int cmd_handler_cc2420(const uint8_t *data, int len) { if(data[0] == '!') { if(data[1] == 'C' && len == 3) { printf("cc2420_cmd: setting channel: %d\n", data[2]); cc2420_set_channel(data[2]); return 1; } else if(data[1] == 'M' && len == 10) { printf("cc2420_cmd: Got MAC\n"); memcpy(uip_lladdr.addr, data+2, sizeof(uip_lladdr.addr)); linkaddr_set_node_addr((linkaddr_t *) uip_lladdr.addr); uint16_t shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, linkaddr_node_addr.u8); return 1; } } else if(data[0] == '?') { if(data[1] == 'C' && len == 2) { uint8_t buf[4]; printf("cc2420_cmd: getting channel: %d\n", data[2]); buf[0] = '!'; buf[1] = 'C'; buf[2] = cc2420_get_channel(); cmd_send(buf, 3); return 1; } } return 0; }
// set_addr -- clean rime address and reset rime & cc2420 address void sf_tdma_set_mac_addr(void) { rimeaddr_t addr; uint8_t longaddr[8]; uint16_t shortaddr; // reset rime address #ifdef SF_MOTE_TYPE_AP memcpy(&addr,&rimeaddr_null,sizeof(rimeaddr_t)); #endif #ifdef SF_MOTE_TYPE_SENSOR memset(&addr,0,sizeof(rimeaddr_t)); addr.u8[0] = node_id & 0xff; addr.u8[1] = node_id >> 8; #endif rimeaddr_set_node_addr(&addr); printf("Rime started with address "); printf("%u.%u\n",rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); // reset CC2420 address shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1]; memset(longaddr,0,sizeof(longaddr)); rimeaddr_copy((rimeaddr_t *)&longaddr,&rimeaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); }
/*---------------------------------------------------------------------------*/ int cc2420_init(void) { uint16_t reg; { int s = splhigh(); cc2420_arch_init(); /* Initalize ports and SPI. */ DISABLE_FIFOP_INT(); FIFOP_INT_INIT(); splx(s); } /* Turn on voltage regulator and reset. */ SET_VREG_ACTIVE(); //clock_delay(250); OK SET_RESET_ACTIVE(); clock_delay(127); SET_RESET_INACTIVE(); //clock_delay(125); OK /* Turn on the crystal oscillator. */ strobe(CC2420_SXOSCON); /* Turn on/off automatic packet acknowledgment and address decoding. */ reg = getreg(CC2420_MDMCTRL0); reg |= 0x40; /* XXX CCA mode 1 */ #if CC2420_CONF_AUTOACK reg |= AUTOACK | ADR_DECODE; #else reg &= ~(AUTOACK | ADR_DECODE); #endif /* CC2420_CONF_AUTOACK */ setreg(CC2420_MDMCTRL0, reg); /* Change default values as recomended in the data sheet, */ /* correlation threshold = 20, RX bandpass filter = 1.3uA. */ setreg(CC2420_MDMCTRL1, CORR_THR(20)); reg = getreg(CC2420_RXCTRL1); reg |= RXBPF_LOCUR; setreg(CC2420_RXCTRL1, reg); /* Set the FIFOP threshold to maximum. */ setreg(CC2420_IOCFG0, FIFOP_THR(127)); /* Turn off "Security enable" (page 32). */ reg = getreg(CC2420_SECCTRL0); reg &= ~RXFIFO_PROTECTION; setreg(CC2420_SECCTRL0, reg); cc2420_set_pan_addr(0xffff, 0x0000, NULL); cc2420_set_channel(26); process_start(&cc2420_process, NULL); return 1; }
static void configure(void) { uint16_t reg; BUSYWAIT_UNTIL(status() & (BV(CC2420_XOSC16M_STABLE)), RTIMER_SECOND / 100); /* Turn on/off automatic packet acknowledgment and address decoding. */ reg = getreg(CC2420_MDMCTRL0); #if CC2420_CONF_AUTOACK reg |= AUTOACK | ADR_DECODE; #else reg &= ~(AUTOACK | ADR_DECODE); #endif /* CC2420_CONF_AUTOACK */ setreg(CC2420_MDMCTRL0, reg); /* Set transmission turnaround time to the lower setting (8 symbols = 0.128 ms) instead of the default (12 symbols = 0.192 ms). */ /* reg = getreg(CC2420_TXCTRL); reg &= ~(1 << 13); setreg(CC2420_TXCTRL, reg);*/ /* Change default values as recomended in the data sheet, */ /* correlation threshold = 20, RX bandpass filter = 1.3uA. */ setreg(CC2420_MDMCTRL1, CORR_THR(20)); reg = getreg(CC2420_RXCTRL1); reg |= RXBPF_LOCUR; setreg(CC2420_RXCTRL1, reg); /* Set the FIFOP threshold to maximum. */ setreg(CC2420_IOCFG0, FIFOP_THR(127)); /* Turn off "Security enable" (page 32). */ reg = getreg(CC2420_SECCTRL0); reg &= ~RXFIFO_PROTECTION; setreg(CC2420_SECCTRL0, reg); cc2420_set_pan_addr(pan, addr, NULL); cc2420_set_channel(channel); flushrx(); }
/*---------------------------------------------------------------------------*/ #if WITH_TINYOS_AUTO_IDS uint16_t TOS_NODE_ID = 0x1234; /* non-zero */ uint16_t TOS_LOCAL_ADDRESS = 0x1234; /* non-zero */ #endif /* WITH_TINYOS_AUTO_IDS */ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); #if USE_LEDS leds_init(); leds_on(LEDS_RED); #endif #if USE_SERIAL uart1_init(BAUD2UBR(115200)); /* Must come before first PRINTF */ #endif #if USE_LEDS leds_on(LEDS_GREEN); #endif #if USE_ADDRESSING ds2411_init(); /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible with an Ethernet MAC address - byte 0 (byte 2 in the DS ID) cannot be odd. */ ds2411_id[2] &= 0xfe; #endif #if USE_LEDS leds_on(LEDS_BLUE); #endif #if USE_XMEM xmem_init(); #endif #if USE_LEDS leds_off(LEDS_RED); #endif #if USE_RTIMER rtimer_init(); #endif /* * Hardware initialization done! */ #if USE_ADDRESSING #if WITH_TINYOS_AUTO_IDS node_id = TOS_NODE_ID; #else /* WITH_TINYOS_AUTO_IDS */ /* Restore node id if such has been stored in external mem */ node_id_restore(); #endif /* WITH_TINYOS_AUTO_IDS */ #endif // USE_ADDRESSING /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ #ifdef IEEE_802154_MAC_ADDRESS { uint8_t ieee[] = IEEE_802154_MAC_ADDRESS; memcpy(ds2411_id, ieee, sizeof(uip_lladdr.addr)); ds2411_id[7] = node_id & 0xff; } #endif #if USE_RANDOM random_init(ds2411_id[0] + node_id); #endif #if USE_LEDS leds_off(LEDS_BLUE); #endif /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); #if USE_ALARMS ctimer_init(); #endif #if WITH_UIP slip_arch_init(BAUD2UBR(115200)); #endif /* WITH_UIP */ init_platform(); #if USE_ADDRESSING set_rime_addr(); #endif #if USE_RADIO cc2420_init(); #if USE_ADDRESSING { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr); PRINTF("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } #endif // USE_ADDRESSING cc2420_set_channel(RF_CHANNEL); #endif // USE_RADIO PRINTF(CONTIKI_VERSION_STRING " started. "); if(node_id > 0) { PRINTF("Node id is set to %u.\n", node_id); } else { PRINTF("Node id is not set.\n"); } /* PRINTF("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", ds2411_id[0], ds2411_id[1], ds2411_id[2], ds2411_id[3], ds2411_id[4], ds2411_id[5], ds2411_id[6], ds2411_id[7]);*/ #if WITH_UIP6 memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ /* sicslowpan_init(sicslowmac_init(&cc2420_driver)); */ /* PRINTF(" %s channel %u\n", sicslowmac_driver.name, RF_CHANNEL); */ /* Setup X-MAC for 802.15.4 */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); PRINTF("%s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); process_start(&tcpip_process, NULL); PRINTF("Tentative link-local IPv6 address "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { PRINTF("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } PRINTF("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); PRINTF("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { PRINTF("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } PRINTF("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* WITH_UIP6 */ #if CONTIKI_MY_OPTIMIZATIONS // disable net completely, totally and fully #else NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); PRINTF("%s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); #endif #endif /* WITH_UIP6 */ #if USE_SERIAL #if !WITH_UIP && !WITH_UIP6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif #endif #if PROFILE_CONF_ON profile_init(); #endif /* PROFILE_CONF_ON */ #if USE_LEDS leds_off(LEDS_GREEN); #endif #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level((rimeaddr_node_addr.u8[0] << 4) + 16); #endif /* TIMESYNCH_CONF_ENABLED */ #if WITH_UIP process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ process_start(&slip_process, NULL); slip_set_input_callback(set_gateway); { uip_ipaddr_t hostaddr, netmask; uip_init(); uip_ipaddr(&hostaddr, 172,16, rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* uip_fw_register(&slipif);*/ uip_over_mesh_set_gateway_netif(&slipif); uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); PRINTF("uIP started with IP address %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* WITH_UIP */ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); watchdog_start(); #if USE_SERIAL #if !PROCESS_CONF_NO_PROCESS_NAMES print_processes(autostart_processes); #else /* !PROCESS_CONF_NO_PROCESS_NAMES */ putchar('\n'); /* include putchar() */ #endif /* !PROCESS_CONF_NO_PROCESS_NAMES */ #endif autostart_start(autostart_processes); /* * This is the scheduler loop. */ #if DCOSYNCH_CONF_ENABLED timer_set(&mgt_timer, DCOSYNCH_PERIOD * CLOCK_SECOND); #endif /* watchdog_stop();*/ while(1) { int r; #if PROFILE_CONF_ON profile_episode_start(); #endif /* PROFILE_CONF_ON */ do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); #if PROFILE_CONF_ON profile_episode_end(); #endif /* PROFILE_CONF_ON */ /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 #if USE_SERIAL || uart1_active() #endif ) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; #if DCOSYNCH_CONF_ENABLED /* before going down to sleep possibly do some management */ if(timer_expired(&mgt_timer)) { watchdog_periodic(); timer_reset(&mgt_timer); msp430_sync_dco(); #if CC2420_CONF_SFD_TIMESTAMPS cc2420_arch_sfd_init(); #endif /* CC2420_CONF_SFD_TIMESTAMPS */ } #endif /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); /* check if the DCO needs to be on - if so - only LPM 1 */ if (msp430_dco_required) { _BIS_SR(GIE | CPUOFF); /* LPM1 sleep for DMA to work!. */ } else { _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ } /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } return 0; }
/*---------------------------------------------------------------------------*/ void init_net(void) { set_rime_addr(); cc2420_init(); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr); printf_P(PSTR("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n"), longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } #if NETSTACK_CONF_WITH_IPV6 memcpy(&uip_lladdr.addr, ds2401_id, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ /* sicslowpan_init(sicslowmac_init(&cc2420_driver)); */ /* printf(" %s channel %u\n", sicslowmac_driver.name, CC2420_CONF_CHANNEL); */ /* Setup X-MAC for 802.15.4 */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf_P(PSTR("%s %s, channel check rate %d Hz, radio channel %d\n"), NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); process_start(&tcpip_process, NULL); printf_P(PSTR("Tentative link-local IPv6 address ")); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf_P(PSTR("%02x%02x:"), lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf_P(PSTR("%02x%02x\n"), lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf_P(PSTR("Tentative global IPv6 address ")); for(i = 0; i < 7; ++i) { printf_P(PSTR("%02x%02x:"), ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf_P(PSTR("%02x%02x\n"), ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* NETSTACK_CONF_WITH_IPV6 */ NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf_P(PSTR("%s %s, channel check rate %d Hz, radio channel %d\n"), NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); #endif /* NETSTACK_CONF_WITH_IPV6 */ #if NETSTACK_CONF_WITH_IPV4 uip_ipaddr_t hostaddr, netmask; uip_init(); uip_fw_init(); process_start(&tcpip_process, NULL); process_start(&slip_process, NULL); process_start(&uip_fw_process, NULL); slip_set_input_callback(set_gateway); /* Construct ip address from four bytes. */ uip_ipaddr(&hostaddr, 172, 16, linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1]); /* Construct netmask from four bytes. */ uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); /* Set the IP address for this host. */ uip_sethostaddr(&hostaddr); /* Set the netmask for this host. */ uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* Register slip interface with forwarding module. */ //uip_fw_register(&slipif); uip_over_mesh_set_gateway_netif(&slipif); /* Set slip interface to be a default forwarding interface . */ uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); printf_P(PSTR("uIP started with IP address %d.%d.%d.%d\n"), uip_ipaddr_to_quad(&hostaddr)); #endif /* NETSTACK_CONF_WITH_IPV4 */ }
/*--------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); uart1_init(BAUD2UBR(115200)); /* Must come before first printf */ leds_on(LEDS_GREEN); /* xmem_init(); */ rtimer_init(); lcd_init(); watchdog_init(); PRINTF(CONTIKI_VERSION_STRING "\n"); /* PRINTF("Compiled at %s, %s\n", __TIME__, __DATE__);*/ /* * Hardware initialization done! */ leds_on(LEDS_RED); /* Restore node id if such has been stored in external mem */ #ifdef NODEID node_id = NODEID; #ifdef BURN_NODEID node_id_burn(node_id); node_id_restore(); /* also configures node_mac[] */ #endif /* BURN_NODEID */ #else node_id_restore(); /* also configures node_mac[] */ #endif /* NODE_ID */ /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ #ifdef MAC_1 { uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 }; memcpy(node_mac, ieee, sizeof(uip_lladdr.addr)); } #endif /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); ctimer_init(); set_rime_addr(); random_init(node_id); NETSTACK_RADIO.init(); #if CC11xx_CC1101 || CC11xx_CC1120 printf("Starting up cc11xx radio at channel %d\n", RF_CHANNEL); cc11xx_channel_set(RF_CHANNEL); #endif /* CC11xx_CC1101 || CC11xx_CC1120 */ #if CONFIGURE_CC2420 || CONFIGURE_CC2520 { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); #if CONFIGURE_CC2420 cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); #endif /* CONFIGURE_CC2420 */ #if CONFIGURE_CC2520 cc2520_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); #endif /* CONFIGURE_CC2520 */ } #if CONFIGURE_CC2420 cc2420_set_channel(RF_CHANNEL); #endif /* CONFIGURE_CC2420 */ #if CONFIGURE_CC2520 cc2520_set_channel(RF_CHANNEL); #endif /* CONFIGURE_CC2520 */ #endif /* CONFIGURE_CC2420 || CONFIGURE_CC2520 */ NETSTACK_RADIO.on(); leds_off(LEDS_ALL); if(node_id > 0) { PRINTF("Node id %u.\n", node_id); } else { PRINTF("Node id not set.\n"); } #if WITH_UIP6 memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ queuebuf_init(); netstack_init(); printf("%s/%s %lu %u\n", NETSTACK_RDC.name, NETSTACK_MAC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); process_start(&tcpip_process, NULL); printf("IPv6 "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(1) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, 0xfc00, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* WITH_UIP6 */ netstack_init(); printf("%s %lu %u\n", NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), RF_CHANNEL); #endif /* WITH_UIP6 */ #if !WITH_UIP6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif #ifdef NETSTACK_AES_H #ifndef NETSTACK_AES_KEY #error Please define NETSTACK_AES_KEY! #endif /* NETSTACK_AES_KEY */ { const uint8_t key[] = NETSTACK_AES_KEY; netstack_aes_set_key(key); } /*printf("AES encryption is enabled: '%s'\n", NETSTACK_AES_KEY);*/ printf("AES encryption is enabled\n"); #else /* NETSTACK_AES_H */ printf("Warning: AES encryption is disabled\n"); #endif /* NETSTACK_AES_H */ #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level(rimeaddr_node_addr.u8[0]); #endif /* TIMESYNCH_CONF_ENABLED */ #if CC11xx_CC1101 || CC11xx_CC1120 printf("cc11xx radio at channel %d\n", RF_CHANNEL); cc11xx_channel_set(RF_CHANNEL); #endif /* CC11xx_CC1101 || CC11xx_CC1120 */ #if CONFIGURE_CC2420 { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (rimeaddr_node_addr.u8[0] << 8) + rimeaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); rimeaddr_copy((rimeaddr_t *)&longaddr, &rimeaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } cc2420_set_channel(RF_CHANNEL); #endif /* CONFIGURE_CC2420 */ NETSTACK_RADIO.on(); /* process_start(&sensors_process, NULL); SENSORS_ACTIVATE(button_sensor);*/ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); simple_rpl_init(); watchdog_start(); print_processes(autostart_processes); autostart_start(autostart_processes); duty_cycle_scroller_start(CLOCK_SECOND * 2); #if IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP && WITH_SLIP /* Start the SLIP */ printf("Initiating SLIP: my IP is 172.16.0.2...\n"); slip_arch_init(0); { uip_ip4addr_t ipv4addr, netmask; uip_ipaddr(&ipv4addr, 172, 16, 0, 2); uip_ipaddr(&netmask, 255, 255, 255, 0); ip64_set_ipv4_address(&ipv4addr, &netmask); } uart1_set_input(slip_input_byte); #endif /* IP64_CONF_UIP_FALLBACK_INTERFACE_SLIP */ /* * This is the scheduler loop. */ while(1) { int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart1_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } }
int main() { disableIRQ(); disableFIQ(); *AT91C_AIC_IDCR = 0xffffffff; *AT91C_PMC_PCDR = 0xffffffff; *AT91C_PMC_PCER = (1 << AT91C_ID_PIOA); dbg_setup_uart(); printf("Initialising\n"); leds_arch_init(); clock_init(); process_init(); process_start(&etimer_process, NULL); ctimer_init(); robot_stepper_init(); enableIRQ(); cc2420_init(); cc2420_set_pan_addr(0x2024, 0, &uip_hostaddr.u16[1]); cc2420_set_channel(RF_CHANNEL); rime_init(nullmac_init(&cc2420_driver)); printf("CC2420 setup done\n"); rimeaddr_set_node_addr(&node_addr); #if WITH_UIP { uip_ipaddr_t hostaddr, netmask; uip_init(); uip_ipaddr(&hostaddr, 172,16, rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); printf("Host addr\n"); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* uip_fw_register(&slipif);*/ /*uip_over_mesh_set_gateway_netif(&slipif);*/ uip_fw_default(&meshif); printf("Mesh init\n"); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); printf("uIP started with IP address %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* WITH_UIP */ #if WITH_UIP process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ #endif /* WITH_UIP */ printf("Heap size: %ld bytes\n", &__heap_end__ - (char*)sbrk(0)); printf("Started\n"); autostart_start(autostart_processes); printf("Processes running\n"); while(1) { do { /* Reset watchdog. */ wdt_reset(); } while(process_run() > 0); /* Idle! */ /* Stop processor clock */ *AT91C_PMC_SCDR |= AT91C_PMC_PCK; } return 0; }
/*--------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); uart1_init(BAUD2UBR(115200)); /* Must come before first printf */ #if NETSTACK_CONF_WITH_IPV4 slip_arch_init(BAUD2UBR(115200)); #endif /* NETSTACK_CONF_WITH_IPV4 */ leds_on(LEDS_GREEN); /* xmem_init(); */ rtimer_init(); lcd_init(); PRINTF(CONTIKI_VERSION_STRING "\n"); /* * Hardware initialization done! */ leds_on(LEDS_RED); /* Restore node id if such has been stored in external mem */ // node_id_restore(); #ifdef NODEID node_id = NODEID; #ifdef BURN_NODEID flash_setup(); flash_clear(0x1800); flash_write(0x1800, node_id); flash_done(); #endif /* BURN_NODEID */ #endif /* NODE_ID */ if(node_id == 0) { node_id = *((unsigned short *)0x1800); } memset(node_mac, 0, sizeof(node_mac)); node_mac[6] = node_id >> 8; node_mac[7] = node_id & 0xff; /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ #ifdef MAC_1 { uint8_t ieee[] = { MAC_1, MAC_2, MAC_3, MAC_4, MAC_5, MAC_6, MAC_7, MAC_8 }; memcpy(node_mac, ieee, sizeof(uip_lladdr.addr)); } #endif /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); ctimer_init(); set_rime_addr(); cc2420_init(); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } leds_off(LEDS_ALL); if(node_id > 0) { PRINTF("Node id %u.\n", node_id); } else { PRINTF("Node id not set.\n"); } #if NETSTACK_CONF_WITH_IPV6 memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ queuebuf_init(); NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %lu %u\n", NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); process_start(&tcpip_process, NULL); printf("IPv6 "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* NETSTACK_CONF_WITH_IPV6 */ NETSTACK_RDC.init(); NETSTACK_MAC.init(); NETSTACK_NETWORK.init(); printf("%s %lu %u\n", NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0? 1: NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); #endif /* NETSTACK_CONF_WITH_IPV6 */ #if !NETSTACK_CONF_WITH_IPV6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level(linkaddr_node_addr.u8[0]); #endif /* TIMESYNCH_CONF_ENABLED */ /* process_start(&sensors_process, NULL); SENSORS_ACTIVATE(button_sensor);*/ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); print_processes(autostart_processes); autostart_start(autostart_processes); duty_cycle_scroller_start(CLOCK_SECOND * 2); /* * This is the scheduler loop. */ watchdog_start(); watchdog_stop(); /* Stop the wdt... */ while(1) { int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart1_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_SWITCH(ENERGEST_TYPE_LPM, ENERGEST_TYPE_CPU); } } }
/*---------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); clock_wait(100); uart0_init(BAUD2UBR(UART0_BAUD_RATE)); /* Must come before first printf */ #if NETSTACK_CONF_WITH_IPV4 slip_arch_init(BAUD2UBR(UART0_BAUD_RATE)); #endif /* NETSTACK_CONF_WITH_IPV4 */ xmem_init(); rtimer_init(); /* * Hardware initialization done! */ /* Restore node id if such has been stored in external mem */ node_id_restore(); /* If no MAC address was burned, we use the node id or the Z1 product ID */ if(!(node_mac[0] | node_mac[1] | node_mac[2] | node_mac[3] | node_mac[4] | node_mac[5] | node_mac[6] | node_mac[7])) { #ifdef SERIALNUM if(!node_id) { PRINTF("Node id is not set, using Z1 product ID\n"); node_id = SERIALNUM; } #endif node_mac[0] = 0xc1; /* Hardcoded for Z1 */ node_mac[1] = 0x0c; /* Hardcoded for Revision C */ node_mac[2] = 0x00; /* Hardcoded to arbitrary even number so that the 802.15.4 MAC address is compatible with an Ethernet MAC address - byte 0 (byte 2 in the DS ID) */ node_mac[3] = 0x00; /* Hardcoded */ node_mac[4] = 0x00; /* Hardcoded */ node_mac[5] = 0x00; /* Hardcoded */ node_mac[6] = node_id >> 8; node_mac[7] = node_id & 0xff; } /* Overwrite node MAC if desired at compile time */ #ifdef MACID #warning "***** CHANGING DEFAULT MAC *****" node_mac[0] = 0xc1; /* Hardcoded for Z1 */ node_mac[1] = 0x0c; /* Hardcoded for Revision C */ node_mac[2] = 0x00; /* Hardcoded to arbitrary even number so that the 802.15.4 MAC address is compatible with an Ethernet MAC address - byte 0 (byte 2 in the DS ID) */ node_mac[3] = 0x00; /* Hardcoded */ node_mac[4] = 0x00; /* Hardcoded */ node_mac[5] = 0x00; /* Hardcoded */ node_mac[6] = MACID >> 8; node_mac[7] = MACID & 0xff; #endif #ifdef IEEE_802154_MAC_ADDRESS /* for setting "hardcoded" IEEE 802.15.4 MAC addresses */ { uint8_t ieee[] = IEEE_802154_MAC_ADDRESS; memcpy(node_mac, ieee, sizeof(uip_lladdr.addr)); node_mac[7] = node_id & 0xff; } #endif /* IEEE_802154_MAC_ADDRESS */ /* * Initialize Contiki and our processes. */ random_init(node_mac[6] + node_mac[7]); process_init(); process_start(&etimer_process, NULL); ctimer_init(); init_platform(); set_rime_addr(); cc2420_init(); SENSORS_ACTIVATE(adxl345); { uint8_t longaddr[8]; uint16_t shortaddr; shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1]; memset(longaddr, 0, sizeof(longaddr)); linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", longaddr[0], longaddr[1], longaddr[2], longaddr[3], longaddr[4], longaddr[5], longaddr[6], longaddr[7]); cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr); } leds_off(LEDS_ALL); #ifdef SERIALNUM PRINTF("Ref ID: %u\n", SERIALNUM); #endif PRINTF(CONTIKI_VERSION_STRING " started. "); if(node_id) { PRINTF("Node id is set to %u.\n", node_id); } else { PRINTF("Node id not set\n"); } #if NETSTACK_CONF_WITH_IPV6 memcpy(&uip_lladdr.addr, node_mac, sizeof(uip_lladdr.addr)); /* Setup nullmac-like MAC for 802.15.4 */ /* sicslowpan_init(sicslowmac_init(&cc2420_driver)); */ /* printf(" %s channel %u\n", sicslowmac_driver.name, CC2420_CONF_CHANNEL); */ /* Setup X-MAC for 802.15.4 */ queuebuf_init(); netstack_init(); // NETSTACK_RDC.init(); // NETSTACK_MAC.init(); // NETSTACK_LLSEC.init(); // NETSTACK_NETWORK.init(); printf("%s %s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_LLSEC.name, NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1 : NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); process_start(&tcpip_process, NULL); printf("Tentative link-local IPv6 address "); { uip_ds6_addr_t *lladdr; int i; lladdr = uip_ds6_get_link_local(-1); for(i = 0; i < 7; ++i) { printf("%02x%02x:", lladdr->ipaddr.u8[i * 2], lladdr->ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", lladdr->ipaddr.u8[14], lladdr->ipaddr.u8[15]); } if(!UIP_CONF_IPV6_RPL) { uip_ipaddr_t ipaddr; int i; uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0); uip_ds6_set_addr_iid(&ipaddr, &uip_lladdr); uip_ds6_addr_add(&ipaddr, 0, ADDR_TENTATIVE); printf("Tentative global IPv6 address "); for(i = 0; i < 7; ++i) { printf("%02x%02x:", ipaddr.u8[i * 2], ipaddr.u8[i * 2 + 1]); } printf("%02x%02x\n", ipaddr.u8[7 * 2], ipaddr.u8[7 * 2 + 1]); } #else /* NETSTACK_CONF_WITH_IPV6 */ netstack_init(); //NETSTACK_RDC.init(); //NETSTACK_MAC.init(); //NETSTACK_LLSEC.init(); //NETSTACK_NETWORK.init(); printf("%s %s %s, channel check rate %lu Hz, radio channel %u\n", NETSTACK_LLSEC.name, NETSTACK_MAC.name, NETSTACK_RDC.name, CLOCK_SECOND / (NETSTACK_RDC.channel_check_interval() == 0 ? 1 : NETSTACK_RDC.channel_check_interval()), CC2420_CONF_CHANNEL); #endif /* NETSTACK_CONF_WITH_IPV6 */ #if !NETSTACK_CONF_WITH_IPV4 && !NETSTACK_CONF_WITH_IPV6 uart0_set_input(serial_line_input_byte); serial_line_init(); #endif leds_off(LEDS_GREEN); #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level(linkaddr_node_addr.u8[0]); #endif /* TIMESYNCH_CONF_ENABLED */ #if NETSTACK_CONF_WITH_IPV4 process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ process_start(&slip_process, NULL); slip_set_input_callback(set_gateway); { uip_ipaddr_t hostaddr, netmask; uip_init(); uip_ipaddr(&hostaddr, 172, 16, linkaddr_node_addr.u8[0], linkaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255, 255, 0, 0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* uip_fw_register(&slipif);*/ uip_over_mesh_set_gateway_netif(&slipif); uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); printf("uIP started with IP address %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* NETSTACK_CONF_WITH_IPV4 */ energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); print_processes(autostart_processes); autostart_start(autostart_processes); /* * This is the scheduler loop. */ #if DCOSYNCH_CONF_ENABLED timer_set(&mgt_timer, DCOSYNCH_PERIOD * CLOCK_SECOND); #endif watchdog_start(); /* watchdog_stop();*/ while(1) { int r; do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart0_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart0_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; #if DCOSYNCH_CONF_ENABLED /* before going down to sleep possibly do some management */ if(timer_expired(&mgt_timer)) { timer_reset(&mgt_timer); msp430_sync_dco(); } #endif /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_SWITCH(ENERGEST_TYPE_CPU, ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_SWITCH(ENERGEST_TYPE_LPM, ENERGEST_TYPE_CPU); } } return 0; }
/*---------------------------------------------------------------------------*/ int cc2420_init(void) { uint16_t reg; { int s = splhigh(); cc2420_arch_init(); /* Initalize ports and SPI. */ CC2420_DISABLE_FIFOP_INT(); CC2420_FIFOP_INT_INIT(); splx(s); } /* Turn on voltage regulator and reset. */ SET_VREG_ACTIVE(); clock_delay(250); SET_RESET_ACTIVE(); clock_delay(127); SET_RESET_INACTIVE(); clock_delay(125); /* Turn on the crystal oscillator. */ strobe(CC2420_SXOSCON); /* Turn on/off automatic packet acknowledgment and address decoding. */ reg = getreg(CC2420_MDMCTRL0); #if CC2420_CONF_AUTOACK reg |= AUTOACK | ADR_DECODE; #else reg &= ~(AUTOACK | ADR_DECODE); #endif /* CC2420_CONF_AUTOACK */ setreg(CC2420_MDMCTRL0, reg); /* Set transmission turnaround time to the lower setting (8 symbols = 0.128 ms) instead of the default (12 symbols = 0.192 ms). */ /* reg = getreg(CC2420_TXCTRL); reg &= ~(1 << 13); setreg(CC2420_TXCTRL, reg);*/ /* Change default values as recomended in the data sheet, */ /* correlation threshold = 20, RX bandpass filter = 1.3uA. */ setreg(CC2420_MDMCTRL1, CORR_THR(20)); reg = getreg(CC2420_RXCTRL1); reg |= RXBPF_LOCUR; setreg(CC2420_RXCTRL1, reg); /* Set the FIFOP threshold to maximum. */ setreg(CC2420_IOCFG0, FIFOP_THR(127)); /* Turn off "Security enable" (page 32). */ reg = getreg(CC2420_SECCTRL0); reg &= ~RXFIFO_PROTECTION; setreg(CC2420_SECCTRL0, reg); cc2420_set_pan_addr(0xffff, 0x0000, NULL); cc2420_set_channel(CC2420_CONF_CHANNEL); cc2420_set_cca_threshold(CC2420_CONF_CCA_THRESH); flushrx(); process_start(&cc2420_process, NULL); return 1; }
/*---------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_toggle(LEDS_RED | LEDS_GREEN | LEDS_BLUE); #if WITH_UIP slip_arch_init(BAUD2UBR(115200)); /* Must come before first printf */ #else /* WITH_UIP */ uart1_init(BAUD2UBR(115200)); /* Must come before first printf */ #endif /* WITH_UIP */ printf("Starting %s " "($Id: contiki-sky-main.c,v 1.9 2009/11/20 10:45:07 nifi Exp $)\n", __FILE__); ds2411_init(); xmem_init(); leds_toggle(LEDS_RED | LEDS_GREEN | LEDS_BLUE); rtimer_init(); /* * Hardware initialization done! */ /* Restore node id if such has been stored in external mem */ // node_id_burn(3); node_id_restore(); printf("node_id : %hu\n", node_id); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", ds2411_id[0], ds2411_id[1], ds2411_id[2], ds2411_id[3], ds2411_id[4], ds2411_id[5], ds2411_id[6], ds2411_id[7]); #if WITH_UIP uip_init(); uip_sethostaddr(&slipif.ipaddr); uip_setnetmask(&slipif.netmask); uip_fw_default(&slipif); /* Point2point, no default router. */ #endif /* WITH_UIP */ /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); process_start(&sensors_process, NULL); /* * Initialize light and humidity/temp sensors. */ SENSORS_ACTIVATE(light_sensor); SENSORS_ACTIVATE(sht11_sensor); ctimer_init(); set_rime_addr(); cc2420_init(); cc2420_set_pan_addr(panId, 0 /*XXX*/, ds2411_id); cc2420_set_channel(RF_CHANNEL); cc2420_set_txpower(31); nullmac_init(&cc2420_driver); rime_init(&nullmac_driver); // xmac_init(&cc2420_driver); // rime_init(&xmac_driver); /* rimeaddr_set_node_addr*/ #if WITH_UIP process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ process_start(&slip_process, NULL); #endif /* WITH_UIP */ SENSORS_ACTIVATE(button_sensor); print_processes(autostart_processes); autostart_start(autostart_processes); energest_init(); /* * This is the scheduler loop. */ printf("process_run()...\n"); ENERGEST_ON(ENERGEST_TYPE_CPU); while (1) { do { /* Reset watchdog. */ } while(process_run() > 0); /* * Idle processing. */ if(lpm_en) { int s = splhigh(); /* Disable interrupts. */ if(process_nevents() != 0) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); _BIS_SR(GIE | SCG0 | /*SCG1 |*/ CPUOFF); /* LPM3 sleep. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } } return 0; }
/*---------------------------------------------------------------------------*/ int main(int argc, char **argv) { /* * Initalize hardware. */ msp430_cpu_init(); clock_init(); leds_init(); leds_on(LEDS_RED); uart1_init(BAUD2UBR(115200)); /* Must come before first printf */ #if WITH_UIP slip_arch_init(BAUD2UBR(115200)); #endif /* WITH_UIP */ leds_on(LEDS_GREEN); ds2411_init(); /* XXX hack: Fix it so that the 802.15.4 MAC address is compatible with an Ethernet MAC address - byte 0 (byte 2 in the DS ID) cannot be odd. */ ds2411_id[2] &= 0xfe; leds_on(LEDS_BLUE); xmem_init(); leds_off(LEDS_RED); rtimer_init(); /* * Hardware initialization done! */ /* Restore node id if such has been stored in external mem */ node_id_restore(); random_init(ds2411_id[0] + node_id); leds_off(LEDS_BLUE); /* * Initialize Contiki and our processes. */ process_init(); process_start(&etimer_process, NULL); process_start(&sensors_process, NULL); /* * Initialize light and humidity/temp sensors. */ sensors_light_init(); battery_sensor.activate(); sht11_init(); ctimer_init(); cc2420_init(); cc2420_set_pan_addr(IEEE802154_PANID, 0 /*XXX*/, ds2411_id); cc2420_set_channel(RF_CHANNEL); printf(CONTIKI_VERSION_STRING " started. "); if(node_id > 0) { printf("Node id is set to %u.\n", node_id); } else { printf("Node id is not set.\n"); } set_rime_addr(); printf("MAC %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", ds2411_id[0], ds2411_id[1], ds2411_id[2], ds2411_id[3], ds2411_id[4], ds2411_id[5], ds2411_id[6], ds2411_id[7]); #if WITH_UIP6 memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr)); sicslowpan_init(sicslowmac_init(&cc2420_driver)); process_start(&tcpip_process, NULL); printf(" %s channel %u\n", sicslowmac_driver.name, RF_CHANNEL); #if UIP_CONF_ROUTER rime_init(rime_udp_init(NULL)); uip_router_register(&rimeroute); #endif /* UIP_CONF_ROUTER */ #else /* WITH_UIP6 */ rime_init(MAC_DRIVER.init(&cc2420_driver)); printf(" %s channel %u\n", rime_mac->name, RF_CHANNEL); #endif /* WITH_UIP6 */ #if !WITH_UIP && !WITH_UIP6 uart1_set_input(serial_line_input_byte); serial_line_init(); #endif #if PROFILE_CONF_ON profile_init(); #endif /* PROFILE_CONF_ON */ leds_off(LEDS_GREEN); #if WITH_FTSP ftsp_init(); #endif /* WITH_FTSP */ #if TIMESYNCH_CONF_ENABLED timesynch_init(); timesynch_set_authority_level(rimeaddr_node_addr.u8[0]); #endif /* TIMESYNCH_CONF_ENABLED */ #if WITH_UIP process_start(&tcpip_process, NULL); process_start(&uip_fw_process, NULL); /* Start IP output */ process_start(&slip_process, NULL); slip_set_input_callback(set_gateway); { uip_ipaddr_t hostaddr, netmask; uip_init(); uip_ipaddr(&hostaddr, 172,16, rimeaddr_node_addr.u8[0],rimeaddr_node_addr.u8[1]); uip_ipaddr(&netmask, 255,255,0,0); uip_ipaddr_copy(&meshif.ipaddr, &hostaddr); uip_sethostaddr(&hostaddr); uip_setnetmask(&netmask); uip_over_mesh_set_net(&hostaddr, &netmask); /* uip_fw_register(&slipif);*/ uip_over_mesh_set_gateway_netif(&slipif); uip_fw_default(&meshif); uip_over_mesh_init(UIP_OVER_MESH_CHANNEL); printf("uIP started with IP address %d.%d.%d.%d\n", uip_ipaddr_to_quad(&hostaddr)); } #endif /* WITH_UIP */ button_sensor.activate(); energest_init(); ENERGEST_ON(ENERGEST_TYPE_CPU); print_processes(autostart_processes); autostart_start(autostart_processes); /* * This is the scheduler loop. */ #if DCOSYNCH_CONF_ENABLED timer_set(&mgt_timer, DCOSYNCH_PERIOD * CLOCK_SECOND); #endif watchdog_start(); /* watchdog_stop();*/ while(1) { int r; #if PROFILE_CONF_ON profile_episode_start(); #endif /* PROFILE_CONF_ON */ do { /* Reset watchdog. */ watchdog_periodic(); r = process_run(); } while(r > 0); #if PROFILE_CONF_ON profile_episode_end(); #endif /* PROFILE_CONF_ON */ /* * Idle processing. */ int s = splhigh(); /* Disable interrupts. */ /* uart1_active is for avoiding LPM3 when still sending or receiving */ if(process_nevents() != 0 || uart1_active()) { splx(s); /* Re-enable interrupts. */ } else { static unsigned long irq_energest = 0; #if DCOSYNCH_CONF_ENABLED /* before going down to sleep possibly do some management */ if (timer_expired(&mgt_timer)) { timer_reset(&mgt_timer); msp430_sync_dco(); } #endif /* Re-enable interrupts and go to sleep atomically. */ ENERGEST_OFF(ENERGEST_TYPE_CPU); ENERGEST_ON(ENERGEST_TYPE_LPM); /* We only want to measure the processing done in IRQs when we are asleep, so we discard the processing time done when we were awake. */ energest_type_set(ENERGEST_TYPE_IRQ, irq_energest); watchdog_stop(); _BIS_SR(GIE | SCG0 | SCG1 | CPUOFF); /* LPM3 sleep. This statement will block until the CPU is woken up by an interrupt that sets the wake up flag. */ /* We get the current processing time for interrupts that was done during the LPM and store it for next time around. */ dint(); irq_energest = energest_type_time(ENERGEST_TYPE_IRQ); eint(); watchdog_start(); ENERGEST_OFF(ENERGEST_TYPE_LPM); ENERGEST_ON(ENERGEST_TYPE_CPU); } } return 0; }