Example #1
0
unsigned long
rtc_time_s3c2410(unsigned base)
{
	struct tm	tm;

	hwi_add_device(HWI_ITEM_BUS_UNKNOWN, HWI_ITEM_DEVCLASS_RTC, "s3c2410", 0);
	hwi_add_location(base, S3C2410_RTC_SIZE, 0, hwi_find_as(base, 1));

	// get the current time from the RTC, and convert it to seconds since epoch

    chip_access(base, 0, 0, S3C2410_RTC_SIZE);

	// enable RTC 
	chip_write8(S3C2410_RTCCON, chip_read8(S3C2410_RTCCON) | 1);

    // convert BCD to binary
    tm.tm_sec  = bcd2bin(chip_read8(S3C2410_BCDSEC) & 0xff);    // seconds
    tm.tm_min  = bcd2bin(chip_read8(S3C2410_BCDMIN) & 0xff);    // minutes
    tm.tm_hour = bcd2bin(chip_read8(S3C2410_BCDHOUR) & 0xff);   // hours
    tm.tm_mday = bcd2bin(chip_read8(S3C2410_BCDDAY) & 0xff);    // day
    tm.tm_mon  = bcd2bin(chip_read8(S3C2410_BCDMON) & 0xff) -1;    // month
    tm.tm_year = (bcd2bin(chip_read8(S3C2410_BCDYEAR) & 0xff))+100;   // year

    chip_done();

    return(calc_time_t(&tm));

}
Example #2
0
unsigned long
rtc_time_ds1386(paddr_t base, unsigned reg_shift, int mmap, int cent_reg) {
	struct tm	tm;
	unsigned	cent;

	//Tell Neutrino what kind of chip for 'rtc' utility
	hwi_add_rtc("ds1386", base, reg_shift, 16, mmap, cent_reg);

	chip_access(base, reg_shift, mmap, 16);

   	do {
		// convert BCD to binary 
		tm.tm_sec 	= bcd2bin(chip_read8(1));		// seconds
		tm.tm_min 	= bcd2bin(chip_read8(2));		// minutes
		tm.tm_hour	= bcd2bin(chip_read8(4) & 0x3f);	// hours
		tm.tm_mday	= bcd2bin(chip_read8(8));		// day
		tm.tm_mon	= bcd2bin(chip_read8(9) & 0x3f) - 1;	// month
		tm.tm_year	= bcd2bin(chip_read8(10));		// year

		//Loop while time inconsistent
	} while(tm.tm_sec != bcd2bin(chip_read8(1)));

	if(cent_reg >= 0) {
		cent = bcd2bin(chip_read8(cent_reg));		// century
		if(cent == 20) tm.tm_year += 100;
	} else if(tm.tm_year < 70) {
		tm.tm_year += 100;
	}

	chip_done();


	return(calc_time_t(&tm));
}
unsigned long
rtc_time_rtc72423(paddr_t base, unsigned reg_shift, int mmap, int cent_reg) {
	struct tm	tm;
	unsigned	bottom;

	//Tell Neutrino what kind of chip for 'rtc' utility
	hwi_add_rtc("rtc72423", base, reg_shift, 16, mmap, cent_reg);

	chip_access(base, reg_shift, mmap, 16);

   	do {
		// get the data
		bottom = chip_read8(0);
		tm.tm_sec	= bcd2bin((chip_read8(1)  <<4) | bottom);
		tm.tm_min	= bcd2bin((chip_read8(3)  <<4) | chip_read8(2));
		tm.tm_hour	= bcd2bin(((chip_read8(5) & 3)  <<4) | chip_read8(4));
		tm.tm_mday	= bcd2bin((chip_read8(7)  <<4) | chip_read8(6));
		tm.tm_mon	= bcd2bin((chip_read8(9)  <<4) | chip_read8(8));
		tm.tm_year	= bcd2bin((chip_read8(11) <<4) | chip_read8(10));

		//Loop while time inconsistent
	} while(bottom != chip_read8(0));

	chip_done();

	if(tm.tm_year < 70) tm.tm_year += 100;
	return(calc_time_t(&tm));
}
unsigned long
rtc_time_omap(unsigned base)
{
	struct tm	tm;

	hwi_add_device(HWI_ITEM_BUS_UNKNOWN, HWI_ITEM_DEVCLASS_RTC, "omap", 0);
	hwi_add_location(base, OMAP_RTC_SIZE, 0, hwi_find_as(base, 1));

	// get the current time from the RTC, and convert it to seconds since epoch

    chip_access(base, 0, 0, OMAP_RTC_SIZE);

	// start the RTC, if it's not already running
	chip_write32(OMAP_RTC_CTRL, 0x01);

    // convert BCD to binary
    tm.tm_sec  = bcd2bin(chip_read32(OMAP_RTC_SECONDS) & 0xff);    // seconds
    tm.tm_min  = bcd2bin(chip_read32(OMAP_RTC_MINUTES) & 0xff);    // minutes
    tm.tm_hour = bcd2bin(chip_read32(OMAP_RTC_HOURS) & 0xff);   // hours
    tm.tm_mday = bcd2bin(chip_read32(OMAP_RTC_DAYS) & 0xff);    // day
    tm.tm_mon  = bcd2bin(chip_read32(OMAP_RTC_MONTHS) & 0xff);    // month
    tm.tm_year = (bcd2bin(chip_read32(OMAP_RTC_YEARS) & 0xff))+100;   // year

    chip_done();

    return(calc_time_t(&tm));

}
unsigned long
rtc_time_m48t37(paddr_t base, unsigned reg_shift, int mmap, int cent_reg) {
	struct tm	tm;
	int cent = 0;

	//Tell Neutrino what kind of chip for 'rtc' utility
	hwi_add_rtc("m48t37", base, reg_shift, 0x8000, mmap, cent_reg);

	chip_access(base, reg_shift, mmap, 0x8000);

	do {
		tm.tm_sec  = rdcmos(M48T37_TIME_REGS + 0x9);
		tm.tm_min  = rdcmos(M48T37_TIME_REGS + 0xa);
		tm.tm_hour = rdcmos(M48T37_TIME_REGS + 0xb);
		tm.tm_mday = rdcmos(M48T37_TIME_REGS + 0xd);
		tm.tm_mon  = rdcmos(M48T37_TIME_REGS + 0xe);
		tm.tm_year = rdcmos(M48T37_TIME_REGS + 0xf);
		if(cent_reg >= 0)
		    cent = rdcmos(M48T37_TIME_REGS + cent_reg);

		//Loop while time inconsistent
	} while(tm.tm_sec != rdcmos(M48T37_TIME_REGS + 0x9));

	chip_done();

	tm.tm_sec &= ~0x80;

	tm.tm_sec  = bcd2bin(tm.tm_sec);
	tm.tm_min  = bcd2bin(tm.tm_min);
	tm.tm_hour = bcd2bin(tm.tm_hour);
	tm.tm_mday = bcd2bin(tm.tm_mday);
	tm.tm_mon  = bcd2bin(tm.tm_mon);
	tm.tm_year = bcd2bin(tm.tm_year);

	tm.tm_mon -= 1;

	if(cent_reg >= 0) {
	    if(cent > 19) tm.tm_year += (bcd2bin(cent)-19) * 100;
	} else if(tm.tm_year < 70) {
	    tm.tm_year += 100; //21st century.
	}

	return(calc_time_t(&tm));
}
Example #6
0
unsigned long
rtc_time_ds1743(paddr_t base, unsigned reg_shift, int mmap, int cent_reg) {
	struct tm	tm;
	unsigned	cent;
	unsigned	reg;

	//Tell Neutrino what kind of chip for 'rtc' utility
	hwi_add_rtc("ds1743", base, reg_shift, DS1743_YEAR+1, mmap, -1);

	chip_access(base, reg_shift, mmap, DS1743_YEAR+1);

	// Stop the chip from updating
	chip_write8(DS1743_CONTROL, chip_read8(DS1743_CONTROL) | DS1743_CONTROL_R);

	reg = chip_read8(DS1743_SECONDS);
	if(reg & DS1743_SECONDS_OSC) {
		// clock oscillator not running
		chip_write8(DS1743_SECONDS, reg & ~DS1743_SECONDS_OSC);
	}
	reg = chip_read8(DS1743_DAY);
	if(reg & DS1743_DAY_FT) {
		// need to turn off frequency test mode
		chip_write8(DS1743_DAY, reg & ~DS1743_DAY_FT);
	}

	// convert BCD to binary 
	tm.tm_sec 	= bcd2bin(chip_read8(DS1743_SECONDS) & DS1743_SECONDS_MASK);
	tm.tm_min 	= bcd2bin(chip_read8(DS1743_MINUTES) & DS1743_MINUTES_MASK);
	tm.tm_hour	= bcd2bin(chip_read8(DS1743_HOUR) & DS1743_HOUR_MASK);
	tm.tm_mday	= bcd2bin(chip_read8(DS1743_DATE) & DS1743_DATE_MASK);
	tm.tm_mon	= bcd2bin(chip_read8(DS1743_MONTH) & DS1743_MONTH_MASK) - 1;
	tm.tm_year	= bcd2bin(chip_read8(DS1743_YEAR));
	cent		= bcd2bin(chip_read8(DS1743_CONTROL) & DS1743_CONTROL_CENT_MASK);

	// Start the chip updating again
	chip_write8(DS1743_CONTROL, chip_read8(DS1743_CONTROL) & ~DS1743_CONTROL_R);

	tm.tm_year += (cent-19) * 100;

	chip_done();

	return(calc_time_t(&tm));
}
Example #7
0
unsigned long
rtc_time_mc146818(paddr_t base, unsigned reg_shift, int mmap, int cent_reg) {
	struct tm	tm;
	unsigned	save_hour;
	unsigned	reg_b;
	unsigned	cent;
	unsigned char	sra;

	//Tell Neutrino what kind of chip for 'rtc' utility
	hwi_add_rtc("mc146818", base, reg_shift, 2, mmap, cent_reg);

	chip_access(base, reg_shift, mmap, 2);

	// bail if the clock is not running.
	sra = rdcmos(MC146818_SRA);
	if ((sra & 0x60) != 0x20) {
		chip_write8 (1, (sra | 0x60));	//Check for ATI IXP200 RTC - these bits are reserved
		if ((rdcmos(MC146818_SRA) & 0x60) != 0) {
			chip_write8 (1, sra);	//restore old value
			return(0L);
			}
		}
	reg_b = rdcmos(MC146818_SRB);

	do {
		tm.tm_sec  = rdcmos(0);
		tm.tm_min  = rdcmos(2);
		tm.tm_hour = rdcmos(4);
		tm.tm_mday = rdcmos(7);
		tm.tm_mon  = rdcmos(8);
		tm.tm_year = rdcmos(9);

		//Loop while time inconsistent
	} while(tm.tm_sec != rdcmos(0));

	chip_done();

	save_hour = tm.tm_hour;
	tm.tm_hour &= ~0x80;

	if(!(reg_b & MC146818_SRB_DM)) {
		tm.tm_sec  = bcd2bin(tm.tm_sec);
		tm.tm_min  = bcd2bin(tm.tm_min);
		tm.tm_hour = bcd2bin(tm.tm_hour);
		tm.tm_mday = bcd2bin(tm.tm_mday);
		tm.tm_mon  = bcd2bin(tm.tm_mon);
		tm.tm_year = bcd2bin(tm.tm_year);
	}
	if(!(reg_b & MC146818_SRB_24_12) && (save_hour & 0x80)) {
		//12 hour format & past 12pm
		tm.tm_hour += 12;
	}
	tm.tm_mon -= 1;

	if(cent_reg >= 0) {
		cent = rdcmos(cent_reg);			//century
		if(!(reg_b & MC146818_SRB_DM)) {
			cent = bcd2bin(cent_reg);
		}
		if(cent == 20) tm.tm_year += 100;
	} else if(tm.tm_year < 70) {
		tm.tm_year += 100; //21st century.
	}

	return(calc_time_t(&tm));
}