Example #1
0
TRIPLET_INFO::TRIPLET_INFO(const TRIPLET_INFO &ti) : track_mem<TRIPLET_INFO>("TRIPLET_INFO"), t(ti.t), score(ti.score), 

    bperiod(ti.bperiod), freq_bin(ti.freq_bin), 
    tpotind0_0(ti.tpotind0_0), tpotind0_1(ti.tpotind0_1),
    tpotind1_0(ti.tpotind1_0), tpotind1_1(ti.tpotind1_1),
    tpotind2_0(ti.tpotind2_0), tpotind2_1(ti.tpotind2_1), 
    time_bin(ti.time_bin), scale(ti.scale)

{

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

    pot_min = (unsigned int *)calloc_a(swi.analysis_cfg.triplet_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_min == NULL) SETIERROR(MALLOC_FAILED, "copied TRIPLET_INFO pot_min == NULL");
    pot_max = (unsigned int *)calloc_a(swi.analysis_cfg.triplet_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_max == NULL) SETIERROR(MALLOC_FAILED, "copied TRIPLET_INFO pot_max == NULL");
    memcpy(pot_min,ti.pot_min,(swi.analysis_cfg.triplet_pot_length * sizeof(unsigned int)));
    memcpy(pot_max,ti.pot_max,(swi.analysis_cfg.triplet_pot_length * sizeof(unsigned int)));

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

}    
Example #2
0
File: rcS.c Project: asac/procd
static void add_initd(struct runqueue *q, char *file, char *param)
{
	static const struct runqueue_task_type initd_type = {
		.run = q_initd_run,
		.cancel = runqueue_process_cancel_cb,
		.kill = runqueue_process_kill_cb,
	};
	struct initd *s;
	char *p, *f;

	s = calloc_a(sizeof(*s), &f, strlen(file) + 1, &p, strlen(param) + 1);
	if (!s) {
		ERROR("Out of memory in %s.\n", file);
		return;
	}
	s->proc.task.type = &initd_type;
	s->proc.task.complete = q_initd_complete;
	if (!strcmp(param, "stop") || !strcmp(param, "shutdown"))
		s->proc.task.run_timeout = 15000;
	s->param = p;
	s->file = f;
	strcpy(s->param, param);
	strcpy(s->file, file);
	runqueue_task_add(q, &s->proc.task, false);
}
Example #3
0
static struct interface* _interface_add(const char *name, int multicast, int v6)
{
	struct interface *iface;
	char *name_buf;
	char *id_buf;

	iface = calloc_a(sizeof(*iface),
		&name_buf, strlen(name) + 1,
		&id_buf, strlen(name) + 5);

	sprintf(id_buf, "%d_%d_%s", multicast, v6, name);
	iface->name = strcpy(name_buf, name);
	iface->id = id_buf;
	iface->ifindex = if_nametoindex(name);
	iface->fd.fd = -1;
	iface->multicast = multicast;
	iface->v6 = v6;
	if (v6)
		iface->mcast_addr = MCAST_ADDR6;
	else
		iface->mcast_addr = MCAST_ADDR;

	if (iface->ifindex <= 0)
		goto error;

	vlist_add(&interfaces, &iface->node, iface->id);
	return iface;

error:
	free(iface);
	return NULL;
}
Example #4
0
PULSE_INFO::PULSE_INFO() : track_mem<PULSE_INFO>("PULSE_INFO"), p(), score(0), freq_bin(0), time_bin(0) {

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

    pot_min = (unsigned int *)calloc_a(swi.analysis_cfg.pulse_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_min == NULL) SETIERROR(MALLOC_FAILED, "new PULSE_INFO pot_min == NULL");
    pot_max = (unsigned int *)calloc_a(swi.analysis_cfg.pulse_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_max == NULL) SETIERROR(MALLOC_FAILED, "new PULSE_INFO pot_max == NULL");

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

}
Example #5
0
/*
 * Public API implementation
 */
int htable_init(htable_t* ht, int size, op_unary_t do_calc_hash, op_binary_t do_compare)
{
	/* because dlist_init simply assigns NULL to tail/head references,
	 * we can just initialize the dlist_t array with zeroes without
	 * explicitly calling dlist_init for each array item. */
	ht->buckets = (dlist_t*)calloc_a(size, sizeof(dlist_t));
	ht->do_compare = do_compare;
	ht->do_calc_hash = do_calc_hash;
	ht->size = size;
	return 0;
}
Example #6
0
TRIPLET_INFO::TRIPLET_INFO() : track_mem<TRIPLET_INFO>("TRIPLET_INFO"),
t(), score(0), bperiod(0), freq_bin(0), tpotind0_0(0), tpotind0_1(0), 
tpotind1_0(0), tpotind1_1(0), tpotind2_0(0), tpotind2_1(0), time_bin(0), 
scale(0) {

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

    pot_min = (unsigned int *)calloc_a(swi.analysis_cfg.triplet_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_min == NULL) SETIERROR(MALLOC_FAILED, "new TRIPLET_INFO pot_min == NULL");
    pot_max = (unsigned int *)calloc_a(swi.analysis_cfg.triplet_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_max == NULL) SETIERROR(MALLOC_FAILED, "new TRIPLET_INFO pot_max == NULL");

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

}
Example #7
0
PULSE_INFO::PULSE_INFO(const PULSE_INFO &pi) : track_mem<PULSE_INFO>("PULSE_INFO"),  
p(pi.p), score(pi.score), freq_bin(pi.freq_bin), time_bin(pi.time_bin) {

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

    pot_min = (unsigned int *)calloc_a(swi.analysis_cfg.pulse_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_min == NULL) SETIERROR(MALLOC_FAILED, "copied PULSE_INFO pot_min == NULL");
    pot_max = (unsigned int *)calloc_a(swi.analysis_cfg.pulse_pot_length, sizeof(unsigned int), MEM_ALIGN);
    if (pot_max == NULL) SETIERROR(MALLOC_FAILED, "copied PULSE_INFO pot_max == NULL");

    memcpy(pot_min,pi.pot_min,(swi.analysis_cfg.pulse_pot_length * sizeof(unsigned int)));
    memcpy(pot_max,pi.pot_max,(swi.analysis_cfg.pulse_pot_length * sizeof(unsigned int)));

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

}
Example #8
0
File: service.c Project: asac/procd
static struct service *
service_alloc(const char *name)
{
	struct service *s;
	char *new_name;

	s = calloc_a(sizeof(*s), &new_name, strlen(name) + 1);
	strcpy(new_name, name);

	vlist_init(&s->instances, avl_strcmp, service_instance_update);
	s->instances.keep_old = true;
	s->name = new_name;
	s->avl.key = s->name;
	INIT_LIST_HEAD(&s->validators);

	return s;
}
Example #9
0
int analyze_pot(float *PowerSpectrum, int NumDataPoints, ChirpFftPair_t &cfft, int offset)
{
  // This function analyses Power over Time for the current data block.
  // The PoT array  is created by taking an array of power spectra (a
  // standard row-major 2D array)  and extracting the PoT as column-major
  // data.  We essentialy turn the array on its side.
  
  int  retval = 0,
    i,
    FftLength=cfft.FftLen,  // Current FFT length
    ThisPoT,          // index of current PoT along the freq axis
    PoTLen,           // complement of FFT length - determines time res
    PulsePoTLen,      // length of PoT segment passed to pulse finders
    Overlap,          // PoT segment overlap in bins
    TOffset,          // index into ThisPoT of current pulse segment
    PulsePoTNum  = 0, // the oridinal position of a pulse PoT w/in a full PoT
    NumPulsePoTs = 0, // the number of pulse PoTs w/in a full PoT.  This is
    //   constant regardless of FFT or PoT length and is
    //   determined by slew rate.
    AdvanceBy;        // the number of bins to advance for the next pulse PoT
  
  float ProgressAddFactor = 0.0,    // sum of progress adds for ThisPoT
    ProgressPerPulsePoT = 0.0;  // for local progress display
  
  bool SkipGauss   = false,
    SkipPulse   = false,
    SkipTriplet = false,
    TOffsetOK   = true;
  
  static float  *GaussPoT = NULL,
    *PulsePoT = NULL;
  
#ifdef DEBUG_POT
  fprintf(stderr, "========= FftLength = %d =========\n", FftLength);
#endif
  
  PoTLen              = NumDataPoints / FftLength;               // in bins
  GetPulsePoTLen(PoTLen, &PulsePoTLen, &Overlap);     // in bins
  AdvanceBy  = PulsePoTLen - Overlap;     // in bins		
  
  // Max limits how *slow* the slewrate can be, while Min limits how
  // *fast* the slewrate can be.  Max is limited only by the client
  // memory budget.
  if(PulsePoTLen > PoTInfo.TripletMax || PulsePoTLen < PoTInfo.TripletMin)
    SkipTriplet = true;
  SkipGauss = !(cfft.GaussFit);
  SkipPulse = !(cfft.PulseFind);
  
  if(!SkipPulse || !SkipTriplet) 
    {
      // NumPulsePoTs is the number of PoT segments that we pass to the pulse
      // detectors per frequency bin.  ProgressPerPulsePoT is the inverse of
      // number of pulse detection segments in the entire data block, taking
      // into account that we skip the first (DC) frequency bin.  An assumption
      // is made here that minimum pulse/triplet PoT length will always be
      // greater than 1. Otherwise, AdvanceBy can become zero and a divide by
      // zero can occur.  The assumption is also made that FftLength is always
      // greater than 1!
      NumPulsePoTs = 1 + (PoTLen-PulsePoTLen)/AdvanceBy + ((PoTLen-PulsePoTLen)%AdvanceBy ? 1 : 0);
      ProgressPerPulsePoT = (float)1 / ((FftLength - 1) * NumPulsePoTs);
    }
  
#ifdef DEBUG_POT
  fprintf(stderr, "SlewRate = %f\n", PoTInfo.SlewRate);
  fprintf(stderr, "PoTLen = %d\n", PoTLen);
  fprintf(stderr, "MaxPoTLen = %d\n", PoTInfo.MaxPoTLen);
  fprintf(stderr, "PoTDuration = %f\n", PoTInfo.WUDuration);
  fprintf(stderr, "BeamRate = %f\n", PoTInfo.BeamRate);
  fprintf(stderr, "PulsePoTLen = %d\n", PulsePoTLen);
  fprintf(stderr, "Overlap = %d\n", Overlap);
  fprintf(stderr, "AdvanceBy = %d\n", AdvanceBy);
  fprintf(stderr, "min_slew = %f\n", PoTInfo.min_slew);
  fprintf(stderr, "max_slew = %f\n", PoTInfo.max_slew);
  fprintf(stderr, "PulseOverlapFactor = %f\n", PoTInfo.PulseOverlapFactor);
  fprintf(stderr, "PulseBeams = %f\n", PoTInfo.PulseBeams);
  fprintf(stderr, "PulseThresh = %f\n", PoTInfo.PulseThresh);
  fprintf(stderr, "PulseMax = %d\n", PoTInfo.PulseMax);
  fprintf(stderr, "PulseMin = %d\n", PoTInfo.PulseMin);
  fprintf(stderr, "PulseFftMax = %d\n", PoTInfo.PulseFftMax);
  fprintf(stderr, "TripletThresh = %f\n", PoTInfo.TripletThresh);
  fprintf(stderr, "TripletMax = %d\n", PoTInfo.TripletMax);
  fprintf(stderr, "TripletMin = %d\n", PoTInfo.TripletMin);
#endif
  
#ifndef USE_PULSE
  SkipPulse = TRUE;
  static int doneprintnopulsefind = 0;
  if(!doneprintnopulsefind) 
    { 
      fprintf(stderr,"SkipPulse is set to TRUE: Not doing Pulsefinds.\n");
      doneprintnopulsefind = TRUE;
    }
#endif
#ifndef USE_TRIPLET
  SkipTriplet = TRUE;
#endif
  
  // Get memory fot the PoT arrays. The PoT array for gausian analysis is
  // of set size.  The PoT array for pulse analysis is sized to cover
  // PulseBeams beams, regardless of whether this violates either the
  // triplet or pulse limits on array size.
  if(!GaussPoT) 
    {
      GaussPoT = (float *)malloc_a(swi.analysis_cfg.gauss_pot_length * sizeof(float), MEM_ALIGN);
      if(GaussPoT == NULL) 
	{
	  SETIERROR(MALLOC_FAILED, "GaussPoT == NULL");
	}
    }
  if(!PulsePoT) 
    {
      PulsePoT = (float *)calloc_a(PoTInfo.MaxPoTLen+3, sizeof(float), MEM_ALIGN);
      if(PulsePoT == NULL) 
	{
	  SETIERROR(MALLOC_FAILED, "PulsePoT == NULL");
	}
    }
  bool b_gaussStarted = false;  
  // Look for gaussians ---------------------------------------------------
  if(!SkipGauss && (analysis_state.PoT_activity == POT_DOING_GAUSS ||
		    analysis_state.PoT_activity == POT_INACTIVE)) 
    {
      
#ifdef BOINC_APP_GRAPHICS
      if (!nographics())
	strcpy(sah_graphics->status, "Searching for Gaussians");
#endif
      
      // If we are back from being interrupted in the middle of gaussian PoT
      // analysis, load state and continue.  Otherwise start anew, skipping
      // the DC (0) bin.
      if(analysis_state.PoT_activity == POT_DOING_GAUSS) 
	{
	  ThisPoT = analysis_state.PoT_freq_bin;
	} 
      else 
	{
	  ThisPoT = 1; // skip the DC bin on start of new cfft pair
	}
      
      // Initial display of local Progress / CPU time. Assumes that
      // we start ThisPoT at 1 each time in!
#ifdef BOINC_APP_GRAPHICS
      if (!nographics())
	sah_graphics->local_progress = ((float)ThisPoT-1)/(FftLength-1);
#endif
      
#ifdef USE_CUDA
      //#ifndef CUDAACC_EMULATION
      if(gSetiUseCudaDevice)
	{
	  //TODO: remove the autocorr_fftlen test when v6 fully deprecated.
	  bool noscore = false; //swi.analysis_cfg.autocorr_fftlen!=0 && gaussian_count!=0;
	  
	  //cudaAcc_Gaussfit(FftLength, best_gauss->score, noscore);
	  //printf("GaussFitStart\r\n");
	  b_gaussStarted = true; // started earlier
	  //cudaAcc_GaussfitStart(FftLength, best_gauss->score, noscore);
	  
	  if(PoTLen > swi.analysis_cfg.gauss_pot_length)
	    analysis_state.FLOP_counter+=((double)NumDataPoints+swi.analysis_cfg.gauss_pot_length * (FftLength-1)); // GetFixedPoT
	  // There are FftLength - 1 fixed PoTs for a chirp/fft pair, and for each fixed PoT full analysis would do
	  // (1 + (PoTInfo.GaussTOffsetStop - PoTInfo.GaussTOffsetStart)) GetPeak and GetTrueMean operations.
	  // Use (1 - PoTInfo.GaussSigma*0.09) empirically found to represent fraction of PoTs which don't
	  // take either of the two early out paths.
	  double CorrWt = (1.0 - PoTInfo.GaussSigma*0.09) * (FftLength - 1) * (1 + (PoTInfo.GaussTOffsetStop - PoTInfo.GaussTOffsetStart));
	  analysis_state.FLOP_counter+=6.0*floor(PoTInfo.GaussSigma+0.5) * CorrWt; // GetPeak
	  analysis_state.FLOP_counter+=(double)(floor(PoTInfo.GaussSigma+0.5) * 3.911+5) * CorrWt; // GetTrueMean
	  // Estimate one in twenty fit positions look good enough to be checked further.
	  analysis_state.FLOP_counter+= 0.05 * (20.0*swi.analysis_cfg.gauss_pot_length+5.0) * CorrWt; // GetChiSq / 20
	  
	  
	  progress += ProgressUnitSize * GaussianProgressUnits();
	  progress=std::min(progress,1.0); // prevent display of > 100%
	  fraction_done(progress,remaining);
	  
	}
      //#endif CUDAACC_EMULATION
      else
	{
#endif //USE_CUDA
	  // loop through frequencies                            
	  /*	  for(; ThisPoT < FftLength; ThisPoT++) 
	    {
	      
	      // Create PowerOfTime array for gaussian fit
	      retval = GetFixedPoT(
				   PowerSpectrum,
				   NumDataPoints,
				   FftLength,
				   GaussPoT,
				   swi.analysis_cfg.gauss_pot_length,
				   ThisPoT
				   );
	      if (retval)
		continue;
	      
	      retval = GaussFit(GaussPoT, FftLength, ThisPoT);
	      if (retval)
		SETIERROR(retval,"from GaussFit");
	      
	      
	      
	      progress += ProgressUnitSize * GaussianProgressUnits() / (float)(FftLength - 1);
	      progress=std::min(progress,1.0); // prevent display of > 100%
	      fraction_done(progress,remaining);
	      
	      // At the end of each frequency bin we update progress and save state.
#ifdef BOINC_APP_GRAPHICS
	      if (!nographics()) 
		{
		  sah_graphics->local_progress = ((float)ThisPoT)/(FftLength-1);
		}
#endif  
	      analysis_state.PoT_freq_bin = ThisPoT;
	      analysis_state.PoT_activity = POT_DOING_GAUSS;
	      retval = checkpoint();
	      if (retval)
		SETIERROR(retval,"from checkpoint()");
	    }   // end loop through frequencies
	  */  
#ifdef USE_CUDA
	}
#endif //USE_CUDA
      analysis_state.PoT_freq_bin = -1;
      analysis_state.PoT_activity = POT_INACTIVE;
    }   // end looking for gaussians
  
  
  // Look for pulses -------------------------------------------------------
  if(!SkipPulse || !SkipTriplet) 
    {
      
#ifdef BOINC_APP_GRAPHICS
      if (!nographics())
	{
	  strcpy(sah_graphics->status, "Searching for Pulses / Triplets");
	  // init local progress for pulse search
	  sah_graphics->local_progress = 0;
	}
#endif
      
      
      // If we are back from being interrupted in the middle of pulse PoT
      // analysis, load state and continue.  Otherwise start anew, skipping
      // the DC (0) bin.
      if(analysis_state.PoT_activity == POT_DOING_PULSE) 
	{
	  ThisPoT = analysis_state.PoT_freq_bin;
	} 
      else 
	{
	  ThisPoT = 1; // skip the DC bin on start of new cfft pair
	}
      
      PulsePoTNum = 0;
      
#ifdef BOINC_APP_GRAPHICS
      // Inital display of Local Progress
      if(!nographics()) 
	{
	  sah_graphics->local_progress = (((ThisPoT-1) * NumPulsePoTs) +
					  PulsePoTNum)                   *
	    ProgressPerPulsePoT;
	}
#endif
      
#ifdef USE_CUDA
      if(gSetiUseCudaDevice)
	{	
	  /*
	    if(!SkipTriplet || !SkipPulse) // do beforehand on fftstreamX
	    {
	    //	    CUDASYNC;
	    //printf("CalculateMean\r\n");
	    cudaAcc_calculate_mean(PulsePoTLen, 0, AdvanceBy, FftLength);
	    }
	    
	    if(!SkipPulse) 
	    {
	    //printf("FindPulses\r\n");
	    cudaAcc_find_pulses((float) best_pulse->score, PulsePoTLen, AdvanceBy, FftLength);
	    }
	    
	    if(!SkipTriplet) 
	    {
	    //printf("FindTriplets\r\n");
	    cudaAcc_find_triplets(PulsePoTLen, (float)PoTInfo.TripletThresh, AdvanceBy, FftLength);
	    }
	  */
	  /*
		  timespec t1, t2;
		  t1.tv_sec = 0;
		  t1.tv_nsec = 5000;
		  while(cudaEventQuery(summaxDoneEvent) != cudaSuccess)
		    nanosleep(&t1, &t2);

	   */
	  
	  int gflags = 0;
	  if(b_gaussStarted)
	    {
	      //printf("fetchGaussFitFlags\r\n");
	      b_gaussStarted = false;
	      gflags = cudaAcc_fetchGaussfitFlags(FftLength, best_gauss->score);
	    }
	  
	  //printf("fetchTripletAndPulseFlags\r\n");
	  int has_dataT = 0, has_dataP = 0;
	  if(!SkipTriplet)
	    has_dataT = cudaAcc_fetchTripletFlags(SkipTriplet, PulsePoTLen, AdvanceBy, FftLength, offset);
	  
  	  if(gflags > 0)
	    {
	      //printf("ProcessGaussFit\r\n");
	      cudaAcc_processGaussFit(FftLength, best_gauss->score);
	    }
	  
	  if(!SkipTriplet)
	    {
	      if((has_dataT & 1) && !(has_dataT & 4)) // has triplet data and no error in triplet
		{
		  //printf("processTripletResults\r\n");
		  cudaAcc_processTripletResults(PulsePoTLen, AdvanceBy, FftLength);
		}
	      
	      analysis_state.FLOP_counter+=(10.0 + PulsePoTLen) * NumPulsePoTs * (FftLength - 1);
	      //  ! hard to estimate, so be generous and use 9
	      analysis_state.FLOP_counter+=810.0; // (10.0*numBinsAboveThreshold*numBinsAboveThreshold);
	      progress += ProgressUnitSize * TripletProgressUnits();
	    }		
	  
	  if(!SkipPulse)
	    has_dataP = cudaAcc_fetchPulseFlags(SkipTriplet, PulsePoTLen, AdvanceBy, FftLength, offset);
	  
	  if(!SkipPulse) 
	    {
	      if((has_dataP & 2) && !(has_dataP & 8)) // has pulse data and no error in pulse
		{
		  //printf("processPulseResults\r\n");
		  cudaAcc_processPulseResults(PulsePoTLen, AdvanceBy, FftLength);
		}
	      analysis_state.FLOP_counter+=(PulsePoTLen*0.1818181818182+400.0)*PulsePoTLen * NumPulsePoTs * (FftLength - 1);
	      progress += ProgressUnitSize * PulseProgressUnits(PulsePoTLen, FftLength - 1);
	    }
	  
	  //#ifndef CUDAACC_EMULATION
	  //if(!SkipTriplet)
	  //	  cudaAcc_fetchTripletAndPulseFlags(SkipTriplet, SkipPulse, PulsePoTLen, AdvanceBy, FftLength);
	  progress=std::min(progress,1.0); // prevent display of > 100%
	  fraction_done(progress,remaining);
	  //if(!SkipTriplet)
	  //  cudaAcc_processTripletResults(PulsePoTLen, AdvanceBy, FftLength);
	  //#endif //CUDAACC_EMULATION
	}
      //      else
      //	{
#endif //USE_CUDA
	  
	  // loop through frequencies
	  /*	  for(; ThisPoT < FftLength; ThisPoT++) 
	    {
	      // loop through time for each frequency.  PulsePoTNum is
	      // used only for progress calculation.
	      for(TOffset = 0, PulsePoTNum = 1, TOffsetOK = true;
		  TOffsetOK;
		  PulsePoTNum++, TOffset += AdvanceBy) 
		{
		  
		  // Create PowerOfTime array for pulse detection.  If there
		  // are not enough points left in this PoT, adjust TOffset
		  // to get the latest possible pulse PoT.
		  if(TOffset + PulsePoTLen >= PoTLen) 
		    {
		      TOffsetOK = false;
		      TOffset = PoTLen - PulsePoTLen;
		    }
		  if (use_transposed_pot) 
		    {
		      memcpy(PulsePoT, &PowerSpectrum[ThisPoT * PoTLen + TOffset], PulsePoTLen*sizeof(float));
		    } 
		  else 
		    {
		      for(i = 0; i < PulsePoTLen; i++) 
			{
			  PulsePoT[i] = PowerSpectrum[ThisPoT + (TOffset+i) * FftLength];
			}
		    }
		  
		  if(!SkipTriplet) 
		    {
		      retval = find_triplets(PulsePoT,
					     PulsePoTLen,
					     (float)PoTInfo.TripletThresh,
					     TOffset,
					     ThisPoT);
		      if (retval)
			SETIERROR(retval,"from find_triplets()");
		    }
		  //#ifndef CUDAACC_EMULATION
		  if(!SkipPulse) 
		    {
		      retval = find_pulse(PulsePoT,
					  PulsePoTLen,
					  (float)PoTInfo.PulseThresh,
					  TOffset,
					  ThisPoT
					  );
		      if (retval)
			SETIERROR(retval,"from find_pulse()");
		    }
		  //#endif //CUDAACC_EMULATION
		  
		  // At the end of each pulse PoT we update progress.  Progress
		  // will thus get updted several times per frequency bin.
#ifdef BOINC_APP_GRAPHICS
		  if (!nographics())
		    {
		      sah_graphics->local_progress = (((ThisPoT-1) * NumPulsePoTs) +
						      PulsePoTNum)                   *
			ProgressPerPulsePoT;
		    }
#endif
		  if(!SkipTriplet) 
		    {
		      progress += (ProgressUnitSize * TripletProgressUnits()) /
			(float)(FftLength - 1) / NumPulsePoTs;
		    }
		  if(!SkipPulse) 
		    {
		      progress += (ProgressUnitSize * PulseProgressUnits(PulsePoTLen, FftLength - 1)) /
			(float)(FftLength - 1) / NumPulsePoTs;
		      
		    }
		  progress=std::min(progress,1.0); // prevent display of > 100%
		  fraction_done(progress,remaining);
		  
		}  // end loop through time for each frequency
	      
	  	      // At the end of each frequency bin we save state.
	      analysis_state.PoT_activity = POT_DOING_PULSE;
	      analysis_state.PoT_freq_bin = ThisPoT;
	      retval = checkpoint();
	      if (retval)
		SETIERROR(retval,"from checkpoint()");
	    }   // end loop through frequencies
	  analysis_state.PoT_freq_bin = -1;
	  analysis_state.PoT_activity = POT_INACTIVE;
#ifdef USE_CUDA
	}
#endif //USE_CUDA
	  */

    }   // end looking for pulses			
  
  if(b_gaussStarted) // process results late
    {
      //printf("late GaussBlock\r\n");
      
      int flags = cudaAcc_fetchGaussfitFlags(FftLength, best_gauss->score);
      
      if(flags>0)
	cudaAcc_processGaussFit(FftLength, best_gauss->score);
    }
  
  return (retval);   // no error return point
}
Example #10
0
int seti_analyze (ANALYSIS_STATE& state) {
    sah_complex* DataIn = state.savedWUData;
    int NumDataPoints = state.npoints;
    sah_complex* ChirpedData = NULL;
    sah_complex* WorkData = NULL;
    float* PowerSpectrum = NULL;
    float* tPowerSpectrum; // Transposed power spectra if used.
    float* AutoCorrelation = NULL;

    use_transposed_pot= (!notranspose_flag) &&
                        ((app_init_data.host_info.m_nbytes != 0)  &&
                        (app_init_data.host_info.m_nbytes >= (double)(96*1024*1024)));
    int num_cfft                  = 0;
    float chirprate;
    int last_chirp_ind = - 1 << 20, chirprateind;

    double progress_diff, progress_in_cfft, cputime0=0;
    int retval=0;

    if (swi.analysis_cfg.credit_rate != 0) LOAD_STORE_ADJUSTMENT=swi.analysis_cfg.credit_rate;

#ifndef DEBUG
    int icfft;
#endif
    int NumFfts, ifft, fftlen;
    int CurrentSub;
    int FftNum, need_transpose;
    unsigned long bitfield=swi.analysis_cfg.analysis_fft_lengths;
    unsigned long FftLen;
    unsigned long ac_fft_len=swi.analysis_cfg.autocorr_fftlen;

#ifdef USE_IPP
    IppsFFTSpec_C_32fc* FftSpec[MAX_NUM_FFTS];
    int BufSize;

    ippStaticInit();   // initialization of IPP library
#elif defined(USE_FFTWF)
    // plan space for fftw
    fftwf_plan analysis_plans[MAX_NUM_FFTS];
    fftwf_plan autocorr_plan;
#else
    // fields need by the ooura fft logic
    int * BitRevTab[MAX_NUM_FFTS];
    float * CoeffTab[MAX_NUM_FFTS];
#endif

    // Allocate data array and work area arrays.
    ChirpedData = state.data;
    PowerSpectrum = (float*) calloc_a(NumDataPoints, sizeof(float), MEM_ALIGN);
    if (PowerSpectrum == NULL) SETIERROR(MALLOC_FAILED, "PowerSpectrum == NULL");
    if (use_transposed_pot) {
        tPowerSpectrum = (float*) calloc_a(NumDataPoints, sizeof(float), MEM_ALIGN);
        if (tPowerSpectrum == NULL) SETIERROR(MALLOC_FAILED, "tPowerSpectrum == NULL");
    } else {
        tPowerSpectrum=PowerSpectrum;
    }
    AutoCorrelation = (float*)calloc_a(ac_fft_len, sizeof(float), MEM_ALIGN);
    if (AutoCorrelation == NULL) SETIERROR(MALLOC_FAILED, "AutoCorrelation == NULL");

    // boinc_worker_timer();
    FftNum=0;
    FftLen=1;



#ifdef USE_FFTWF
    double sz;
    FILE *wisdom;
    if ((wisdom=boinc_fopen("wisdom.sah","r"))) {
        char *wiz=(char *)calloc_a(1024,64,MEM_ALIGN);
        int n=0;
        while (wiz && n<64*1024 && !feof(wisdom)) {
            n+=fread(wiz+n,1,80,wisdom);
        }
        fftwf_import_wisdom_from_string(wiz);
        free_a(wiz);
        fclose(wisdom);
    }
#endif


#ifdef BOINC_APP_GRAPHICS
    if (sah_graphics) strcpy(sah_graphics->status, "Generating FFT Coefficients");
#endif
    while (bitfield != 0) {
        if (bitfield & 1) {
            swi.analysis_fft_lengths[FftNum]=FftLen;
#ifdef USE_IPP
            int order = 0;
            for (int tmp = FftLen; !(tmp & 1); order++) tmp >>= 1;
            if (ippsFFTInitAlloc_C_32fc(&FftSpec[FftNum], order,
                                        IPP_FFT_NODIV_BY_ANY, ippAlgHintFast)) {
                SETIERROR (MALLOC_FAILED, "ippsFFTInitAlloc failed");
            }
#elif !defined(USE_FFTWF)
            // See docs in fft8g.C for sizing guidelines for BitRevTab and CoeffTab.
            BitRevTab[FftNum] = (int*) calloc_a(3+(int)sqrt((float)swi.analysis_fft_lengths[FftNum]), sizeof(int), MEM_ALIGN);
            if (BitRevTab[FftNum] == NULL)  SETIERROR(MALLOC_FAILED, "BitRevTab[FftNum] == NULL");
            BitRevTab[FftNum][0] = 0;
#else


            WorkData = (sah_complex *)malloc_a(FftLen * sizeof(sah_complex),MEM_ALIGN);
            sah_complex *scratch=(sah_complex *)malloc_a(FftLen*sizeof(sah_complex),MEM_ALIGN);
            if ((WorkData == NULL) || (scratch==NULL)) {
                SETIERROR(MALLOC_FAILED, "WorkData == NULL || scratch == NULL");
            }
            
            // TODO: Deallocate these at the end of the function
            analysis_plans[FftNum] = fftwf_plan_dft_1d(FftLen, scratch, WorkData, FFTW_BACKWARD, FFTW_MEASURE|FFTW_PRESERVE_INPUT);
#endif
            FftNum++;
#ifdef USE_FFTWF
            free_a(scratch);
            free_a(WorkData);
#endif /* USE_FFTWF */

        }
        FftLen*=2;
        bitfield>>=1;
    }
int ReportTripletEvent(
  float Power, float MeanPower, float period,
  float mid_time_bin, int start_time_bin, int freq_bin,
  int pot_len,const float *PoT, int write_triplet
) {
  TRIPLET_INFO ti;
  triplet triplet;
  int retval=0, i, j;
  double step,norm,index;
  double max_power=0;
  static int * inv;

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

  if (!inv) inv = (int*)calloc_a(swi.analysis_cfg.triplet_pot_length, sizeof(int), MEM_ALIGN);

  // triplet info
  ti.score=Power;
  ti.t.peak_power=Power;
  ti.t.mean_power=MeanPower;
  ti.freq_bin=freq_bin;
  ti.time_bin=mid_time_bin+start_time_bin+0.5f;
  ti.t.chirp_rate=ChirpFftPairs[analysis_state.icfft].ChirpRate;
  ti.t.fft_len=ChirpFftPairs[analysis_state.icfft].FftLen;
  ti.bperiod=period;
  ti.t.period=static_cast<float>(period*static_cast<double>(ti.t.fft_len)/swi.subband_sample_rate);
  ti.t.freq=cnvt_bin_hz(freq_bin, ti.t.fft_len);
  double t_offset=(static_cast<double>(mid_time_bin)+start_time_bin+0.5)
      *static_cast<double>(ti.t.fft_len)/
         swi.subband_sample_rate;
  ti.t.detection_freq=calc_detection_freq(ti.t.freq,ti.t.chirp_rate,t_offset);
  ti.t.time=swi.time_recorded+t_offset/86400.0;
  time_to_ra_dec(ti.t.time, &ti.t.ra, &ti.t.decl);

  // Populate the min and max PoT arrays.  These are only used
  // for graphics.
  memset(ti.pot_min,0xff,swi.analysis_cfg.triplet_pot_length*sizeof(int));
  memset(ti.pot_max,0,swi.analysis_cfg.triplet_pot_length*sizeof(int));
  step=static_cast<double>(pot_len)/swi.analysis_cfg.triplet_pot_length;
  ti.scale=static_cast<float>(1.0/step);
  index=0;
  for (i=0;i<pot_len;i++) {
    if (PoT[i]>max_power) max_power=PoT[i];
  }
  norm=255.0/max_power;
  float mtb = mid_time_bin;
  if (pot_len > swi.analysis_cfg.triplet_pot_length) {
    ti.tpotind0_0 = ti.tpotind0_1 = static_cast<int>(((mtb-period)*swi.analysis_cfg.triplet_pot_length)/pot_len);
    ti.tpotind1_0 = ti.tpotind1_1 = static_cast<int>(((mtb)*swi.analysis_cfg.triplet_pot_length)/pot_len);
    ti.tpotind2_0 = ti.tpotind2_1 = static_cast<int>(((mtb+period)*swi.analysis_cfg.triplet_pot_length)/pot_len);
    for (j=0; j<pot_len; j++) {
      i = (j*swi.analysis_cfg.triplet_pot_length)/pot_len;
      if ((PoT[j]*norm)<ti.pot_min[i]) {
        ti.pot_min[i]=static_cast<unsigned int>(floor(PoT[j]*norm));
      }
      if ((PoT[j]*norm)>ti.pot_max[i]) {
        ti.pot_max[i]=static_cast<unsigned int>(floor(PoT[j]*norm));
      }
    }
  } else {
    memset(inv, -1, sizeof(inv));
    for (i=0;i<swi.analysis_cfg.triplet_pot_length;i++) {
      j = (i*pot_len)/swi.analysis_cfg.triplet_pot_length;
      if (inv[j] < 0) inv[j] = i;
      if ((PoT[j]*norm)<ti.pot_min[i]) {
        ti.pot_min[i]=static_cast<unsigned int>(floor(PoT[j]*norm));
      }
      if ((PoT[j]*norm)>ti.pot_max[i]) {
        ti.pot_max[i]=static_cast<unsigned int>(floor(PoT[j]*norm));
      }
    }
    ti.tpotind0_0 = inv[static_cast<int>(mtb-period)];
    ti.tpotind0_1 = inv[static_cast<int>(mtb-period+1)];
    ti.tpotind1_0 = (inv[static_cast<int>(mtb)]+inv[static_cast<int>(mtb+1)])/2;
    ti.tpotind1_1 = (inv[static_cast<int>(mtb+1)]+inv[static_cast<int>(mtb+2)])/2;
    ti.tpotind2_0 = inv[static_cast<int>(mtb+period)];
    if (mtb+period+1 >= pot_len) ti.tpotind2_1 = swi.analysis_cfg.triplet_pot_length-1;
    else ti.tpotind2_1 = inv[static_cast<int>(mtb+period+1)];
  }

  // Update sah_graphics triplet info regardless of whether it is the
  // best thus far.  If a triplet has made it this far, display it.
#ifdef BOINC_APP_GRAPHICS
    if (!nographics()) sah_graphics->ti.copy(&ti);
#endif

  // best thus far ?
  if (ti.score>best_triplet->score) {
    *best_triplet=ti;
  }


  if (write_triplet) {

    if (signal_count > swi.analysis_cfg.max_signals) {
      SETIERROR(RESULT_OVERFLOW,"in ReportTripletEvent");
    }

    retval = outfile.printf("%s", ti.t.print_xml(0,0,1).c_str());

    if (retval < 0) {
      SETIERROR(WRITE_FAILED,"in ReportTripletEvent");
    } else {
      signal_count++;
      triplet_count++;
    }

  }

// debug possible heap corruption -- jeffc
#ifdef _WIN32
BOINCASSERT(_CrtCheckMemory());
#endif

  return(retval);
}