int elf_x86_probe(const char *buf, off_t len)
{
	
	struct mem_ehdr ehdr;
	int result;
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		if (probe_debug) {
			fprintf(stderr, "Not an ELF executable\n");
		}
		goto out;
	}

	/* Verify the architecuture specific bits */
	if ((ehdr.e_machine != EM_386) && (ehdr.e_machine != EM_486)) {
		/* for a different architecture */
		if (probe_debug) {
			fprintf(stderr, "Not i386 ELF executable\n");
		}
		result = -1;
		goto out;
	}
	result = 0;
 out:
	free_elf_info(&ehdr);
	return result;
}
Example #2
0
static int elf64_probe(const char *buf, unsigned long len)
{
	struct elfhdr ehdr;
	struct elf_info elf_info;
	int ret;

	ret = build_elf_exec_info(buf, len, &ehdr, &elf_info);
	if (ret)
		return ret;

	elf_free_info(&elf_info);

	return elf_check_arch(&ehdr) ? 0 : -ENOEXEC;
}
Example #3
0
void elf_exec_build_load(struct kexec_info *info, struct mem_ehdr *ehdr, 
	const char *buf, off_t len, uint32_t flags)
{
	int result;
	/* Parse the Elf file */
	result = build_elf_exec_info(buf, len, ehdr, flags);
	if (result < 0) {
		die("ELF exec parse failed\n");
	}

	/* Load the Elf data */
	result = elf_exec_load(ehdr, info);
	if (result < 0) {
		die("ELF exec load failed\n");
	}
}
Example #4
0
int elf_ppc64_probe(const char *buf, off_t len)
{
	struct mem_ehdr ehdr;
	int result;
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		goto out;
	}

	/* Verify the architecuture specific bits */
	if ((ehdr.e_machine != EM_PPC64) && (ehdr.e_machine != EM_PPC)) {
		/* for a different architecture */
		result = -1;
		goto out;
	}
	result = 0;
 out:
	free_elf_info(&ehdr);
	return result;
}
Example #5
0
/*
 * elf_ia64_probe - sanity check the elf image
 *
 * Make sure that the file image has a reasonable chance of working.
 */
int elf_ia64_probe(const char *buf, off_t len)
{
	struct mem_ehdr ehdr;
	int result;
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		if (probe_debug) {
			fprintf(stderr, "Not an ELF executable\n");
		}
		return -1;
	}
	/* Verify the architecuture specific bits */
	if (ehdr.e_machine != EM_IA_64) {
		/* for a different architecture */
		if (probe_debug) {
			fprintf(stderr, "Not for this architecture.\n");
		}
		return -1;
	}
	return 0;
}
int elf_mips_probe(const char *buf, off_t len)
{
	struct mem_ehdr ehdr;
	int result;
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		goto out;
	}

	/* Verify the architecuture specific bits */
	if (ehdr.e_machine != EM_MIPS) {
		/* for a different architecture */
		if (probe_debug) {
			fprintf(stderr, "Not for this architecture.\n");
		}
		result = -1;
		goto out;
	}
	result = 0;
 out:
	free_elf_info(&ehdr);
	return result;
}
Example #7
0
int elf_ia64_load(int argc, char **argv, const char *buf, off_t len,
	struct kexec_info *info)
{
	struct mem_ehdr ehdr;
	const char *command_line, *ramdisk=0, *vmm=0, *kernel_buf;
	char *ramdisk_buf = NULL;
	off_t ramdisk_size = 0, kernel_size;
	unsigned long command_line_len;
	unsigned long entry, max_addr, gp_value;
	unsigned long command_line_base, ramdisk_base, image_base;
	unsigned long efi_memmap_base, efi_memmap_size;
	unsigned long boot_param_base;
	unsigned long noio=0;
	int result;
	int opt;
	char *efi_memmap_buf, *boot_param;
	static const struct option options[] = {
		KEXEC_ARCH_OPTIONS
		{"command-line", 1, 0, OPT_APPEND},
		{"append",       1, 0, OPT_APPEND},
		{"initrd",       1, 0, OPT_RAMDISK},
		{"noio",         0, 0, OPT_NOIO},
		{"vmm",          1, 0, OPT_VMM},
		{0, 0, 0, 0},
	};

	static const char short_options[] = KEXEC_ARCH_OPT_STR "";

	command_line = 0;
	while ((opt = getopt_long(argc, argv, short_options,
				  options, 0)) != -1) {
		switch (opt) {
		default:
			/* Ignore core options */
			if (opt < OPT_ARCH_MAX) {
				break;
			}
		case '?':
			usage();
			return -1;
		case OPT_APPEND:
			command_line = optarg;
			break;
		case OPT_RAMDISK:
			ramdisk = optarg;
			break;
		case OPT_NOIO:	/* disable PIO and MMIO in purgatory code*/
			noio = 1;
			break;
		case OPT_VMM:
			vmm = optarg;
			break;
		}
	}
	command_line_len = 0;
	if (command_line) {
		command_line_len = strlen(command_line) + 16;
	}

	if (vmm)
		kernel_buf = slurp_decompress_file(vmm, &kernel_size);
	else {
		kernel_buf = buf;
		kernel_size = len;
	}

	/* Parse the Elf file */
	result = build_elf_exec_info(kernel_buf, kernel_size, &ehdr, 0);
	if (result < 0) {
		fprintf(stderr, "ELF parse failed\n");
		free_elf_info(&ehdr);
		return result;
	}

	if (info->kexec_flags & KEXEC_ON_CRASH ) {
		if ((mem_min == 0x00) && (mem_max == ULONG_MAX)) {
			fprintf(stderr, "Failed to find crash kernel region "
				"in %s\n", proc_iomem());
			free_elf_info(&ehdr);
			return -1;
		}
		move_loaded_segments(info, &ehdr, mem_min);
	} else if (update_loaded_segments(info, &ehdr) < 0) {
		fprintf(stderr, "Failed to place kernel\n");
		return -1;
	}

	entry = ehdr.e_entry;
	max_addr = elf_max_addr(&ehdr);

	/* Load the Elf data */
	result = elf_exec_load(&ehdr, info);
	if (result < 0) {
		fprintf(stderr, "ELF load failed\n");
		free_elf_info(&ehdr);
		return result;
	}


	/* Load the setup code */
	elf_rel_build_load(info, &info->rhdr, purgatory, purgatory_size,
			0x0, ULONG_MAX, -1, 0);


	if (load_crashdump_segments(info, &ehdr, max_addr, 0,
				&command_line) < 0)
		return -1;

	// reverve 4k for ia64_boot_param
	boot_param = xmalloc(4096);
        boot_param_base = add_buffer(info, boot_param, 4096, 4096, 4096, 0,
                        max_addr, -1);

	elf_rel_set_symbol(&info->rhdr, "__noio",
			   &noio, sizeof(long));

        elf_rel_set_symbol(&info->rhdr, "__boot_param_base",
                        &boot_param_base, sizeof(long));

	// reserve efi_memmap of actual size allocated in production kernel
	efi_memmap_size = saved_efi_memmap_size;
	efi_memmap_buf = xmalloc(efi_memmap_size);
	efi_memmap_base = add_buffer(info, efi_memmap_buf,
			efi_memmap_size, efi_memmap_size, 4096, 0,
			max_addr, -1);

	elf_rel_set_symbol(&info->rhdr, "__efi_memmap_base",
			&efi_memmap_base, sizeof(long));

	elf_rel_set_symbol(&info->rhdr, "__efi_memmap_size",
			&efi_memmap_size, sizeof(long));
	if (command_line) {
		command_line_len = strlen(command_line) + 1;
	}
	if (command_line_len || (info->kexec_flags & KEXEC_ON_CRASH )) {
		char *cmdline = xmalloc(command_line_len);
		strcpy(cmdline, command_line);

		if (info->kexec_flags & KEXEC_ON_CRASH) {
			char buf[128];
			sprintf(buf," max_addr=%lluM min_addr=%lluM",
					mem_max>>20, mem_min>>20);
			command_line_len = strlen(cmdline) + strlen(buf) + 1;
			cmdline = xrealloc(cmdline, command_line_len);
			strcat(cmdline, buf);
		}
int elf_mips_load(int argc, char **argv, const char *buf, off_t len,
	struct kexec_info *info)
{
	struct mem_ehdr ehdr;
	const char *command_line;
	int command_line_len;
	char *crash_cmdline;
	int opt;
	int result;
	unsigned long cmdline_addr;
	size_t i;
	unsigned long bss_start = 0, bss_size = 0;
	static const struct option options[] = {
		KEXEC_ARCH_OPTIONS
		{"command-line", 1, 0, OPT_APPEND},
		{"append",       1, 0, OPT_APPEND},
		{0, 0, 0, 0},
	};

	static const char short_options[] = KEXEC_ARCH_OPT_STR "d";

	command_line = 0;
	while ((opt = getopt_long(argc, argv, short_options,
				  options, 0)) != -1) {
		switch (opt) {
		default:
			/* Ignore core options */
			if (opt < OPT_ARCH_MAX) {
				break;
			}
		case '?':
			usage();
			return -1;
		case OPT_APPEND:
			command_line = optarg;
			break;
		}
	}

	command_line_len = 0;

	/* Need to append some command line parameters internally in case of
	 * taking crash dumps.
	 */
	if (info->kexec_flags & KEXEC_ON_CRASH) {
		crash_cmdline = xmalloc(COMMAND_LINE_SIZE);
		memset((void *)crash_cmdline, 0, COMMAND_LINE_SIZE);
	} else
		crash_cmdline = NULL;

	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0)
		die("ELF exec parse failed\n");

	/* Read in the PT_LOAD segments and remove CKSEG0 mask from address*/
	for (i = 0; i < ehdr.e_phnum; i++) {
		struct mem_phdr *phdr;
		phdr = &ehdr.e_phdr[i];
		if (phdr->p_type == PT_LOAD)
			phdr->p_paddr = virt_to_phys(phdr->p_paddr);
	}

	for (i = 0; i < ehdr.e_shnum; i++) {
		struct mem_shdr *shdr;
		unsigned char *strtab;
		strtab = (unsigned char *)ehdr.e_shdr[ehdr.e_shstrndx].sh_data;

		shdr = &ehdr.e_shdr[i];
		if (shdr->sh_size &&
				strcmp((char *)&strtab[shdr->sh_name],
					".bss") == 0) {
			bss_start = virt_to_phys(shdr->sh_addr);
			bss_size = shdr->sh_size;
			break;
		}

	}

	/* Load the Elf data */
	result = elf_exec_load(&ehdr, info);
	if (result < 0)
		die("ELF exec load failed\n");

	info->entry = (void *)virt_to_phys(ehdr.e_entry);

	/* Put cmdline right after bss for crash*/
	if (info->kexec_flags & KEXEC_ON_CRASH)
		cmdline_addr = bss_start + bss_size;
	else
		cmdline_addr = 0;

	if (!bss_size)
		die("No .bss segment present\n");

	if (command_line)
		command_line_len = strlen(command_line) + 1;

	if (info->kexec_flags & KEXEC_ON_CRASH) {
		result = load_crashdump_segments(info, crash_cmdline,
				0, 0);
		if (result < 0) {
			free(crash_cmdline);
			return -1;
		}
	}

	if (command_line)
		strncat(cmdline_buf, command_line, command_line_len);
	if (crash_cmdline)
		strncat(cmdline_buf, crash_cmdline,
				sizeof(crash_cmdline) -
				strlen(crash_cmdline) - 1);
	add_buffer(info, cmdline_buf, sizeof(cmdline_buf),
			sizeof(cmdline_buf), sizeof(void *),
			cmdline_addr, 0x0fffffff, 1);

	return 0;
}
Example #9
0
int elf_ppc64_load(int argc, char **argv, const char *buf, off_t len,
			struct kexec_info *info)
{
	struct mem_ehdr ehdr;
	char *cmdline, *modified_cmdline = NULL;
	const char *devicetreeblob;
	int cmdline_len, modified_cmdline_len;
	uint64_t max_addr, hole_addr;
	unsigned char *seg_buf = NULL;
	off_t seg_size = 0;
	struct mem_phdr *phdr;
	size_t size;
	uint64_t *rsvmap_ptr;
	struct bootblock *bb_ptr;
	unsigned int nr_segments, i;
	int result, opt;
	uint64_t my_kernel, my_dt_offset;
	unsigned int my_panic_kernel;
	uint64_t my_stack, my_backup_start;
	uint64_t toc_addr;
	unsigned int slave_code[256/sizeof (unsigned int)], master_entry;

#define OPT_APPEND     (OPT_ARCH_MAX+0)
#define OPT_RAMDISK     (OPT_ARCH_MAX+1)
#define OPT_DEVICETREEBLOB     (OPT_ARCH_MAX+2)
#define OPT_ARGS_IGNORE		(OPT_ARCH_MAX+3)

	static const struct option options[] = {
		KEXEC_ARCH_OPTIONS
		{ "command-line",       1, NULL, OPT_APPEND },
		{ "append",             1, NULL, OPT_APPEND },
		{ "ramdisk",            1, NULL, OPT_RAMDISK },
		{ "initrd",             1, NULL, OPT_RAMDISK },
		{ "devicetreeblob",     1, NULL, OPT_DEVICETREEBLOB },
		{ "args-linux",		0, NULL, OPT_ARGS_IGNORE },
		{ 0,                    0, NULL, 0 },
	};

	static const char short_options[] = KEXEC_OPT_STR "";

	/* Parse command line arguments */
	initrd_base = 0;
	initrd_size = 0;
	cmdline = 0;
	ramdisk = 0;
	devicetreeblob = 0;
	max_addr = 0xFFFFFFFFFFFFFFFFUL;
	hole_addr = 0;

	while ((opt = getopt_long(argc, argv, short_options,
					options, 0)) != -1) {
		switch (opt) {
		default:
			/* Ignore core options */
			if (opt < OPT_ARCH_MAX)
				break;
		case '?':
			usage();
			return -1;
		case OPT_APPEND:
			cmdline = optarg;
			break;
		case OPT_RAMDISK:
			ramdisk = optarg;
			break;
		case OPT_DEVICETREEBLOB:
			devicetreeblob = optarg;
			break;
		case OPT_ARGS_IGNORE:
			break;
		}
	}

	cmdline_len = 0;
	if (cmdline)
		cmdline_len = strlen(cmdline) + 1;
	else
		fprintf(stdout, "Warning: append= option is not passed. Using the first kernel root partition\n");

	if (ramdisk && reuse_initrd)
		die("Can't specify --ramdisk or --initrd with --reuseinitrd\n");

	setup_memory_ranges(info->kexec_flags);

	/* Need to append some command line parameters internally in case of
	 * taking crash dumps.
	 */
	if (info->kexec_flags & KEXEC_ON_CRASH) {
		modified_cmdline = xmalloc(COMMAND_LINE_SIZE);
		memset((void *)modified_cmdline, 0, COMMAND_LINE_SIZE);
		if (cmdline) {
			strncpy(modified_cmdline, cmdline, COMMAND_LINE_SIZE);
			modified_cmdline[COMMAND_LINE_SIZE - 1] = '\0';
		}
		modified_cmdline_len = strlen(modified_cmdline);
	}

	/* Parse the Elf file */
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		free_elf_info(&ehdr);
		return result;
	}

	/* Load the Elf data. Physical load addresses in elf64 header do not
	 * show up correctly. Use user supplied address for now to patch the
	 * elf header
	 */

	phdr = &ehdr.e_phdr[0];
	size = phdr->p_filesz;
	if (size > phdr->p_memsz)
		size = phdr->p_memsz;

	hole_addr = (uint64_t)locate_hole(info, size, 0, 0,
			max_addr, 1);
	ehdr.e_phdr[0].p_paddr = hole_addr;
	result = elf_exec_load(&ehdr, info);
	if (result < 0) {
		free_elf_info(&ehdr);
		return result;
	}

	/* If panic kernel is being loaded, additional segments need
	 * to be created.
	 */
	if (info->kexec_flags & KEXEC_ON_CRASH) {
		result = load_crashdump_segments(info, modified_cmdline,
						max_addr, 0);
		if (result < 0)
			return -1;
		/* Use new command line. */
		cmdline = modified_cmdline;
		cmdline_len = strlen(modified_cmdline) + 1;
	}

	/* Add v2wrap to the current image */
	seg_buf = NULL;
	seg_size = 0;

	seg_buf = (unsigned char *) malloc(purgatory_size);
	if (seg_buf == NULL) {
		free_elf_info(&ehdr);
		return -1;
	}
	memcpy(seg_buf, purgatory, purgatory_size);
	seg_size = purgatory_size;
	elf_rel_build_load(info, &info->rhdr, (const char *)purgatory,
				purgatory_size, 0, max_addr, 1, 0);

	/* Add a ram-disk to the current image
	 * Note: Add the ramdisk after elf_rel_build_load
	 */
	if (ramdisk) {
		if (devicetreeblob) {
			fprintf(stderr,
			"Can't use ramdisk with device tree blob input\n");
			return -1;
		}
		seg_buf = (unsigned char *)slurp_file(ramdisk, &seg_size);
		add_buffer(info, seg_buf, seg_size, seg_size, 0, 0, max_addr, 1);
		hole_addr = (uint64_t)
			info->segment[info->nr_segments-1].mem;
		initrd_base = hole_addr;
		initrd_size = (uint64_t)
			info->segment[info->nr_segments-1].memsz;
	} /* ramdisk */

	if (devicetreeblob) {
		unsigned char *blob_buf = NULL;
		off_t blob_size = 0;

		/* Grab device tree from buffer */
		blob_buf =
			(unsigned char *)slurp_file(devicetreeblob, &blob_size);
		add_buffer(info, blob_buf, blob_size, blob_size, 0, 0,
				max_addr, -1);

	} else {
		/* create from fs2dt */
		seg_buf = NULL;
		seg_size = 0;
		create_flatten_tree(info, (unsigned char **)&seg_buf,
				(unsigned long *)&seg_size,cmdline);
		add_buffer(info, seg_buf, seg_size, seg_size,
				0, 0, max_addr, -1);
	}

	/* patch reserve map address for flattened device-tree
	 * find last entry (both 0) in the reserve mem list.  Assume DT
	 * entry is before this one
	 */
	bb_ptr = (struct bootblock *)(
		(unsigned char *)info->segment[(info->nr_segments)-1].buf);
	rsvmap_ptr = (uint64_t *)(
		(unsigned char *)info->segment[(info->nr_segments)-1].buf +
		bb_ptr->off_mem_rsvmap);
	while (*rsvmap_ptr || *(rsvmap_ptr+1))
		rsvmap_ptr += 2;
	rsvmap_ptr -= 2;
	*rsvmap_ptr = (uint64_t)(
		info->segment[(info->nr_segments)-1].mem);
	rsvmap_ptr++;
	*rsvmap_ptr = (uint64_t)bb_ptr->totalsize;

	nr_segments = info->nr_segments;

	/* Set kernel */
	my_kernel = (uint64_t)info->segment[0].mem;
	elf_rel_set_symbol(&info->rhdr, "kernel", &my_kernel, sizeof(my_kernel));

	/* Set dt_offset */
	my_dt_offset = (uint64_t)info->segment[nr_segments-1].mem;
	elf_rel_set_symbol(&info->rhdr, "dt_offset", &my_dt_offset,
				sizeof(my_dt_offset));

	/* get slave code from new kernel, put in purgatory */
	elf_rel_get_symbol(&info->rhdr, "purgatory_start", slave_code,
			sizeof(slave_code));
	master_entry = slave_code[0];
	memcpy(slave_code, info->segment[0].buf, sizeof(slave_code));
	slave_code[0] = master_entry;
	elf_rel_set_symbol(&info->rhdr, "purgatory_start", slave_code,
				sizeof(slave_code));

	if (info->kexec_flags & KEXEC_ON_CRASH) {
		my_panic_kernel = 1;
		/* Set panic flag */
		elf_rel_set_symbol(&info->rhdr, "panic_kernel",
				&my_panic_kernel, sizeof(my_panic_kernel));

		/* Set backup address */
		my_backup_start = info->backup_start;
		elf_rel_set_symbol(&info->rhdr, "backup_start",
				&my_backup_start, sizeof(my_backup_start));
	}

	/* Set stack address */
	my_stack = locate_hole(info, 16*1024, 0, 0, max_addr, 1);
	my_stack += 16*1024;
	elf_rel_set_symbol(&info->rhdr, "stack", &my_stack, sizeof(my_stack));

	/* Set toc */
	toc_addr = (unsigned long) my_r2(&info->rhdr);
	elf_rel_set_symbol(&info->rhdr, "my_toc", &toc_addr, sizeof(toc_addr));

#ifdef DEBUG
	my_kernel = 0;
	my_dt_offset = 0;
	my_panic_kernel = 0;
	my_backup_start = 0;
	my_stack = 0;
	toc_addr = 0;

	elf_rel_get_symbol(&info->rhdr, "kernel", &my_kernel, sizeof(my_kernel));
	elf_rel_get_symbol(&info->rhdr, "dt_offset", &my_dt_offset,
				sizeof(my_dt_offset));
	elf_rel_get_symbol(&info->rhdr, "panic_kernel", &my_panic_kernel,
				sizeof(my_panic_kernel));
	elf_rel_get_symbol(&info->rhdr, "backup_start", &my_backup_start,
				sizeof(my_backup_start));
	elf_rel_get_symbol(&info->rhdr, "stack", &my_stack, sizeof(my_stack));
	elf_rel_get_symbol(&info->rhdr, "my_toc", &toc_addr,
				sizeof(toc_addr));

	fprintf(stderr, "info->entry is %p\n", info->entry);
	fprintf(stderr, "kernel is %lx\n", my_kernel);
	fprintf(stderr, "dt_offset is %lx\n", my_dt_offset);
	fprintf(stderr, "panic_kernel is %x\n", my_panic_kernel);
	fprintf(stderr, "backup_start is %lx\n", my_backup_start);
	fprintf(stderr, "stack is %lx\n", my_stack);
	fprintf(stderr, "toc_addr is %lx\n", toc_addr);
	fprintf(stderr, "purgatory size is %lu\n", purgatory_size);
#endif

	for (i = 0; i < nr_segments; i++)
		fprintf(stderr, "segment[%d].mem:%p memsz:%ld\n", i,
			info->segment[i].mem, info->segment[i].memsz);

	return 0;
}
Example #10
0
int elf_ppc64_load(int argc, char **argv, const char *buf, off_t len,
			struct kexec_info *info)
{
	struct mem_ehdr ehdr;
	char *cmdline, *modified_cmdline = NULL;
	const char *devicetreeblob;
	uint64_t max_addr, hole_addr;
	char *seg_buf = NULL;
	off_t seg_size = 0;
	struct mem_phdr *phdr;
	size_t size;
#ifdef NEED_RESERVE_DTB
	uint64_t *rsvmap_ptr;
	struct bootblock *bb_ptr;
#endif
	int result, opt;
	uint64_t my_kernel, my_dt_offset;
	uint64_t my_opal_base = 0, my_opal_entry = 0;
	unsigned int my_panic_kernel;
	uint64_t my_stack, my_backup_start;
	uint64_t toc_addr;
	uint32_t my_run_at_load;
	unsigned int slave_code[256/sizeof (unsigned int)], master_entry;

	/* See options.h -- add any more there, too. */
	static const struct option options[] = {
		KEXEC_ARCH_OPTIONS
		{ "command-line",       1, NULL, OPT_APPEND },
		{ "append",             1, NULL, OPT_APPEND },
		{ "ramdisk",            1, NULL, OPT_RAMDISK },
		{ "initrd",             1, NULL, OPT_RAMDISK },
		{ "devicetreeblob",     1, NULL, OPT_DEVICETREEBLOB },
		{ "dtb",                1, NULL, OPT_DEVICETREEBLOB },
		{ "args-linux",		0, NULL, OPT_ARGS_IGNORE },
		{ 0,                    0, NULL, 0 },
	};

	static const char short_options[] = KEXEC_OPT_STR "";

	if (info->file_mode)
		return elf_ppc64_load_file(argc, argv, info);

	/* Parse command line arguments */
	initrd_base = 0;
	initrd_size = 0;
	cmdline = 0;
	ramdisk = 0;
	devicetreeblob = 0;
	max_addr = 0xFFFFFFFFFFFFFFFFULL;
	hole_addr = 0;

	while ((opt = getopt_long(argc, argv, short_options,
					options, 0)) != -1) {
		switch (opt) {
		default:
			/* Ignore core options */
			if (opt < OPT_ARCH_MAX)
				break;
		case OPT_APPEND:
			cmdline = optarg;
			break;
		case OPT_RAMDISK:
			ramdisk = optarg;
			break;
		case OPT_DEVICETREEBLOB:
			devicetreeblob = optarg;
			break;
		case OPT_ARGS_IGNORE:
			break;
		}
	}

	if (!cmdline)
		fprintf(stdout, "Warning: append= option is not passed. Using the first kernel root partition\n");

	if (ramdisk && reuse_initrd)
		die("Can't specify --ramdisk or --initrd with --reuseinitrd\n");

	/* Need to append some command line parameters internally in case of
	 * taking crash dumps.
	 */
	if (info->kexec_flags & KEXEC_ON_CRASH) {
		modified_cmdline = xmalloc(COMMAND_LINE_SIZE);
		memset((void *)modified_cmdline, 0, COMMAND_LINE_SIZE);
		if (cmdline) {
			strncpy(modified_cmdline, cmdline, COMMAND_LINE_SIZE);
			modified_cmdline[COMMAND_LINE_SIZE - 1] = '\0';
		}
	}

	/* Parse the Elf file */
	result = build_elf_exec_info(buf, len, &ehdr, 0);
	if (result < 0) {
		free_elf_info(&ehdr);
		return result;
	}

	/* Load the Elf data. Physical load addresses in elf64 header do not
	 * show up correctly. Use user supplied address for now to patch the
	 * elf header
	 */

	phdr = &ehdr.e_phdr[0];
	size = phdr->p_filesz;
	if (size > phdr->p_memsz)
		size = phdr->p_memsz;

	my_kernel = hole_addr = locate_hole(info, size, 0, 0, max_addr, 1);
	ehdr.e_phdr[0].p_paddr = hole_addr;
	result = elf_exec_load(&ehdr, info);
	if (result < 0) {
		free_elf_info(&ehdr);
		return result;
	}

	/* If panic kernel is being loaded, additional segments need
	 * to be created.
	 */
	if (info->kexec_flags & KEXEC_ON_CRASH) {
		result = load_crashdump_segments(info, modified_cmdline,
						max_addr, 0);
		if (result < 0)
			return -1;
		/* Use new command line. */
		cmdline = modified_cmdline;
	}

	/* Add v2wrap to the current image */
	elf_rel_build_load(info, &info->rhdr, purgatory,
				purgatory_size, 0, max_addr, 1, 0);

	/* Add a ram-disk to the current image
	 * Note: Add the ramdisk after elf_rel_build_load
	 */
	if (ramdisk) {
		if (devicetreeblob) {
			fprintf(stderr,
			"Can't use ramdisk with device tree blob input\n");
			return -1;
		}
		seg_buf = slurp_file(ramdisk, &seg_size);
		hole_addr = add_buffer(info, seg_buf, seg_size, seg_size,
			0, 0, max_addr, 1);
		initrd_base = hole_addr;
		initrd_size = seg_size;
	} /* ramdisk */

	if (devicetreeblob) {
		/* Grab device tree from buffer */
		seg_buf = slurp_file(devicetreeblob, &seg_size);
	} else {
		/* create from fs2dt */
		create_flatten_tree(&seg_buf, &seg_size, cmdline);
	}

	result = fixup_dt(&seg_buf, &seg_size);
	if (result < 0)
		return result;

	my_dt_offset = add_buffer(info, seg_buf, seg_size, seg_size,
				0, 0, max_addr, -1);

#ifdef NEED_RESERVE_DTB
	/* patch reserve map address for flattened device-tree
	 * find last entry (both 0) in the reserve mem list.  Assume DT
	 * entry is before this one
	 */
	bb_ptr = (struct bootblock *)(seg_buf);
	rsvmap_ptr = (uint64_t *)(seg_buf + be32_to_cpu(bb_ptr->off_mem_rsvmap));
	while (*rsvmap_ptr || *(rsvmap_ptr+1))
		rsvmap_ptr += 2;
	rsvmap_ptr -= 2;
	*rsvmap_ptr = cpu_to_be64(my_dt_offset);
	rsvmap_ptr++;
	*rsvmap_ptr = cpu_to_be64((uint64_t)be32_to_cpu(bb_ptr->totalsize));
#endif

	if (read_prop("/proc/device-tree/ibm,opal/opal-base-address",
		      &my_opal_base, sizeof(my_opal_base)) == 0) {
		my_opal_base = be64_to_cpu(my_opal_base);
		elf_rel_set_symbol(&info->rhdr, "opal_base",
				   &my_opal_base, sizeof(my_opal_base));
	}

	if (read_prop("/proc/device-tree/ibm,opal/opal-entry-address",
		      &my_opal_entry, sizeof(my_opal_entry)) == 0) {
		my_opal_entry = be64_to_cpu(my_opal_entry);
		elf_rel_set_symbol(&info->rhdr, "opal_entry",
				   &my_opal_entry, sizeof(my_opal_entry));
	}

	/* Set kernel */
	elf_rel_set_symbol(&info->rhdr, "kernel", &my_kernel, sizeof(my_kernel));

	/* Set dt_offset */
	elf_rel_set_symbol(&info->rhdr, "dt_offset", &my_dt_offset,
				sizeof(my_dt_offset));

	/* get slave code from new kernel, put in purgatory */
	elf_rel_get_symbol(&info->rhdr, "purgatory_start", slave_code,
			sizeof(slave_code));
	master_entry = slave_code[0];
	memcpy(slave_code, phdr->p_data, sizeof(slave_code));
	slave_code[0] = master_entry;
	elf_rel_set_symbol(&info->rhdr, "purgatory_start", slave_code,
				sizeof(slave_code));

	if (info->kexec_flags & KEXEC_ON_CRASH) {
		my_panic_kernel = 1;
		/* Set panic flag */
		elf_rel_set_symbol(&info->rhdr, "panic_kernel",
				&my_panic_kernel, sizeof(my_panic_kernel));

		/* Set backup address */
		my_backup_start = info->backup_start;
		elf_rel_set_symbol(&info->rhdr, "backup_start",
				&my_backup_start, sizeof(my_backup_start));

		/* Tell relocatable kernel to run at load address
		 * via word before slave code in purgatory
		 */

		elf_rel_get_symbol(&info->rhdr, "run_at_load", &my_run_at_load,
				sizeof(my_run_at_load));
		if (my_run_at_load == KERNEL_RUN_AT_ZERO_MAGIC)
			my_run_at_load = 1;
			/* else it should be a fixed offset image */
		elf_rel_set_symbol(&info->rhdr, "run_at_load", &my_run_at_load,
				sizeof(my_run_at_load));
	}

	/* Set stack address */
	my_stack = locate_hole(info, 16*1024, 0, 0, max_addr, 1);
	my_stack += 16*1024;
	elf_rel_set_symbol(&info->rhdr, "stack", &my_stack, sizeof(my_stack));

	/* Set toc */
	toc_addr = my_r2(&info->rhdr);
	elf_rel_set_symbol(&info->rhdr, "my_toc", &toc_addr, sizeof(toc_addr));

	/* Set debug */
	elf_rel_set_symbol(&info->rhdr, "debug", &my_debug, sizeof(my_debug));

	my_kernel = 0;
	my_dt_offset = 0;
	my_panic_kernel = 0;
	my_backup_start = 0;
	my_stack = 0;
	toc_addr = 0;
	my_run_at_load = 0;
	my_debug = 0;
	my_opal_base = 0;
	my_opal_entry = 0;

	elf_rel_get_symbol(&info->rhdr, "opal_base", &my_opal_base,
			   sizeof(my_opal_base));
	elf_rel_get_symbol(&info->rhdr, "opal_entry", &my_opal_entry,
			   sizeof(my_opal_entry));
	elf_rel_get_symbol(&info->rhdr, "kernel", &my_kernel, sizeof(my_kernel));
	elf_rel_get_symbol(&info->rhdr, "dt_offset", &my_dt_offset,
				sizeof(my_dt_offset));
	elf_rel_get_symbol(&info->rhdr, "run_at_load", &my_run_at_load,
				sizeof(my_run_at_load));
	elf_rel_get_symbol(&info->rhdr, "panic_kernel", &my_panic_kernel,
				sizeof(my_panic_kernel));
	elf_rel_get_symbol(&info->rhdr, "backup_start", &my_backup_start,
				sizeof(my_backup_start));
	elf_rel_get_symbol(&info->rhdr, "stack", &my_stack, sizeof(my_stack));
	elf_rel_get_symbol(&info->rhdr, "my_toc", &toc_addr,
				sizeof(toc_addr));
	elf_rel_get_symbol(&info->rhdr, "debug", &my_debug, sizeof(my_debug));

	dbgprintf("info->entry is %p\n", info->entry);
	dbgprintf("kernel is %llx\n", (unsigned long long)my_kernel);
	dbgprintf("dt_offset is %llx\n",
		(unsigned long long)my_dt_offset);
	dbgprintf("run_at_load flag is %x\n", my_run_at_load);
	dbgprintf("panic_kernel is %x\n", my_panic_kernel);
	dbgprintf("backup_start is %llx\n",
		(unsigned long long)my_backup_start);
	dbgprintf("stack is %llx\n", (unsigned long long)my_stack);
	dbgprintf("toc_addr is %llx\n", (unsigned long long)toc_addr);
	dbgprintf("purgatory size is %zu\n", purgatory_size);
	dbgprintf("debug is %d\n", my_debug);
	dbgprintf("opal_base is %llx\n", (unsigned long long) my_opal_base);
	dbgprintf("opal_entry is %llx\n", (unsigned long long) my_opal_entry);

	return 0;
}
Example #11
0
/**
 * elf_exec_load - load ELF executable image
 * @lowest_load_addr:	On return, will be the address where the first PT_LOAD
 *			section will be loaded in memory.
 *
 * Return:
 * 0 on success, negative value on failure.
 */
static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
			 struct elf_info *elf_info,
			 unsigned long *lowest_load_addr)
{
	unsigned long base = 0, lowest_addr = UINT_MAX;
	int ret;
	size_t i;
	struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
				  .top_down = false };

	/* Read in the PT_LOAD segments. */
	for (i = 0; i < ehdr->e_phnum; i++) {
		unsigned long load_addr;
		size_t size;
		const struct elf_phdr *phdr;

		phdr = &elf_info->proghdrs[i];
		if (phdr->p_type != PT_LOAD)
			continue;

		size = phdr->p_filesz;
		if (size > phdr->p_memsz)
			size = phdr->p_memsz;

		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
		kbuf.bufsz = size;
		kbuf.memsz = phdr->p_memsz;
		kbuf.buf_align = phdr->p_align;
		kbuf.buf_min = phdr->p_paddr + base;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		load_addr = kbuf.mem;

		if (load_addr < lowest_addr)
			lowest_addr = load_addr;
	}

	/* Update entry point to reflect new load address. */
	ehdr->e_entry += base;

	*lowest_load_addr = lowest_addr;
	ret = 0;
 out:
	return ret;
}

void *elf64_load(struct kimage *image, char *kernel_buf,
		 unsigned long kernel_len, char *initrd,
		 unsigned long initrd_len, char *cmdline,
		 unsigned long cmdline_len)
{
	int i, ret;
	unsigned int fdt_size;
	unsigned long kernel_load_addr, purgatory_load_addr;
	unsigned long initrd_load_addr, fdt_load_addr, stack_top;
	void *fdt;
	const void *slave_code;
	struct elfhdr ehdr;
	struct elf_info elf_info;
	struct fdt_reserve_entry *rsvmap;
	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
				  .buf_max = ppc64_rma_size };

	ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
	if (ret)
		goto out;

	ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
	if (ret)
		goto out;

	pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);

	ret = kexec_load_purgatory(image, 0, ppc64_rma_size, true,
				   &purgatory_load_addr);
	if (ret) {
		pr_err("Loading purgatory failed.\n");
		goto out;
	}

	pr_debug("Loaded purgatory at 0x%lx\n", purgatory_load_addr);

	if (initrd != NULL) {
		kbuf.buffer = initrd;
		kbuf.bufsz = kbuf.memsz = initrd_len;
		kbuf.buf_align = PAGE_SIZE;
		kbuf.top_down = false;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		initrd_load_addr = kbuf.mem;

		pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
	}

	fdt_size = fdt_totalsize(initial_boot_params) * 2;
	fdt = kmalloc(fdt_size, GFP_KERNEL);
	if (!fdt) {
		pr_err("Not enough memory for the device tree.\n");
		ret = -ENOMEM;
		goto out;
	}
	ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
	if (ret < 0) {
		pr_err("Error setting up the new device tree.\n");
		ret = -EINVAL;
		goto out;
	}

	ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
	if (ret)
		goto out;

	/*
	 * Documentation/devicetree/booting-without-of.txt says we need to
	 * add a reservation entry for the device tree block, but
	 * early_init_fdt_reserve_self reserves the memory even if there's no
	 * such entry. We'll add a reservation entry anyway, to be safe and
	 * compliant.
	 *
	 * Use dummy values, we will correct them in a moment.
	 */
	ret = fdt_add_mem_rsv(fdt, 1, 1);
	if (ret) {
		pr_err("Error reserving device tree memory: %s\n",
		       fdt_strerror(ret));
		ret = -EINVAL;
		goto out;
	}
	fdt_pack(fdt);

	kbuf.buffer = fdt;
	kbuf.bufsz = kbuf.memsz = fdt_size;
	kbuf.buf_align = PAGE_SIZE;
	kbuf.top_down = true;
	ret = kexec_add_buffer(&kbuf);
	if (ret)
		goto out;
	fdt_load_addr = kbuf.mem;

	/*
	 * Fix fdt reservation, now that we now where it will be loaded
	 * and how big it is.
	 */
	rsvmap = fdt + fdt_off_mem_rsvmap(fdt);
	i = fdt_num_mem_rsv(fdt) - 1;
	rsvmap[i].address = cpu_to_fdt64(fdt_load_addr);
	rsvmap[i].size = cpu_to_fdt64(fdt_totalsize(fdt));

	pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);

	kbuf.memsz = PURGATORY_STACK_SIZE;
	kbuf.buf_align = PAGE_SIZE;
	kbuf.top_down = true;
	ret = kexec_locate_mem_hole(&kbuf);
	if (ret) {
		pr_err("Couldn't find free memory for the purgatory stack.\n");
		ret = -ENOMEM;
		goto out;
	}
	stack_top = kbuf.mem + PURGATORY_STACK_SIZE - 1;
	pr_debug("Purgatory stack is at 0x%lx\n", stack_top);

	slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
			      fdt_load_addr, stack_top,
			      find_debug_console(fdt));
	if (ret)
		pr_err("Error setting up the purgatory.\n");

out:
	elf_free_info(&elf_info);

	/* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
	return ret ? ERR_PTR(ret) : fdt;
}

struct kexec_file_ops kexec_elf64_ops = {
	.probe = elf64_probe,
	.load = elf64_load,
};
Example #12
0
/**
 * elf_exec_load - load ELF executable image
 * @lowest_load_addr:	On return, will be the address where the first PT_LOAD
 *			section will be loaded in memory.
 *
 * Return:
 * 0 on success, negative value on failure.
 */
static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
			 struct elf_info *elf_info,
			 unsigned long *lowest_load_addr)
{
	unsigned long base = 0, lowest_addr = UINT_MAX;
	int ret;
	size_t i;
	struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
				  .top_down = false };

	/* Read in the PT_LOAD segments. */
	for (i = 0; i < ehdr->e_phnum; i++) {
		unsigned long load_addr;
		size_t size;
		const struct elf_phdr *phdr;

		phdr = &elf_info->proghdrs[i];
		if (phdr->p_type != PT_LOAD)
			continue;

		size = phdr->p_filesz;
		if (size > phdr->p_memsz)
			size = phdr->p_memsz;

		kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
		kbuf.bufsz = size;
		kbuf.memsz = phdr->p_memsz;
		kbuf.buf_align = phdr->p_align;
		kbuf.buf_min = phdr->p_paddr + base;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		load_addr = kbuf.mem;

		if (load_addr < lowest_addr)
			lowest_addr = load_addr;
	}

	/* Update entry point to reflect new load address. */
	ehdr->e_entry += base;

	*lowest_load_addr = lowest_addr;
	ret = 0;
 out:
	return ret;
}

static void *elf64_load(struct kimage *image, char *kernel_buf,
			unsigned long kernel_len, char *initrd,
			unsigned long initrd_len, char *cmdline,
			unsigned long cmdline_len)
{
	int ret;
	unsigned int fdt_size;
	unsigned long kernel_load_addr, purgatory_load_addr;
	unsigned long initrd_load_addr = 0, fdt_load_addr;
	void *fdt;
	const void *slave_code;
	struct elfhdr ehdr;
	struct elf_info elf_info;
	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
				  .buf_max = ppc64_rma_size };

	ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
	if (ret)
		goto out;

	ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
	if (ret)
		goto out;

	pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);

	ret = kexec_load_purgatory(image, 0, ppc64_rma_size, true,
				   &purgatory_load_addr);
	if (ret) {
		pr_err("Loading purgatory failed.\n");
		goto out;
	}

	pr_debug("Loaded purgatory at 0x%lx\n", purgatory_load_addr);

	if (initrd != NULL) {
		kbuf.buffer = initrd;
		kbuf.bufsz = kbuf.memsz = initrd_len;
		kbuf.buf_align = PAGE_SIZE;
		kbuf.top_down = false;
		ret = kexec_add_buffer(&kbuf);
		if (ret)
			goto out;
		initrd_load_addr = kbuf.mem;

		pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
	}

	fdt_size = fdt_totalsize(initial_boot_params) * 2;
	fdt = kmalloc(fdt_size, GFP_KERNEL);
	if (!fdt) {
		pr_err("Not enough memory for the device tree.\n");
		ret = -ENOMEM;
		goto out;
	}
	ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
	if (ret < 0) {
		pr_err("Error setting up the new device tree.\n");
		ret = -EINVAL;
		goto out;
	}

	ret = setup_new_fdt(fdt, initrd_load_addr, initrd_len, cmdline);
	if (ret)
		goto out;

	fdt_pack(fdt);

	kbuf.buffer = fdt;
	kbuf.bufsz = kbuf.memsz = fdt_size;
	kbuf.buf_align = PAGE_SIZE;
	kbuf.top_down = true;
	ret = kexec_add_buffer(&kbuf);
	if (ret)
		goto out;
	fdt_load_addr = kbuf.mem;

	pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);

	slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
	ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
			      fdt_load_addr);
	if (ret)
		pr_err("Error setting up the purgatory.\n");

out:
	elf_free_info(&elf_info);

	/* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
	return ret ? ERR_PTR(ret) : fdt;
}

struct kexec_file_ops kexec_elf64_ops = {
	.probe = elf64_probe,
	.load = elf64_load,
};