Example #1
0
//------------------------------------------------------------------------
void curve3_div::recursive_bezier(double x1, double y1,
                                  double x2, double y2,
                                  double x3, double y3,
                                  unsigned level)
{
    if(level > curve_recursion_limit)
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    double x12   = (x1 + x2) / 2;
    double y12   = (y1 + y2) / 2;
    double x23   = (x2 + x3) / 2;
    double y23   = (y2 + y3) / 2;
    double x123  = (x12 + x23) / 2;
    double y123  = (y12 + y23) / 2;

    double dx = x3-x1;
    double dy = y3-y1;
    double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx));
    double da;

    if(d > curve_collinearity_epsilon)
    {
        // Regular case
        //-----------------
        if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x123, y123));
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
            if(da >= pi) da = 2*pi - da;

            if(da < m_angle_tolerance)
            {
                // Finally we can stop the recursion
                //----------------------
                m_points.add(point_d(x123, y123));
                return;
            }
        }
    }
    else
    {
        // Collinear case
        //------------------
        da = dx*dx + dy*dy;
        if(da == 0)
        {
            d = calc_sq_distance(x1, y1, x2, y2);
        }
        else
        {
            d = ((x2 - x1)*dx + (y2 - y1)*dy) / da;
            if(d > 0 && d < 1)
            {
                // Simple collinear case, 1---2---3
                // We can leave just two endpoints
                return;
            }
            if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1);
            else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3);
            else            d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy);
        }
        if(d < m_distance_tolerance_square)
        {
            m_points.add(point_d(x2, y2));
            return;
        }
    }

    // Continue subdivision
    //----------------------
    recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1);
    recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1);
}
Example #2
0
//------------------------------------------------------------------------
void curve4_div::recursive_bezier(double x1, double y1,
                                  double x2, double y2,
                                  double x3, double y3,
                                  double x4, double y4,
                                  unsigned level)
{
    if(level > curve_recursion_limit)
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    double x12   = (x1 + x2) / 2;
    double y12   = (y1 + y2) / 2;
    double x23   = (x2 + x3) / 2;
    double y23   = (y2 + y3) / 2;
    double x34   = (x3 + x4) / 2;
    double y34   = (y3 + y4) / 2;
    double x123  = (x12 + x23) / 2;
    double y123  = (y12 + y23) / 2;
    double x234  = (x23 + x34) / 2;
    double y234  = (y23 + y34) / 2;
    double x1234 = (x123 + x234) / 2;
    double y1234 = (y123 + y234) / 2;


    // Try to approximate the full cubic curve by a single straight line
    //------------------
    double dx = x4-x1;
    double dy = y4-y1;

    double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx));
    double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx));
    double da1, da2, k;

    switch((int(d2 > curve_collinearity_epsilon) << 1) +
           int(d3 > curve_collinearity_epsilon))
    {
    case 0:
        // All collinear OR p1==p4
        //----------------------
        k = dx*dx + dy*dy;
        if(k == 0)
        {
            d2 = calc_sq_distance(x1, y1, x2, y2);
            d3 = calc_sq_distance(x4, y4, x3, y3);
        }
        else
        {
            k   = 1 / k;
            da1 = x2 - x1;
            da2 = y2 - y1;
            d2  = k * (da1*dx + da2*dy);
            da1 = x3 - x1;
            da2 = y3 - y1;
            d3  = k * (da1*dx + da2*dy);
            if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1)
            {
                // Simple collinear case, 1---2---3---4
                // We can leave just two endpoints
                return;
            }
            if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1);
            else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4);
            else             d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy);

            if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1);
            else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4);
            else             d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy);
        }
        if(d2 > d3)
        {
            if(d2 < m_distance_tolerance_square)
            {
                m_points.add(point_d(x2, y2));
                return;
            }
        }
        else
        {
            if(d3 < m_distance_tolerance_square)
            {
                m_points.add(point_d(x3, y3));
                return;
            }
        }
        break;

    case 1:
        // p1,p2,p4 are collinear, p3 is significant
        //----------------------
        if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2));
            if(da1 >= pi) da1 = 2*pi - da1;

            if(da1 < m_angle_tolerance)
            {
                m_points.add(point_d(x2, y2));
                m_points.add(point_d(x3, y3));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x3, y3));
                    return;
                }
            }
        }
        break;

    case 2:
        // p1,p3,p4 are collinear, p2 is significant
        //----------------------
        if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle Condition
            //----------------------
            da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1));
            if(da1 >= pi) da1 = 2*pi - da1;

            if(da1 < m_angle_tolerance)
            {
                m_points.add(point_d(x2, y2));
                m_points.add(point_d(x3, y3));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x2, y2));
                    return;
                }
            }
        }
        break;

    case 3:
        // Regular case
        //-----------------
        if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy))
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if(m_angle_tolerance < curve_angle_tolerance_epsilon)
            {
                m_points.add(point_d(x23, y23));
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            k   = atan2(y3 - y2, x3 - x2);
            da1 = fabs(k - atan2(y2 - y1, x2 - x1));
            da2 = fabs(atan2(y4 - y3, x4 - x3) - k);
            if(da1 >= pi) da1 = 2*pi - da1;
            if(da2 >= pi) da2 = 2*pi - da2;

            if(da1 + da2 < m_angle_tolerance)
            {
                // Finally we can stop the recursion
                //----------------------
                m_points.add(point_d(x23, y23));
                return;
            }

            if(m_cusp_limit != 0.0)
            {
                if(da1 > m_cusp_limit)
                {
                    m_points.add(point_d(x2, y2));
                    return;
                }

                if(da2 > m_cusp_limit)
                {
                    m_points.add(point_d(x3, y3));
                    return;
                }
            }
        }
        break;
    }

    // Continue subdivision
    //----------------------
    recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1);
    recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1);
}
void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level )
{
    if( abs( level ) > bezier_recursion_limit )
    {
        return;
    }

    // Calculate all the mid-points of the line segments
    //----------------------
    int    x12  = (x1 + x2) / 2;
    int    y12  = (y1 + y2) / 2;
    int    x23  = (x2 + x3) / 2;
    int    y23  = (y2 + y3) / 2;
    int    x123 = (x12 + x23) / 2;
    int    y123 = (y12 + y23) / 2;

    int    dx = x3 - x1;
    int    dy = y3 - y1;
    double d  = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) );
    double da;

    if( d > bezier_curve_collinearity_epsilon )
    {
        // Regular case
        //-----------------
        if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) )
        {
            // If the curvature doesn't exceed the distance_tolerance value
            // we tend to finish subdivisions.
            //----------------------
            if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon )
            {
                add_segment( wxPoint( x123, y123 ) );
                return;
            }

            // Angle & Cusp Condition
            //----------------------
            da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) -
                       atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) );
            if( da >=M_PI )
                da = 2 * M_PI - da;

            if( da < bezier_angle_tolerance )
            {
                // Finally we can stop the recursion
                //----------------------
                add_segment( wxPoint( x123, y123 ) );
                return;
            }
        }
    }
    else
    {
        // Collinear case
        //------------------
        da = sqrt_len(dx, dy);
        if( da == 0 )
        {
            d = calc_sq_distance( x1, y1, x2, y2 );
        }
        else
        {
            d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da;
            if( d > 0 && d < 1 )
            {
                // Simple collinear case, 1---2---3
                // We can leave just two endpoints
                return;
            }
            if( d <= 0 )
                d = calc_sq_distance( x2, y2, x1, y1 );
            else if( d >= 1 )
                d = calc_sq_distance( x2, y2, x3, y3 );
            else
                d = calc_sq_distance( x2, y2, x1 + (int) d * dx,
                                      y1 + (int) d * dy );
        }
        if( d < bezier_distance_tolerance_square )
        {
            add_segment( wxPoint( x2, y2 ) );
            return;
        }
    }

    // Continue subdivision
    //----------------------
    recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 );
    recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) );
}