Foam::labelList Foam::metisDecomp::decompose
(
    const polyMesh& mesh,
    const pointField& points,
    const scalarField& pointWeights
)
{
    if (points.size() != mesh.nCells())
    {
        FatalErrorIn
        (
            "metisDecomp::decompose(const pointField&,const scalarField&)"
        )   << "Can use this decomposition method only for the whole mesh"
            << endl
            << "and supply one coordinate (cellCentre) for every cell." << endl
            << "The number of coordinates " << points.size() << endl
            << "The number of cells in the mesh " << mesh.nCells()
            << exit(FatalError);
    }

    CompactListList<label> cellCells;
    calcCellCells(mesh, identity(mesh.nCells()), mesh.nCells(), cellCells);

    // Decompose using default weights
    labelList decomp;
    decompose(cellCells.m(), cellCells.offsets(), pointWeights, decomp);

    return decomp;
}
Example #2
0
Foam::labelList Foam::ptscotchDecomp::decompose
(
    const polyMesh& mesh,
    const pointField& points,
    const scalarField& pointWeights
)
{
    if (points.size() != mesh.nCells())
    {
        FatalErrorIn
        (
            "ptscotchDecomp::decompose(const pointField&, const scalarField&)"
        )
            << "Can use this decomposition method only for the whole mesh"
            << endl
            << "and supply one coordinate (cellCentre) for every cell." << endl
            << "The number of coordinates " << points.size() << endl
            << "The number of cells in the mesh " << mesh.nCells()
            << exit(FatalError);
    }

//    // For running sequential ...
//    if (Pstream::nProcs() <= 1)
//    {
//        return scotchDecomp(decompositionDict_, mesh_)
//            .decompose(points, pointWeights);
//    }

    // Make Metis CSR (Compressed Storage Format) storage
    //   adjncy      : contains neighbours (= edges in graph)
    //   xadj(celli) : start of information in adjncy for celli


    CompactListList<label> cellCells;
    calcCellCells(mesh, identity(mesh.nCells()), mesh.nCells(), cellCells);

    // Decompose using default weights
    List<int> finalDecomp;
    decomposeZeroDomains
    (
        mesh.time().path()/mesh.name(),
        cellCells.m(),
        cellCells.offsets(),
        pointWeights,
        finalDecomp
    );

    // Copy back to labelList
    labelList decomp(finalDecomp.size());
    forAll(decomp, i)
    {
        decomp[i] = finalDecomp[i];
    }
    return decomp;
}
Example #3
0
Foam::labelList Foam::ptscotchDecomp::decompose
(
    const polyMesh& mesh,
    const labelList& agglom,
    const pointField& agglomPoints,
    const scalarField& pointWeights
)
{
    if (agglom.size() != mesh.nCells())
    {
        FatalErrorIn
        (
            "ptscotchDecomp::decompose(const labelList&, const pointField&)"
        )   << "Size of cell-to-coarse map " << agglom.size()
            << " differs from number of cells in mesh " << mesh.nCells()
            << exit(FatalError);
    }

//    // For running sequential ...
//    if (Pstream::nProcs() <= 1)
//    {
//        return scotchDecomp(decompositionDict_, mesh)
//            .decompose(agglom, agglomPoints, pointWeights);
//    }

    // Make Metis CSR (Compressed Storage Format) storage
    //   adjncy      : contains neighbours (= edges in graph)
    //   xadj(celli) : start of information in adjncy for celli
    CompactListList<label> cellCells;
    calcCellCells(mesh, agglom, agglomPoints.size(), cellCells);

    // Decompose using weights
    List<int> finalDecomp;
    decomposeZeroDomains
    (
        mesh.time().path()/mesh.name(),
        cellCells.m(),
        cellCells.offsets(),
        pointWeights,
        finalDecomp
    );

    // Rework back into decomposition for original mesh
    labelList fineDistribution(agglom.size());

    forAll(fineDistribution, i)
    {
        fineDistribution[i] = finalDecomp[agglom[i]];
    }

    return fineDistribution;
}
Example #4
0
Foam::labelList Foam::metisDecomp::decompose
(
    const labelList& agglom,
    const pointField& agglomPoints,
    const scalarField& agglomWeights
)
{
    if (agglom.size() != mesh_.nCells())
    {
        FatalErrorIn
        (
            "metisDecomp::decompose"
            "(const labelList&, const pointField&, const scalarField&)"
        )   << "Size of cell-to-coarse map " << agglom.size()
            << " differs from number of cells in mesh " << mesh_.nCells()
            << exit(FatalError);
    }

    // Make Metis CSR (Compressed Storage Format) storage
    //   adjncy      : contains neighbours (= edges in graph)
    //   xadj(celli) : start of information in adjncy for celli
    List<int> adjncy;
    List<int> xadj;
    {
        // Get cellCells on coarse mesh.
        labelListList cellCells;
        calcCellCells
        (
            mesh_,
            agglom,
            agglomPoints.size(),
            cellCells
        );

        scotchDecomp::calcCSR(cellCells, adjncy, xadj);
    }

    // Decompose using default weights
    List<int> finalDecomp;
    decompose(adjncy, xadj, agglomWeights, finalDecomp);


    // Rework back into decomposition for original mesh_
    labelList fineDistribution(agglom.size());

    forAll(fineDistribution, i)
    {
        fineDistribution[i] = finalDecomp[agglom[i]];
    }

    return fineDistribution;
}
Foam::labelList Foam::decompositionMethod::decompose
(
    const polyMesh& mesh,
    const labelList& fineToCoarse,
    const pointField& coarsePoints,
    const scalarField& coarseWeights
)
{
    CompactListList<label> coarseCellCells;
    calcCellCells
    (
        mesh,
        fineToCoarse,
        coarsePoints.size(),
        true,                       // use global cell labels
        coarseCellCells
    );

    // Decompose based on agglomerated points
    labelList coarseDistribution
    (
        decompose
        (
            coarseCellCells(),
            coarsePoints,
            coarseWeights
        )
    );

    // Rework back into decomposition for original mesh_
    labelList fineDistribution(fineToCoarse.size());

    forAll(fineDistribution, i)
    {
        fineDistribution[i] = coarseDistribution[fineToCoarse[i]];
    }

    return fineDistribution;
}