//------------------------------------------------------------------------ void curve3_div::recursive_bezier(double x1, double y1, double x2, double y2, double x3, double y3, unsigned level) { if(level > curve_recursion_limit) { return; } // Calculate all the mid-points of the line segments //---------------------- double x12 = (x1 + x2) / 2; double y12 = (y1 + y2) / 2; double x23 = (x2 + x3) / 2; double y23 = (y2 + y3) / 2; double x123 = (x12 + x23) / 2; double y123 = (y12 + y23) / 2; double dx = x3-x1; double dy = y3-y1; double d = fabs(((x2 - x3) * dy - (y2 - y3) * dx)); double da; if(d > curve_collinearity_epsilon) { // Regular case //----------------- if(d * d <= m_distance_tolerance_square * (dx*dx + dy*dy)) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.add(point_d(x123, y123)); return; } // Angle & Cusp Condition //---------------------- da = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1)); if(da >= pi) da = 2*pi - da; if(da < m_angle_tolerance) { // Finally we can stop the recursion //---------------------- m_points.add(point_d(x123, y123)); return; } } } else { // Collinear case //------------------ da = dx*dx + dy*dy; if(da == 0) { d = calc_sq_distance(x1, y1, x2, y2); } else { d = ((x2 - x1)*dx + (y2 - y1)*dy) / da; if(d > 0 && d < 1) { // Simple collinear case, 1---2---3 // We can leave just two endpoints return; } if(d <= 0) d = calc_sq_distance(x2, y2, x1, y1); else if(d >= 1) d = calc_sq_distance(x2, y2, x3, y3); else d = calc_sq_distance(x2, y2, x1 + d*dx, y1 + d*dy); } if(d < m_distance_tolerance_square) { m_points.add(point_d(x2, y2)); return; } } // Continue subdivision //---------------------- recursive_bezier(x1, y1, x12, y12, x123, y123, level + 1); recursive_bezier(x123, y123, x23, y23, x3, y3, level + 1); }
//------------------------------------------------------------------------ void curve4_div::recursive_bezier(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, unsigned level) { if(level > curve_recursion_limit) { return; } // Calculate all the mid-points of the line segments //---------------------- double x12 = (x1 + x2) / 2; double y12 = (y1 + y2) / 2; double x23 = (x2 + x3) / 2; double y23 = (y2 + y3) / 2; double x34 = (x3 + x4) / 2; double y34 = (y3 + y4) / 2; double x123 = (x12 + x23) / 2; double y123 = (y12 + y23) / 2; double x234 = (x23 + x34) / 2; double y234 = (y23 + y34) / 2; double x1234 = (x123 + x234) / 2; double y1234 = (y123 + y234) / 2; // Try to approximate the full cubic curve by a single straight line //------------------ double dx = x4-x1; double dy = y4-y1; double d2 = fabs(((x2 - x4) * dy - (y2 - y4) * dx)); double d3 = fabs(((x3 - x4) * dy - (y3 - y4) * dx)); double da1, da2, k; switch((int(d2 > curve_collinearity_epsilon) << 1) + int(d3 > curve_collinearity_epsilon)) { case 0: // All collinear OR p1==p4 //---------------------- k = dx*dx + dy*dy; if(k == 0) { d2 = calc_sq_distance(x1, y1, x2, y2); d3 = calc_sq_distance(x4, y4, x3, y3); } else { k = 1 / k; da1 = x2 - x1; da2 = y2 - y1; d2 = k * (da1*dx + da2*dy); da1 = x3 - x1; da2 = y3 - y1; d3 = k * (da1*dx + da2*dy); if(d2 > 0 && d2 < 1 && d3 > 0 && d3 < 1) { // Simple collinear case, 1---2---3---4 // We can leave just two endpoints return; } if(d2 <= 0) d2 = calc_sq_distance(x2, y2, x1, y1); else if(d2 >= 1) d2 = calc_sq_distance(x2, y2, x4, y4); else d2 = calc_sq_distance(x2, y2, x1 + d2*dx, y1 + d2*dy); if(d3 <= 0) d3 = calc_sq_distance(x3, y3, x1, y1); else if(d3 >= 1) d3 = calc_sq_distance(x3, y3, x4, y4); else d3 = calc_sq_distance(x3, y3, x1 + d3*dx, y1 + d3*dy); } if(d2 > d3) { if(d2 < m_distance_tolerance_square) { m_points.add(point_d(x2, y2)); return; } } else { if(d3 < m_distance_tolerance_square) { m_points.add(point_d(x3, y3)); return; } } break; case 1: // p1,p2,p4 are collinear, p3 is significant //---------------------- if(d3 * d3 <= m_distance_tolerance_square * (dx*dx + dy*dy)) { if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.add(point_d(x23, y23)); return; } // Angle Condition //---------------------- da1 = fabs(atan2(y4 - y3, x4 - x3) - atan2(y3 - y2, x3 - x2)); if(da1 >= pi) da1 = 2*pi - da1; if(da1 < m_angle_tolerance) { m_points.add(point_d(x2, y2)); m_points.add(point_d(x3, y3)); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.add(point_d(x3, y3)); return; } } } break; case 2: // p1,p3,p4 are collinear, p2 is significant //---------------------- if(d2 * d2 <= m_distance_tolerance_square * (dx*dx + dy*dy)) { if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.add(point_d(x23, y23)); return; } // Angle Condition //---------------------- da1 = fabs(atan2(y3 - y2, x3 - x2) - atan2(y2 - y1, x2 - x1)); if(da1 >= pi) da1 = 2*pi - da1; if(da1 < m_angle_tolerance) { m_points.add(point_d(x2, y2)); m_points.add(point_d(x3, y3)); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.add(point_d(x2, y2)); return; } } } break; case 3: // Regular case //----------------- if((d2 + d3)*(d2 + d3) <= m_distance_tolerance_square * (dx*dx + dy*dy)) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if(m_angle_tolerance < curve_angle_tolerance_epsilon) { m_points.add(point_d(x23, y23)); return; } // Angle & Cusp Condition //---------------------- k = atan2(y3 - y2, x3 - x2); da1 = fabs(k - atan2(y2 - y1, x2 - x1)); da2 = fabs(atan2(y4 - y3, x4 - x3) - k); if(da1 >= pi) da1 = 2*pi - da1; if(da2 >= pi) da2 = 2*pi - da2; if(da1 + da2 < m_angle_tolerance) { // Finally we can stop the recursion //---------------------- m_points.add(point_d(x23, y23)); return; } if(m_cusp_limit != 0.0) { if(da1 > m_cusp_limit) { m_points.add(point_d(x2, y2)); return; } if(da2 > m_cusp_limit) { m_points.add(point_d(x3, y3)); return; } } } break; } // Continue subdivision //---------------------- recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1); recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1); }
void recursive_bezier( int x1, int y1, int x2, int y2, int x3, int y3, int level ) { if( abs( level ) > bezier_recursion_limit ) { return; } // Calculate all the mid-points of the line segments //---------------------- int x12 = (x1 + x2) / 2; int y12 = (y1 + y2) / 2; int x23 = (x2 + x3) / 2; int y23 = (y2 + y3) / 2; int x123 = (x12 + x23) / 2; int y123 = (y12 + y23) / 2; int dx = x3 - x1; int dy = y3 - y1; double d = fabs( ((double) (x2 - x3) * dy) - ((double) (y2 - y3) * dx ) ); double da; if( d > bezier_curve_collinearity_epsilon ) { // Regular case //----------------- if( d * d <= bezier_distance_tolerance_square * (dx * dx + dy * dy) ) { // If the curvature doesn't exceed the distance_tolerance value // we tend to finish subdivisions. //---------------------- if( bezier_angle_tolerance < bezier_curve_angle_tolerance_epsilon ) { add_segment( wxPoint( x123, y123 ) ); return; } // Angle & Cusp Condition //---------------------- da = fabs( atan2( (double) ( y3 - y2 ), (double) ( x3 - x2 ) ) - atan2( (double) ( y2 - y1 ), (double) ( x2 - x1 ) ) ); if( da >=M_PI ) da = 2 * M_PI - da; if( da < bezier_angle_tolerance ) { // Finally we can stop the recursion //---------------------- add_segment( wxPoint( x123, y123 ) ); return; } } } else { // Collinear case //------------------ da = sqrt_len(dx, dy); if( da == 0 ) { d = calc_sq_distance( x1, y1, x2, y2 ); } else { d = ( (double)(x2 - x1) * dx + (double)(y2 - y1) * dy ) / da; if( d > 0 && d < 1 ) { // Simple collinear case, 1---2---3 // We can leave just two endpoints return; } if( d <= 0 ) d = calc_sq_distance( x2, y2, x1, y1 ); else if( d >= 1 ) d = calc_sq_distance( x2, y2, x3, y3 ); else d = calc_sq_distance( x2, y2, x1 + (int) d * dx, y1 + (int) d * dy ); } if( d < bezier_distance_tolerance_square ) { add_segment( wxPoint( x2, y2 ) ); return; } } // Continue subdivision //---------------------- recursive_bezier( x1, y1, x12, y12, x123, y123, level + 1 ); recursive_bezier( x123, y123, x23, y23, x3, y3, -(level + 1) ); }