if (IS_ERR(dead_root)) { ret = PTR_ERR(dead_root); goto err; } ret = btrfs_add_dead_root(dead_root); if (ret) goto err; goto again; next: slot++; path->slots[0]++; } ret = 0; err: btrfs_free_path(path); return ret; }
ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size) { struct btrfs_key key, found_key; struct inode *inode = dentry->d_inode; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_path *path; struct btrfs_item *item; struct extent_buffer *leaf; struct btrfs_dir_item *di; int ret = 0, slot, advance; size_t total_size = 0, size_left = size; unsigned long name_ptr; size_t name_len; u32 nritems; /* * ok we want all objects associated with this id. * NOTE: we set key.offset = 0; because we want to start with the * first xattr that we find and walk forward */ key.objectid = inode->i_ino; btrfs_set_key_type(&key, BTRFS_XATTR_ITEM_KEY); key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->reada = 2; /* search for our xattrs */ ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto err; advance = 0; while (1) { leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; /* this is where we start walking through the path */ if (advance || slot >= nritems) { /* * if we've reached the last slot in this leaf we need * to go to the next leaf and reset everything */ if (slot >= nritems-1) { ret = btrfs_next_leaf(root, path); if (ret) break; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); slot = path->slots[0]; } else { /* * just walking through the slots on this leaf */ slot++; path->slots[0]++; } } advance = 1; item = btrfs_item_nr(leaf, slot); btrfs_item_key_to_cpu(leaf, &found_key, slot); /* check to make sure this item is what we want */ if (found_key.objectid != key.objectid) break; if (btrfs_key_type(&found_key) != BTRFS_XATTR_ITEM_KEY) break; di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); name_len = btrfs_dir_name_len(leaf, di); total_size += name_len + 1; /* we are just looking for how big our buffer needs to be */ if (!size) continue; if (!buffer || (name_len + 1) > size_left) { ret = -ERANGE; goto err; } name_ptr = (unsigned long)(di + 1); read_extent_buffer(leaf, buffer, name_ptr, name_len); buffer[name_len] = '\0'; size_left -= name_len + 1; buffer += name_len + 1; } ret = total_size; err: btrfs_free_path(path); return ret; }
int btrfs_check_file(struct btrfs_root *root, struct inode *inode) { return 0; #if 0 struct btrfs_path *path; struct btrfs_key found_key; struct extent_buffer *leaf; struct btrfs_file_extent_item *extent; u64 last_offset = 0; int nritems; int slot; int found_type; int ret; int err = 0; u64 extent_end = 0; path = btrfs_alloc_path(); ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino, last_offset, 0); while (1) { nritems = btrfs_header_nritems(path->nodes[0]); if (path->slots[0] >= nritems) { ret = btrfs_next_leaf(root, path); if (ret) goto out; nritems = btrfs_header_nritems(path->nodes[0]); } slot = path->slots[0]; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.objectid != inode->i_ino) break; if (found_key.type != BTRFS_EXTENT_DATA_KEY) goto out; if (found_key.offset < last_offset) { WARN_ON(1); btrfs_print_leaf(root, leaf); printk(KERN_ERR "inode %lu found offset %llu " "expected %llu\n", inode->i_ino, (unsigned long long)found_key.offset, (unsigned long long)last_offset); err = 1; goto out; } extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); found_type = btrfs_file_extent_type(leaf, extent); if (found_type == BTRFS_FILE_EXTENT_REG) { extent_end = found_key.offset + btrfs_file_extent_num_bytes(leaf, extent); } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { struct btrfs_item *item; item = btrfs_item_nr(leaf, slot); extent_end = found_key.offset + btrfs_file_extent_inline_len(leaf, extent); extent_end = (extent_end + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); } last_offset = extent_end; path->slots[0]++; } if (0 && last_offset < inode->i_size) { WARN_ON(1); btrfs_print_leaf(root, leaf); printk(KERN_ERR "inode %lu found offset %llu size %llu\n", inode->i_ino, (unsigned long long)last_offset, (unsigned long long)inode->i_size); err = 1; } out: btrfs_free_path(path); return err; #endif }
void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l) { int i; u32 type, nr; struct btrfs_item *item; struct btrfs_root_item *ri; struct btrfs_dir_item *di; struct btrfs_inode_item *ii; struct btrfs_block_group_item *bi; struct btrfs_file_extent_item *fi; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_dev_extent *dev_extent; struct btrfs_key key; struct btrfs_key found_key; if (!l) return; nr = btrfs_header_nritems(l); btrfs_info(root->fs_info, "leaf %llu total ptrs %d free space %d", btrfs_header_bytenr(l), nr, btrfs_leaf_free_space(root, l)); for (i = 0 ; i < nr ; i++) { item = btrfs_item_nr(i); btrfs_item_key_to_cpu(l, &key, i); type = key.type; printk(KERN_INFO "\titem %d key (%llu %u %llu) itemoff %d " "itemsize %d\n", i, key.objectid, type, key.offset, btrfs_item_offset(l, item), btrfs_item_size(l, item)); switch (type) { case BTRFS_INODE_ITEM_KEY: ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); printk(KERN_INFO "\t\tinode generation %llu size %llu " "mode %o\n", btrfs_inode_generation(l, ii), btrfs_inode_size(l, ii), btrfs_inode_mode(l, ii)); break; case BTRFS_DIR_ITEM_KEY: di = btrfs_item_ptr(l, i, struct btrfs_dir_item); btrfs_dir_item_key_to_cpu(l, di, &found_key); printk(KERN_INFO "\t\tdir oid %llu type %u\n", found_key.objectid, btrfs_dir_type(l, di)); break; case BTRFS_ROOT_ITEM_KEY: ri = btrfs_item_ptr(l, i, struct btrfs_root_item); printk(KERN_INFO "\t\troot data bytenr %llu refs %u\n", btrfs_disk_root_bytenr(l, ri), btrfs_disk_root_refs(l, ri)); break; case BTRFS_EXTENT_ITEM_KEY: case BTRFS_METADATA_ITEM_KEY: print_extent_item(l, i, type); break; case BTRFS_TREE_BLOCK_REF_KEY: printk(KERN_INFO "\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printk(KERN_INFO "\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = btrfs_item_ptr(l, i, struct btrfs_extent_data_ref); print_extent_data_ref(l, dref); break; case BTRFS_SHARED_DATA_REF_KEY: sref = btrfs_item_ptr(l, i, struct btrfs_shared_data_ref); printk(KERN_INFO "\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(l, sref)); break; case BTRFS_EXTENT_DATA_KEY: fi = btrfs_item_ptr(l, i, struct btrfs_file_extent_item); if (btrfs_file_extent_type(l, fi) == BTRFS_FILE_EXTENT_INLINE) { printk(KERN_INFO "\t\tinline extent data " "size %u\n", btrfs_file_extent_inline_len(l, i, fi)); break; } printk(KERN_INFO "\t\textent data disk bytenr %llu " "nr %llu\n", btrfs_file_extent_disk_bytenr(l, fi), btrfs_file_extent_disk_num_bytes(l, fi)); printk(KERN_INFO "\t\textent data offset %llu " "nr %llu ram %llu\n", btrfs_file_extent_offset(l, fi), btrfs_file_extent_num_bytes(l, fi), btrfs_file_extent_ram_bytes(l, fi)); break; case BTRFS_EXTENT_REF_V0_KEY: #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 print_extent_ref_v0(l, i); #else BUG(); #endif break; case BTRFS_BLOCK_GROUP_ITEM_KEY: bi = btrfs_item_ptr(l, i, struct btrfs_block_group_item); printk(KERN_INFO "\t\tblock group used %llu\n", btrfs_disk_block_group_used(l, bi)); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(l, btrfs_item_ptr(l, i, struct btrfs_chunk)); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(l, btrfs_item_ptr(l, i, struct btrfs_dev_item)); break; case BTRFS_DEV_EXTENT_KEY: dev_extent = btrfs_item_ptr(l, i, struct btrfs_dev_extent); printk(KERN_INFO "\t\tdev extent chunk_tree %llu\n" "\t\tchunk objectid %llu chunk offset %llu " "length %llu\n", btrfs_dev_extent_chunk_tree(l, dev_extent), btrfs_dev_extent_chunk_objectid(l, dev_extent), btrfs_dev_extent_chunk_offset(l, dev_extent), btrfs_dev_extent_length(l, dev_extent)); break; case BTRFS_PERSISTENT_ITEM_KEY: printk(KERN_INFO "\t\tpersistent item objectid %llu offset %llu\n", key.objectid, key.offset); switch (key.objectid) { case BTRFS_DEV_STATS_OBJECTID: printk(KERN_INFO "\t\tdevice stats\n"); break; default: printk(KERN_INFO "\t\tunknown persistent item\n"); } break; case BTRFS_TEMPORARY_ITEM_KEY: printk(KERN_INFO "\t\ttemporary item objectid %llu offset %llu\n", key.objectid, key.offset); switch (key.objectid) { case BTRFS_BALANCE_OBJECTID: printk(KERN_INFO "\t\tbalance status\n"); break; default: printk(KERN_INFO "\t\tunknown temporary item\n"); } break; case BTRFS_DEV_REPLACE_KEY: printk(KERN_INFO "\t\tdev replace\n"); break; case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: print_uuid_item(l, btrfs_item_ptr_offset(l, i), btrfs_item_size_nr(l, i)); break; }; } }
void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *eb) { struct btrfs_item *item; struct btrfs_disk_key disk_key; u32 i; u32 nr; nr = btrfs_header_nritems(eb); printf("leaf %llu items %d free space %d generation %llu owner %llu\n", (unsigned long long)btrfs_header_bytenr(eb), nr, btrfs_leaf_free_space(root, eb), (unsigned long long)btrfs_header_generation(eb), (unsigned long long)btrfs_header_owner(eb)); print_uuids(eb); fflush(stdout); for (i = 0; i < nr; i++) { u32 item_size; void *ptr; u64 objectid; u32 type; u64 offset; char flags_str[256]; char uuid_str[BTRFS_UUID_UNPARSED_SIZE]; u8 uuid[BTRFS_UUID_SIZE]; item = btrfs_item_nr(i); item_size = btrfs_item_size(eb, item); /* Untyped extraction of slot from btrfs_item_ptr */ ptr = btrfs_item_ptr(eb, i, void*); btrfs_item_key(eb, &disk_key, i); objectid = btrfs_disk_key_objectid(&disk_key); type = btrfs_disk_key_type(&disk_key); offset = btrfs_disk_key_offset(&disk_key); printf("\titem %d ", i); btrfs_print_key(&disk_key); printf(" itemoff %d itemsize %d\n", btrfs_item_offset(eb, item), btrfs_item_size(eb, item)); if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) print_free_space_header(eb, i); switch (type) { case BTRFS_INODE_ITEM_KEY: print_inode_item(eb, ptr); break; case BTRFS_INODE_REF_KEY: print_inode_ref_item(eb, item_size, ptr); break; case BTRFS_INODE_EXTREF_KEY: print_inode_extref_item(eb, item_size, ptr); break; case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_XATTR_ITEM_KEY: print_dir_item(eb, item_size, ptr); break; case BTRFS_DIR_LOG_INDEX_KEY: case BTRFS_DIR_LOG_ITEM_KEY: { struct btrfs_dir_log_item *dlog; dlog = btrfs_item_ptr(eb, i, struct btrfs_dir_log_item); printf("\t\tdir log end %Lu\n", (unsigned long long)btrfs_dir_log_end(eb, dlog)); break; } case BTRFS_ORPHAN_ITEM_KEY: printf("\t\torphan item\n"); break; case BTRFS_ROOT_ITEM_KEY: print_root(eb, i); break; case BTRFS_ROOT_REF_KEY: print_root_ref(eb, i, "ref"); break; case BTRFS_ROOT_BACKREF_KEY: print_root_ref(eb, i, "backref"); break; case BTRFS_EXTENT_ITEM_KEY: print_extent_item(eb, i, 0); break; case BTRFS_METADATA_ITEM_KEY: print_extent_item(eb, i, 1); break; case BTRFS_TREE_BLOCK_REF_KEY: printf("\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printf("\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: { struct btrfs_extent_data_ref *dref; dref = btrfs_item_ptr(eb, i, struct btrfs_extent_data_ref); printf("\t\textent data backref root %llu " "objectid %llu offset %llu count %u\n", (unsigned long long)btrfs_extent_data_ref_root(eb, dref), (unsigned long long)btrfs_extent_data_ref_objectid(eb, dref), (unsigned long long)btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_count(eb, dref)); break; } case BTRFS_SHARED_DATA_REF_KEY: { struct btrfs_shared_data_ref *sref; sref = btrfs_item_ptr(eb, i, struct btrfs_shared_data_ref); printf("\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(eb, sref)); break; } case BTRFS_EXTENT_REF_V0_KEY: #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 print_extent_ref_v0(eb, i); #else BUG(); #endif break; case BTRFS_CSUM_ITEM_KEY: printf("\t\tcsum item\n"); break; case BTRFS_EXTENT_CSUM_KEY: printf("\t\textent csum item\n"); break; case BTRFS_EXTENT_DATA_KEY: print_file_extent_item(eb, item, i, ptr); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: { struct btrfs_block_group_item bg_item; read_extent_buffer(eb, &bg_item, (unsigned long)ptr, sizeof(bg_item)); memset(flags_str, 0, sizeof(flags_str)); bg_flags_to_str(btrfs_block_group_flags(&bg_item), flags_str); printf("\t\tblock group used %llu chunk_objectid %llu flags %s\n", (unsigned long long)btrfs_block_group_used(&bg_item), (unsigned long long)btrfs_block_group_chunk_objectid(&bg_item), flags_str); break; } case BTRFS_FREE_SPACE_INFO_KEY: { struct btrfs_free_space_info *free_info; free_info = btrfs_item_ptr(eb, i, struct btrfs_free_space_info); printf("\t\tfree space info extent count %u flags %u\n", (unsigned)btrfs_free_space_extent_count(eb, free_info), (unsigned)btrfs_free_space_flags(eb, free_info)); break; } case BTRFS_FREE_SPACE_EXTENT_KEY: printf("\t\tfree space extent\n"); break; case BTRFS_FREE_SPACE_BITMAP_KEY: printf("\t\tfree space bitmap\n"); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(eb, ptr); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(eb, ptr); break; case BTRFS_DEV_EXTENT_KEY: { struct btrfs_dev_extent *dev_extent; dev_extent = btrfs_item_ptr(eb, i, struct btrfs_dev_extent); read_extent_buffer(eb, uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent), BTRFS_UUID_SIZE); uuid_unparse(uuid, uuid_str); printf("\t\tdev extent chunk_tree %llu\n" "\t\tchunk_objectid %llu chunk_offset %llu " "length %llu\n" "\t\tchunk_tree_uuid %s\n", (unsigned long long) btrfs_dev_extent_chunk_tree(eb, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_objectid(eb, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_offset(eb, dev_extent), (unsigned long long) btrfs_dev_extent_length(eb, dev_extent), uuid_str); break; } case BTRFS_QGROUP_STATUS_KEY: { struct btrfs_qgroup_status_item *qg_status; qg_status = btrfs_item_ptr(eb, i, struct btrfs_qgroup_status_item); memset(flags_str, 0, sizeof(flags_str)); qgroup_flags_to_str(btrfs_qgroup_status_flags(eb, qg_status), flags_str); printf("\t\tversion %llu generation %llu flags %s " "scan %lld\n", (unsigned long long) btrfs_qgroup_status_version(eb, qg_status), (unsigned long long) btrfs_qgroup_status_generation(eb, qg_status), flags_str, (unsigned long long) btrfs_qgroup_status_rescan(eb, qg_status)); break; } case BTRFS_QGROUP_RELATION_KEY: break; case BTRFS_QGROUP_INFO_KEY: { struct btrfs_qgroup_info_item *qg_info; qg_info = btrfs_item_ptr(eb, i, struct btrfs_qgroup_info_item); printf("\t\tgeneration %llu\n" "\t\treferenced %llu referenced_compressed %llu\n" "\t\texclusive %llu exclusive_compressed %llu\n", (unsigned long long) btrfs_qgroup_info_generation(eb, qg_info), (unsigned long long) btrfs_qgroup_info_referenced(eb, qg_info), (unsigned long long) btrfs_qgroup_info_referenced_compressed(eb, qg_info), (unsigned long long) btrfs_qgroup_info_exclusive(eb, qg_info), (unsigned long long) btrfs_qgroup_info_exclusive_compressed(eb, qg_info)); break; } case BTRFS_QGROUP_LIMIT_KEY: { struct btrfs_qgroup_limit_item *qg_limit; qg_limit = btrfs_item_ptr(eb, i, struct btrfs_qgroup_limit_item); printf("\t\tflags %llx\n" "\t\tmax_referenced %lld max_exclusive %lld\n" "\t\trsv_referenced %lld rsv_exclusive %lld\n", (unsigned long long) btrfs_qgroup_limit_flags(eb, qg_limit), (long long) btrfs_qgroup_limit_max_referenced(eb, qg_limit), (long long) btrfs_qgroup_limit_max_exclusive(eb, qg_limit), (long long) btrfs_qgroup_limit_rsv_referenced(eb, qg_limit), (long long) btrfs_qgroup_limit_rsv_exclusive(eb, qg_limit)); break; } case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: print_uuid_item(eb, btrfs_item_ptr_offset(eb, i), btrfs_item_size_nr(eb, i)); break; case BTRFS_STRING_ITEM_KEY: { const char *str = eb->data + btrfs_item_ptr_offset(eb, i); printf("\t\titem data %.*s\n", item_size, str); break; } case BTRFS_PERSISTENT_ITEM_KEY: printf("\t\tpersistent item objectid "); print_objectid(stdout, objectid, BTRFS_PERSISTENT_ITEM_KEY); printf(" offset %llu\n", (unsigned long long)offset); switch (objectid) { case BTRFS_DEV_STATS_OBJECTID: print_dev_stats(eb, ptr, item_size); break; default: printf("\t\tunknown persistent item objectid %llu\n", objectid); } break; case BTRFS_TEMPORARY_ITEM_KEY: printf("\t\ttemporary item objectid "); print_objectid(stdout, objectid, BTRFS_TEMPORARY_ITEM_KEY); printf(" offset %llu\n", (unsigned long long)offset); switch (objectid) { case BTRFS_BALANCE_OBJECTID: print_balance_item(eb, ptr); break; default: printf("\t\tunknown temporary item objectid %llu\n", objectid); } break; }; fflush(stdout); } }
static int test_btrfs_split_item(u32 sectorsize, u32 nodesize) { struct btrfs_fs_info *fs_info; struct btrfs_path *path = NULL; struct btrfs_root *root = NULL; struct extent_buffer *eb; struct btrfs_item *item; char *value = "mary had a little lamb"; char *split1 = "mary had a little"; char *split2 = " lamb"; char *split3 = "mary"; char *split4 = " had a little"; char buf[32]; struct btrfs_key key; u32 value_len = strlen(value); int ret = 0; test_msg("Running btrfs_split_item tests\n"); fs_info = btrfs_alloc_dummy_fs_info(); if (!fs_info) { test_msg("Could not allocate fs_info\n"); return -ENOMEM; } root = btrfs_alloc_dummy_root(fs_info, sectorsize, nodesize); if (IS_ERR(root)) { test_msg("Could not allocate root\n"); ret = PTR_ERR(root); goto out; } path = btrfs_alloc_path(); if (!path) { test_msg("Could not allocate path\n"); ret = -ENOMEM; goto out; } path->nodes[0] = eb = alloc_dummy_extent_buffer(NULL, nodesize, nodesize); if (!eb) { test_msg("Could not allocate dummy buffer\n"); ret = -ENOMEM; goto out; } path->slots[0] = 0; key.objectid = 0; key.type = BTRFS_EXTENT_CSUM_KEY; key.offset = 0; setup_items_for_insert(root, path, &key, &value_len, value_len, value_len + sizeof(struct btrfs_item), 1); item = btrfs_item_nr(0); write_extent_buffer(eb, value, btrfs_item_ptr_offset(eb, 0), value_len); key.offset = 3; /* * Passing NULL trans here should be safe because we have plenty of * space in this leaf to split the item without having to split the * leaf. */ ret = btrfs_split_item(NULL, root, path, &key, 17); if (ret) { test_msg("Split item failed %d\n", ret); goto out; } /* * Read the first slot, it should have the original key and contain only * 'mary had a little' */ btrfs_item_key_to_cpu(eb, &key, 0); if (key.objectid != 0 || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset != 0) { test_msg("Invalid key at slot 0\n"); ret = -EINVAL; goto out; } item = btrfs_item_nr(0); if (btrfs_item_size(eb, item) != strlen(split1)) { test_msg("Invalid len in the first split\n"); ret = -EINVAL; goto out; } read_extent_buffer(eb, buf, btrfs_item_ptr_offset(eb, 0), strlen(split1)); if (memcmp(buf, split1, strlen(split1))) { test_msg("Data in the buffer doesn't match what it should " "in the first split have='%.*s' want '%s'\n", (int)strlen(split1), buf, split1); ret = -EINVAL; goto out; } btrfs_item_key_to_cpu(eb, &key, 1); if (key.objectid != 0 || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset != 3) { test_msg("Invalid key at slot 1\n"); ret = -EINVAL; goto out; } item = btrfs_item_nr(1); if (btrfs_item_size(eb, item) != strlen(split2)) { test_msg("Invalid len in the second split\n"); ret = -EINVAL; goto out; } read_extent_buffer(eb, buf, btrfs_item_ptr_offset(eb, 1), strlen(split2)); if (memcmp(buf, split2, strlen(split2))) { test_msg("Data in the buffer doesn't match what it should " "in the second split\n"); ret = -EINVAL; goto out; } key.offset = 1; /* Do it again so we test memmoving the other items in the leaf */ ret = btrfs_split_item(NULL, root, path, &key, 4); if (ret) { test_msg("Second split item failed %d\n", ret); goto out; } btrfs_item_key_to_cpu(eb, &key, 0); if (key.objectid != 0 || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset != 0) { test_msg("Invalid key at slot 0\n"); ret = -EINVAL; goto out; } item = btrfs_item_nr(0); if (btrfs_item_size(eb, item) != strlen(split3)) { test_msg("Invalid len in the first split\n"); ret = -EINVAL; goto out; } read_extent_buffer(eb, buf, btrfs_item_ptr_offset(eb, 0), strlen(split3)); if (memcmp(buf, split3, strlen(split3))) { test_msg("Data in the buffer doesn't match what it should " "in the third split"); ret = -EINVAL; goto out; } btrfs_item_key_to_cpu(eb, &key, 1); if (key.objectid != 0 || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset != 1) { test_msg("Invalid key at slot 1\n"); ret = -EINVAL; goto out; } item = btrfs_item_nr(1); if (btrfs_item_size(eb, item) != strlen(split4)) { test_msg("Invalid len in the second split\n"); ret = -EINVAL; goto out; } read_extent_buffer(eb, buf, btrfs_item_ptr_offset(eb, 1), strlen(split4)); if (memcmp(buf, split4, strlen(split4))) { test_msg("Data in the buffer doesn't match what it should " "in the fourth split\n"); ret = -EINVAL; goto out; } btrfs_item_key_to_cpu(eb, &key, 2); if (key.objectid != 0 || key.type != BTRFS_EXTENT_CSUM_KEY || key.offset != 3) { test_msg("Invalid key at slot 2\n"); ret = -EINVAL; goto out; } item = btrfs_item_nr(2); if (btrfs_item_size(eb, item) != strlen(split2)) { test_msg("Invalid len in the second split\n"); ret = -EINVAL; goto out; } read_extent_buffer(eb, buf, btrfs_item_ptr_offset(eb, 2), strlen(split2)); if (memcmp(buf, split2, strlen(split2))) { test_msg("Data in the buffer doesn't match what it should " "in the last chunk\n"); ret = -EINVAL; goto out; } out: btrfs_free_path(path); btrfs_free_dummy_root(root); btrfs_free_dummy_fs_info(fs_info); return ret; }
void btrfs_print_leaf(struct btrfs_root *root, struct extent_buffer *l) { int i; char *str; struct btrfs_item *item; struct btrfs_root_item *ri; struct btrfs_dir_item *di; struct btrfs_inode_item *ii; struct btrfs_file_extent_item *fi; struct btrfs_block_group_item *bi; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_inode_ref *iref; struct btrfs_dev_extent *dev_extent; struct btrfs_disk_key disk_key; struct btrfs_root_item root_item; struct btrfs_block_group_item bg_item; struct btrfs_dir_log_item *dlog; u32 nr = btrfs_header_nritems(l); u32 type; printf("leaf %llu items %d free space %d generation %llu owner %llu\n", (unsigned long long)btrfs_header_bytenr(l), nr, btrfs_leaf_free_space(root, l), (unsigned long long)btrfs_header_generation(l), (unsigned long long)btrfs_header_owner(l)); print_uuids(l); fflush(stdout); for (i = 0 ; i < nr ; i++) { item = btrfs_item_nr(l, i); btrfs_item_key(l, &disk_key, i); type = btrfs_disk_key_type(&disk_key); printf("\titem %d ", i); btrfs_print_key(&disk_key); printf(" itemoff %d itemsize %d\n", btrfs_item_offset(l, item), btrfs_item_size(l, item)); switch (type) { case BTRFS_INODE_ITEM_KEY: ii = btrfs_item_ptr(l, i, struct btrfs_inode_item); printf("\t\tinode generation %llu size %llu block group %llu mode %o links %u\n", (unsigned long long)btrfs_inode_generation(l, ii), (unsigned long long)btrfs_inode_size(l, ii), (unsigned long long)btrfs_inode_block_group(l,ii), btrfs_inode_mode(l, ii), btrfs_inode_nlink(l, ii)); break; case BTRFS_INODE_REF_KEY: iref = btrfs_item_ptr(l, i, struct btrfs_inode_ref); print_inode_ref_item(l, item, iref); break; case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_XATTR_ITEM_KEY: di = btrfs_item_ptr(l, i, struct btrfs_dir_item); print_dir_item(l, item, di); break; case BTRFS_DIR_LOG_INDEX_KEY: case BTRFS_DIR_LOG_ITEM_KEY: dlog = btrfs_item_ptr(l, i, struct btrfs_dir_log_item); printf("\t\tdir log end %Lu\n", (unsigned long long)btrfs_dir_log_end(l, dlog)); break; case BTRFS_ORPHAN_ITEM_KEY: printf("\t\torphan item\n"); break; case BTRFS_ROOT_ITEM_KEY: ri = btrfs_item_ptr(l, i, struct btrfs_root_item); read_extent_buffer(l, &root_item, (unsigned long)ri, sizeof(root_item)); printf("\t\troot data bytenr %llu level %d dirid %llu refs %u gen %llu\n", (unsigned long long)btrfs_root_bytenr(&root_item), btrfs_root_level(&root_item), (unsigned long long)btrfs_root_dirid(&root_item), btrfs_root_refs(&root_item), (unsigned long long)btrfs_root_generation(&root_item)); if (btrfs_root_refs(&root_item) == 0) { struct btrfs_key drop_key; btrfs_disk_key_to_cpu(&drop_key, &root_item.drop_progress); printf("\t\tdrop "); btrfs_print_key(&root_item.drop_progress); printf(" level %d\n", root_item.drop_level); } break; case BTRFS_ROOT_REF_KEY: print_root_ref(l, i, "ref"); break; case BTRFS_ROOT_BACKREF_KEY: print_root_ref(l, i, "backref"); break; case BTRFS_EXTENT_ITEM_KEY: print_extent_item(l, i); break; case BTRFS_TREE_BLOCK_REF_KEY: printf("\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printf("\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = btrfs_item_ptr(l, i, struct btrfs_extent_data_ref); printf("\t\textent data backref root %llu " "objectid %llu offset %llu count %u\n", (unsigned long long)btrfs_extent_data_ref_root(l, dref), (unsigned long long)btrfs_extent_data_ref_objectid(l, dref), (unsigned long long)btrfs_extent_data_ref_offset(l, dref), btrfs_extent_data_ref_count(l, dref)); break; case BTRFS_SHARED_DATA_REF_KEY: sref = btrfs_item_ptr(l, i, struct btrfs_shared_data_ref); printf("\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(l, sref)); break; case BTRFS_EXTENT_REF_V0_KEY: #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 print_extent_ref_v0(l, i); #else BUG(); #endif break; case BTRFS_CSUM_ITEM_KEY: printf("\t\tcsum item\n"); break; case BTRFS_EXTENT_CSUM_KEY: printf("\t\textent csum item\n"); break; case BTRFS_EXTENT_DATA_KEY: fi = btrfs_item_ptr(l, i, struct btrfs_file_extent_item); print_file_extent_item(l, item, fi); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: bi = btrfs_item_ptr(l, i, struct btrfs_block_group_item); read_extent_buffer(l, &bg_item, (unsigned long)bi, sizeof(bg_item)); printf("\t\tblock group used %llu chunk_objectid %llu flags %llu\n", (unsigned long long)btrfs_block_group_used(&bg_item), (unsigned long long)btrfs_block_group_chunk_objectid(&bg_item), (unsigned long long)btrfs_block_group_flags(&bg_item)); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk(l, btrfs_item_ptr(l, i, struct btrfs_chunk)); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(l, btrfs_item_ptr(l, i, struct btrfs_dev_item)); break; case BTRFS_DEV_EXTENT_KEY: dev_extent = btrfs_item_ptr(l, i, struct btrfs_dev_extent); printf("\t\tdev extent chunk_tree %llu\n" "\t\tchunk objectid %llu chunk offset %llu " "length %llu\n", (unsigned long long) btrfs_dev_extent_chunk_tree(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_objectid(l, dev_extent), (unsigned long long) btrfs_dev_extent_chunk_offset(l, dev_extent), (unsigned long long) btrfs_dev_extent_length(l, dev_extent)); break; case BTRFS_STRING_ITEM_KEY: /* dirty, but it's simple */ str = l->data + btrfs_item_ptr_offset(l, i); printf("\t\titem data %.*s\n", btrfs_item_size(l, item), str); break; }; fflush(stdout); } }