Example #1
0
void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
  struct segmentation *seg = &cm->seg;
  struct segmentation_probs *segp = &cm->fc->seg;

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int i, tile_col, tile_row, mi_row, mi_col;
#if CONFIG_TILE_GROUPS
  const int probwt = cm->num_tg;
#else
  const int probwt = 1;
#endif

  unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred;
  unsigned *no_pred_segcounts = cm->counts.seg.tree_total;
  unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred;

  aom_prob no_pred_tree[SEG_TREE_PROBS];
  aom_prob t_pred_tree[SEG_TREE_PROBS];
  aom_prob t_nopred_prob[PREDICTION_PROBS];

  (void)xd;

  // We are about to recompute all the segment counts, so zero the accumulators.
  av1_zero(cm->counts.seg);

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
    TileInfo tile_info;
    av1_tile_set_row(&tile_info, cm, tile_row);
    for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
      MODE_INFO **mi_ptr;
      av1_tile_set_col(&tile_info, cm, tile_col);
      mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride +
               tile_info.mi_col_start;
      for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
           mi_row += cm->mib_size, mi_ptr += cm->mib_size * cm->mi_stride) {
        MODE_INFO **mi = mi_ptr;
        for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
             mi_col += cm->mib_size, mi += cm->mib_size) {
          count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
                        temporal_predictor_count, t_unpred_seg_counts, mi_row,
                        mi_col, cm->sb_size);
        }
      }
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs, probwt);
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs,
                       probwt);
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signaling for each prediction context.
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

      t_nopred_prob[i] = get_binary_prob(count0, count1);
      av1_prob_diff_update_savings_search(
          temporal_predictor_count[i], segp->pred_probs[i], &t_nopred_prob[i],
          DIFF_UPDATE_PROB, probwt);

      // Add in the predictor signaling cost
      t_pred_cost += count0 * av1_cost_zero(t_nopred_prob[i]) +
                     count1 * av1_cost_one(t_nopred_prob[i]);
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    assert(!cm->error_resilient_mode);
    seg->temporal_update = 1;
  } else {
    seg->temporal_update = 0;
  }
}
void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->mb.e_mbd;

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int i;
  int tile_col, mi_row, mi_col;

  int temporal_predictor_count[PREDICTION_PROBS][2];
  int no_pred_segcounts[MAX_MB_SEGMENTS];
  int t_unpred_seg_counts[MAX_MB_SEGMENTS];

  vp9_prob no_pred_tree[MB_SEG_TREE_PROBS];
  vp9_prob t_pred_tree[MB_SEG_TREE_PROBS];
  vp9_prob t_nopred_prob[PREDICTION_PROBS];

  const int mis = cm->mode_info_stride;
  MODE_INFO *mi_ptr, *mi;

  // Set default state for the segment tree probabilities and the
  // temporal coding probabilities
  vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs));
  vpx_memset(cm->segment_pred_probs, 255, sizeof(cm->segment_pred_probs));

  vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts));
  vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts));
  vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count));

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
    vp9_get_tile_col_offsets(cm, tile_col);
    mi_ptr = cm->mi + cm->cur_tile_mi_col_start;
    for (mi_row = 0; mi_row < cm->mi_rows;
         mi_row += 8, mi_ptr += 8 * mis) {
      mi = mi_ptr;
      for (mi_col = cm->cur_tile_mi_col_start;
           mi_col < cm->cur_tile_mi_col_end;
           mi_col += 8, mi += 8) {
        count_segs_sb(cpi, mi, no_pred_segcounts, temporal_predictor_count,
                      t_unpred_seg_counts, mi_row, mi_col, BLOCK_SIZE_SB64X64);
      }
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree);
  no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (cm->frame_type != KEY_FRAME) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(xd, t_unpred_seg_counts, t_pred_tree);
    t_pred_cost = cost_segmap(xd, t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signalling for each prediction context
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

      t_nopred_prob[i] = get_binary_prob(count0, count1);

      // Add in the predictor signaling cost
      t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
                     count1 * vp9_cost_one(t_nopred_prob[i]);
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    cm->temporal_update = 1;
    vpx_memcpy(xd->mb_segment_tree_probs, t_pred_tree, sizeof(t_pred_tree));
    vpx_memcpy(cm->segment_pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
  } else {
    cm->temporal_update = 0;
    vpx_memcpy(xd->mb_segment_tree_probs, no_pred_tree, sizeof(no_pred_tree));
  }
}
Example #3
0
void vp10_choose_segmap_coding_method(VP10_COMMON *cm, MACROBLOCKD *xd) {
  struct segmentation *seg = &cm->seg;
#if CONFIG_MISC_FIXES
  struct segmentation_probs *segp = &cm->fc->seg;
#else
  struct segmentation_probs *segp = &cm->segp;
#endif

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int i, tile_col, mi_row, mi_col;

#if CONFIG_MISC_FIXES
  unsigned(*temporal_predictor_count)[2] = cm->counts.seg.pred;
  unsigned *no_pred_segcounts = cm->counts.seg.tree_total;
  unsigned *t_unpred_seg_counts = cm->counts.seg.tree_mispred;
#else
  unsigned temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
  unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
  unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
#endif

  vpx_prob no_pred_tree[SEG_TREE_PROBS];
  vpx_prob t_pred_tree[SEG_TREE_PROBS];
  vpx_prob t_nopred_prob[PREDICTION_PROBS];

#if CONFIG_MISC_FIXES
  (void)xd;
#else
  // Set default state for the segment tree probabilities and the
  // temporal coding probabilities
  memset(segp->tree_probs, 255, sizeof(segp->tree_probs));
  memset(segp->pred_probs, 255, sizeof(segp->pred_probs));
#endif

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
    TileInfo tile;
    MODE_INFO **mi_ptr;
    vp10_tile_init(&tile, cm, 0, tile_col);

    mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
    for (mi_row = 0; mi_row < cm->mi_rows;
         mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
      MODE_INFO **mi = mi_ptr;
      for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
           mi_col += 8, mi += 8)
        count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts,
                      temporal_predictor_count, t_unpred_seg_counts, mi_row,
                      mi_col, BLOCK_64X64);
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(no_pred_segcounts, no_pred_tree, segp->tree_probs);
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree, segp->tree_probs);
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signaling for each prediction context.
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

#if CONFIG_MISC_FIXES
      vp10_prob_diff_update_savings_search(temporal_predictor_count[i],
                                           segp->pred_probs[i],
                                           &t_nopred_prob[i], DIFF_UPDATE_PROB);
#else
      t_nopred_prob[i] = get_binary_prob(count0, count1);
#endif

      // Add in the predictor signaling cost
      t_pred_cost += count0 * vp10_cost_zero(t_nopred_prob[i]) +
                     count1 * vp10_cost_one(t_nopred_prob[i]);
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    assert(!cm->error_resilient_mode);
    seg->temporal_update = 1;
#if !CONFIG_MISC_FIXES
    memcpy(segp->tree_probs, t_pred_tree, sizeof(t_pred_tree));
    memcpy(segp->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
#endif
  } else {
    seg->temporal_update = 0;
#if !CONFIG_MISC_FIXES
    memcpy(segp->tree_probs, no_pred_tree, sizeof(no_pred_tree));
#endif
  }
}
Example #4
0
void vp9_choose_segmap_coding_method(VP9_COMMON *cm, MACROBLOCKD *xd) {
  struct segmentation *seg = &cm->seg;

  int no_pred_cost;
  int t_pred_cost = INT_MAX;

  int i, tile_col, mi_row, mi_col;

  int temporal_predictor_count[PREDICTION_PROBS][2] = { { 0 } };
  int no_pred_segcounts[MAX_SEGMENTS] = { 0 };
  int t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };

  vp9_prob no_pred_tree[SEG_TREE_PROBS];
  vp9_prob t_pred_tree[SEG_TREE_PROBS];
  vp9_prob t_nopred_prob[PREDICTION_PROBS];

  // Set default state for the segment tree probabilities and the
  // temporal coding probabilities
  memset(seg->tree_probs, 255, sizeof(seg->tree_probs));
  memset(seg->pred_probs, 255, sizeof(seg->pred_probs));

  // First of all generate stats regarding how well the last segment map
  // predicts this one
  for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) {
    TileInfo tile;
    MODE_INFO **mi_ptr;
    vp9_tile_init(&tile, cm, 0, tile_col);

    mi_ptr = cm->mi_grid_visible + tile.mi_col_start;
    for (mi_row = 0; mi_row < cm->mi_rows;
         mi_row += 8, mi_ptr += 8 * cm->mi_stride) {
      MODE_INFO **mi = mi_ptr;
      for (mi_col = tile.mi_col_start; mi_col < tile.mi_col_end;
           mi_col += 8, mi += 8)
        count_segs_sb(cm, xd, &tile, mi, no_pred_segcounts,
                      temporal_predictor_count, t_unpred_seg_counts,
                      mi_row, mi_col, BLOCK_64X64);
    }
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(no_pred_segcounts, no_pred_tree);
  no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (!frame_is_intra_only(cm)) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(t_unpred_seg_counts, t_pred_tree);
    t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signaling for each prediction context.
    for (i = 0; i < PREDICTION_PROBS; i++) {
      const int count0 = temporal_predictor_count[i][0];
      const int count1 = temporal_predictor_count[i][1];

      t_nopred_prob[i] = get_binary_prob(count0, count1);

      // Add in the predictor signaling cost
      t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) +
                     count1 * vp9_cost_one(t_nopred_prob[i]);
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    seg->temporal_update = 1;
    memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree));
    memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob));
  } else {
    seg->temporal_update = 0;
    memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree));
  }
}
Example #5
0
void vp9_choose_segmap_coding_method(VP9_COMP *cpi) {
  VP9_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &cpi->mb.e_mbd;

  int i;
  int tot_count;
  int no_pred_cost;
  int t_pred_cost = INT_MAX;
  int pred_context;

  int mb_row, mb_col;
  int segmap_index = 0;
  unsigned char segment_id;

  int temporal_predictor_count[PREDICTION_PROBS][2];
  int no_pred_segcounts[MAX_MB_SEGMENTS];
  int t_unpred_seg_counts[MAX_MB_SEGMENTS];

  vp9_prob no_pred_tree[MB_FEATURE_TREE_PROBS];
  vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS];
  vp9_prob t_nopred_prob[PREDICTION_PROBS];

#if CONFIG_SUPERBLOCKS
  const int mis = cm->mode_info_stride;
#endif

  // Set default state for the segment tree probabilities and the
  // temporal coding probabilities
  vpx_memset(xd->mb_segment_tree_probs, 255,
             sizeof(xd->mb_segment_tree_probs));
  vpx_memset(cm->segment_pred_probs, 255,
             sizeof(cm->segment_pred_probs));

  vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts));
  vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts));
  vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count));

  // First of all generate stats regarding how well the last segment map
  // predicts this one

  // Initialize macroblock decoder mode info context for the first mb
  // in the frame
  xd->mode_info_context = cm->mi;

  for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 2) {
    for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 2) {
      for (i = 0; i < 4; i++) {
        static const int dx[4] = { +1, -1, +1, +1 };
        static const int dy[4] = {  0, +1,  0, -1 };
        int x_idx = i & 1, y_idx = i >> 1;

        if (mb_col + x_idx >= cm->mb_cols ||
            mb_row + y_idx >= cm->mb_rows) {
          goto end;
        }

        xd->mb_to_top_edge = -((mb_row * 16) << 3);
        xd->mb_to_left_edge = -((mb_col * 16) << 3);

        segmap_index = (mb_row + y_idx) * cm->mb_cols + mb_col + x_idx;
        segment_id = xd->mode_info_context->mbmi.segment_id;
#if CONFIG_SUPERBLOCKS
        if (xd->mode_info_context->mbmi.encoded_as_sb) {
          if (mb_col + 1 < cm->mb_cols)
            segment_id = segment_id &&
                         xd->mode_info_context[1].mbmi.segment_id;
          if (mb_row + 1 < cm->mb_rows) {
            segment_id = segment_id &&
                         xd->mode_info_context[mis].mbmi.segment_id;
            if (mb_col + 1 < cm->mb_cols)
              segment_id = segment_id &&
                           xd->mode_info_context[mis + 1].mbmi.segment_id;
          }
          xd->mb_to_bottom_edge = ((cm->mb_rows - 2 - mb_row) * 16) << 3;
          xd->mb_to_right_edge  = ((cm->mb_cols - 2 - mb_col) * 16) << 3;
        } else {
#endif
          xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
          xd->mb_to_right_edge  = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
#if CONFIG_SUPERBLOCKS
        }
#endif

        // Count the number of hits on each segment with no prediction
        no_pred_segcounts[segment_id]++;

        // Temporal prediction not allowed on key frames
        if (cm->frame_type != KEY_FRAME) {
          // Test to see if the segment id matches the predicted value.
          int seg_predicted =
            (segment_id == vp9_get_pred_mb_segid(cm, xd, segmap_index));

          // Get the segment id prediction context
          pred_context =
            vp9_get_pred_context(cm, xd, PRED_SEG_ID);

          // Store the prediction status for this mb and update counts
          // as appropriate
          vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted);
          temporal_predictor_count[pred_context][seg_predicted]++;

          if (!seg_predicted)
            // Update the "unpredicted" segment count
            t_unpred_seg_counts[segment_id]++;
        }

#if CONFIG_SUPERBLOCKS
        if (xd->mode_info_context->mbmi.encoded_as_sb) {
          assert(!i);
          xd->mode_info_context += 2;
          break;
        }
#endif
      end:
        xd->mode_info_context += dx[i] + dy[i] * cm->mode_info_stride;
      }
    }

    // this is to account for the border in mode_info_context
    xd->mode_info_context -= mb_col;
    xd->mode_info_context += cm->mode_info_stride * 2;
  }

  // Work out probability tree for coding segments without prediction
  // and the cost.
  calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree);
  no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree);

  // Key frames cannot use temporal prediction
  if (cm->frame_type != KEY_FRAME) {
    // Work out probability tree for coding those segments not
    // predicted using the temporal method and the cost.
    calc_segtree_probs(xd, t_unpred_seg_counts, t_pred_tree);
    t_pred_cost = cost_segmap(xd, t_unpred_seg_counts, t_pred_tree);

    // Add in the cost of the signalling for each prediction context
    for (i = 0; i < PREDICTION_PROBS; i++) {
      tot_count = temporal_predictor_count[i][0] +
                  temporal_predictor_count[i][1];

      // Work out the context probabilities for the segment
      // prediction flag
      if (tot_count) {
        t_nopred_prob[i] = (temporal_predictor_count[i][0] * 255) /
                           tot_count;

        // Clamp to minimum allowed value
        if (t_nopred_prob[i] < 1)
          t_nopred_prob[i] = 1;
      } else
        t_nopred_prob[i] = 1;

      // Add in the predictor signaling cost
      t_pred_cost += (temporal_predictor_count[i][0] *
                      vp9_cost_zero(t_nopred_prob[i])) +
                     (temporal_predictor_count[i][1] *
                      vp9_cost_one(t_nopred_prob[i]));
    }
  }

  // Now choose which coding method to use.
  if (t_pred_cost < no_pred_cost) {
    cm->temporal_update = 1;
    vpx_memcpy(xd->mb_segment_tree_probs,
               t_pred_tree, sizeof(t_pred_tree));
    vpx_memcpy(&cm->segment_pred_probs,
               t_nopred_prob, sizeof(t_nopred_prob));
  } else {
    cm->temporal_update = 0;
    vpx_memcpy(xd->mb_segment_tree_probs,
               no_pred_tree, sizeof(no_pred_tree));
  }
}