void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

    calc_chirp_factors(sbr, ch);

#ifdef SBR_LOW_POWER
    memset(deg, 0, 64*sizeof(real_t));
#endif

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
#ifdef SBR_LOW_POWER
    calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            real_t a0_r, a0_i, a1_r, a1_i;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                real_t temp1_r, temp2_r, temp3_r;
#ifndef SBR_LOW_POWER
                real_t temp1_i, temp2_i, temp3_i;
                calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);
#endif

                a0_r = MUL_C(RE(alpha_0[p]), bw);
                a1_r = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                a0_i = MUL_C(IM(alpha_0[p]), bw);
                a1_i = MUL_C(IM(alpha_1[p]), bw2);
#endif

                temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);
                temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);
#ifndef SBR_LOW_POWER
                temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);
                temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);
#endif
                for (l = first; l < last; l++)
                {
                    temp1_r = temp2_r;
                    temp2_r = temp3_r;
                    temp3_r = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    temp1_i = temp2_i;
                    temp2_i = temp3_i;
                    temp3_i = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) + MUL_R(a1_r, temp1_r));
#else
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) - MUL_R(a0_i, temp2_i) +
                                 MUL_R(a1_r, temp1_r) - MUL_R(a1_i, temp1_i));
                    QMF_IM(Xhigh[l + offset][k]) = temp3_i +
                                (MUL_R(a0_i, temp2_r) + MUL_R(a0_r, temp2_i) +
                                 MUL_R(a1_i, temp1_r) + MUL_R(a1_r, temp1_i));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}
Example #2
0
void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][32],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

//    printf("%d %d\n", first, last);

    calc_chirp_factors(sbr, ch);

    for (i = first; i < last; i++)
    {
        memset(Xhigh[i + offset], 0, 64 * sizeof(qmf_t));
    }

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
    calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
#ifdef SBR_LOW_POWER
        , rxx
#endif
        );

#ifdef SBR_LOW_POWER
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            complex_t a0, a1;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                RE(a0) = MUL_C(RE(alpha_0[p]), bw);
                RE(a1) = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                IM(a0) = MUL_C(IM(alpha_0[p]), bw);
                IM(a1) = MUL_C(IM(alpha_1[p]), bw2);
#endif

				for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) += (
                        MUL_R(RE(a0), QMF_RE(Xlow[l - 1 + offset][p])) +
                        MUL_R(RE(a1), QMF_RE(Xlow[l - 2 + offset][p])));
#else
                    QMF_RE(Xhigh[l + offset][k]) += (
                        RE(a0) * QMF_RE(Xlow[l - 1 + offset][p]) -
                        IM(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        RE(a1) * QMF_RE(Xlow[l - 2 + offset][p]) -
                        IM(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
                    QMF_IM(Xhigh[l + offset][k]) += (
                        IM(a0) * QMF_RE(Xlow[l - 1 + offset][p]) +
                        RE(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        IM(a1) * QMF_RE(Xlow[l - 2 + offset][p]) +
                        RE(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}