Example #1
0
/* siglen will be the actual lenght of the prime in bytes */
int ccrsa_sign_pkcs1v15(ccrsa_full_ctx_t key, const uint8_t *oid,
                        size_t digest_len, const uint8_t *digest,
                        size_t *sig_len, uint8_t *sig)
{
    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(key), ccrsa_ctx_m(key));
    cc_size n=ccrsa_ctx_n(key);
    cc_unit s[n];
    int err;

    if(*sig_len<m_size)
        return CCRSA_INVALID_INPUT;

    *sig_len=m_size;

    err=ccrsa_emsa_pkcs1v15_encode(m_size, sig, digest_len, digest, oid);
    if(err) return err;

    ccn_read_uint(n, s, m_size, sig);

    err=ccrsa_priv_crypt(ccrsa_ctx_private(key), s, s);
    if(err) return err;

    /* we need to write leading zeroes if necessary */
    ccn_write_uint_padded(n, s, m_size, sig);

    return 0;
}
Example #2
0
CCCryptorStatus 
CCRSACryptorCrypt(CCRSACryptorRef rsaKey, const void *in, size_t inLen, void *out, size_t *outLen)
{    
    CC_DEBUG_LOG(ASL_LEVEL_ERR, "Entering\n");
    if(!rsaKey || !in || !out || !outLen) return kCCParamError;
    
    size_t keysizeBytes = (rsaKey->keySize+7)/8;
    
    if(inLen != keysizeBytes || *outLen < keysizeBytes) return kCCMemoryFailure;
    
    cc_size n = ccrsa_ctx_n(rsaKey->fk);
    cc_unit buf[n];
    ccn_read_uint(n, buf, inLen, in);
    
    switch(rsaKey->keyType) {
        case ccRSAKeyPublic: 
            ccrsa_pub_crypt(ccrsa_ctx_public(rsaKey->fk), buf, buf);
            break;
        case ccRSAKeyPrivate:
            ccrsa_priv_crypt(ccrsa_ctx_private(rsaKey->fk), buf, buf);
            break;
        default:
            return kCCParamError;
    }
    
    *outLen = keysizeBytes;
    ccn_write_uint_padded(n, buf, *outLen, out);
    return kCCSuccess;
}
Example #3
0
/* siglen will be the actual lenght of the prime in bytes */
int ccrsa_sign_oaep(ccrsa_full_ctx_t key,
                    const struct ccdigest_info* di, struct ccrng_state *rng,
                    size_t digest_len, const uint8_t *digest,
                    size_t *sig_len, uint8_t *sig)
{
    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(key), ccrsa_ctx_m(key));
    cc_size n=ccrsa_ctx_n(key);
    cc_unit s[n];
    int err;

    if(*sig_len<m_size)
        return CCRSA_INVALID_INPUT;

    *sig_len=m_size;

    err=ccrsa_oaep_encode(di, rng, m_size, s, digest_len, digest);
    if(err) return err;

    err=ccrsa_priv_crypt(ccrsa_ctx_private(key), s, s);
    if(err) return err;

    /* we need to write leading zeroes if necessary */
    ccn_write_uint_padded(n, s, m_size, sig);

    return 0;
}
Example #4
0
CCCryptorStatus
CCRSACryptorCreateFromData( CCRSAKeyType keyType, uint8_t *modulus, size_t modulusLength, 
                            uint8_t *exponent, size_t exponentLength,
                            uint8_t *p, size_t pLength, uint8_t *q, size_t qLength,
                            CCRSACryptorRef *ref)
{
    CCCryptorStatus retval = kCCSuccess;
	CCRSACryptor *rsaKey = NULL;
    size_t n = ccn_nof_size(modulusLength);
    cc_unit m[n];
    
    CC_DEBUG_LOG(ASL_LEVEL_ERR, "Entering\n");
    __Require_Action(ccn_read_uint(n, m, modulusLength, modulus) == 0, errOut, retval = kCCParamError);
    size_t nbits = ccn_bitlen(n, m);

    __Require_Action((rsaKey = ccMallocRSACryptor(nbits, keyType)) != NULL, errOut, retval = kCCMemoryFailure);

    __Require_Action(ccn_read_uint(n, ccrsa_ctx_m(rsaKey->fk), modulusLength, modulus) == 0, errOut, retval = kCCParamError);
    __Require_Action(ccn_read_uint(n, ccrsa_ctx_e(rsaKey->fk), exponentLength, exponent) == 0, errOut, retval = kCCParamError);
    cczp_init(ccrsa_ctx_zm(rsaKey->fk));
    rsaKey->keySize = ccn_bitlen(n, ccrsa_ctx_m(rsaKey->fk));

	switch(keyType) {
		case ccRSAKeyPublic:
            rsaKey->keyType = ccRSAKeyPublic;
            break;
		
		case ccRSAKeyPrivate: {
            ccrsa_priv_ctx_t privk = ccrsa_ctx_private(rsaKey->fk);
            size_t psize = ccn_nof_size(pLength);
            size_t qsize = ccn_nof_size(qLength);

            
            CCZP_N(ccrsa_ctx_private_zp(privk)) = psize;
            __Require_Action(ccn_read_uint(psize, CCZP_PRIME(ccrsa_ctx_private_zp(privk)), pLength, p) == 0, errOut, retval = kCCParamError);
            CCZP_N(ccrsa_ctx_private_zq(privk)) = qsize;
            __Require_Action(ccn_read_uint(qsize, CCZP_PRIME(ccrsa_ctx_private_zq(privk)), qLength, q) == 0, errOut, retval = kCCParamError);

            ccrsa_crt_makekey(ccrsa_ctx_zm(rsaKey->fk), ccrsa_ctx_e(rsaKey->fk), ccrsa_ctx_d(rsaKey->fk),
                              ccrsa_ctx_private_zp(privk),
                              ccrsa_ctx_private_dp(privk), ccrsa_ctx_private_qinv(privk),
                              ccrsa_ctx_private_zq(privk), ccrsa_ctx_private_dq(privk));
            
            rsaKey->keyType = ccRSAKeyPrivate;

       		break;
        }
		
		default:
            retval = kCCParamError;
			goto errOut;
	}
	*ref = rsaKey;
	return kCCSuccess;
	
errOut:
	if(rsaKey) ccRSACryptorClear(rsaKey);
	return retval;
}
int ccrsa_get_fullkey_components(const ccrsa_full_ctx_t key, 
                                 uint8_t *modulus, size_t *modulusLength, 
                                 uint8_t *exponent, size_t *exponentLength,
                                 uint8_t *p, size_t *pLength, 
                                 uint8_t *q, size_t *qLength)
{
    cc_size n = ccrsa_ctx_n(key);
    if(ccCoreZP2pointerAndData(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))),
                               cczp_prime(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))),
                               p, pLength )) return -1;
    if(ccCoreZP2pointerAndData(cczp_n(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))),
                               cczp_prime(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))),
                               q, qLength )) return -1;
    if(ccCoreZP2pointerAndData(n,
                               ccrsa_ctx_m(key),
                               modulus, modulusLength )) return -1;
    if(ccCoreZP2pointerAndData(n,
                               ccrsa_ctx_d(key),
                               exponent, exponentLength )) return -1;

    return 0;
}
size_t ccder_encode_rsa_priv_size(const ccrsa_full_ctx_t key) {
    ccrsa_priv_ctx_t privk = ccrsa_ctx_private(key);
    cc_size n = ccrsa_ctx_n(key);
	cc_unit version_0[ccn_nof(1)] = {0x00};
	return ccder_sizeof(CCDER_CONSTRUCTED_SEQUENCE,
      ccder_sizeof_integer(ccn_nof(1), version_0) +
      ccder_sizeof_integer(n, ccrsa_ctx_m(key)) +
      ccder_sizeof_integer(n, ccrsa_ctx_e(key)) +
      ccder_sizeof_integer(n, ccrsa_ctx_d(key)) +
      ccder_sizeof_integer(cczp_n(ccrsa_ctx_private_zp(privk)), cczp_prime(ccrsa_ctx_private_zp(privk))) +
      ccder_sizeof_integer(cczp_n(ccrsa_ctx_private_zq(privk)), cczp_prime(ccrsa_ctx_private_zq(privk))) +
      ccder_sizeof_integer(cczp_n(ccrsa_ctx_private_zp(privk)), ccrsa_ctx_private_dp(privk)) +
      ccder_sizeof_integer(cczp_n(ccrsa_ctx_private_zq(privk)), ccrsa_ctx_private_dq(privk)) +
      ccder_sizeof_integer(cczp_n(ccrsa_ctx_private_zp(privk)), ccrsa_ctx_private_qinv(privk))
    );
}
Example #7
0
static OSStatus ccrsa_full_decode(ccrsa_full_ctx_t fullkey, size_t pkcs1_size, const uint8_t* pkcs1)
{
    OSStatus result = errSecParam;

	DERItem keyItem = {(DERByte *)pkcs1, pkcs1_size};
    DERRSAKeyPair decodedKey;

	require_noerr_action(DERParseSequence(&keyItem,
                                          DERNumRSAKeyPairItemSpecs, DERRSAKeyPairItemSpecs,
                                          &decodedKey, sizeof(decodedKey)),
                         errOut, result = errSecDecode);

    require_noerr(ccrsa_pub_init(fullkey,
                                 decodedKey.n.length, decodedKey.n.data,
                                 decodedKey.e.length, decodedKey.e.data),
                  errOut);
    ccn_read_uint(ccrsa_ctx_n(fullkey), ccrsa_ctx_d(fullkey),
                  decodedKey.d.length, decodedKey.d.data);
    {
        ccrsa_priv_ctx_t privkey = ccrsa_ctx_private(fullkey);
        CCZP_N(ccrsa_ctx_private_zp(privkey)) = ccn_nof((ccn_bitsof_n(ccrsa_ctx_n(fullkey)) / 2) + 1);
        CCZP_N(ccrsa_ctx_private_zq(privkey)) = cczp_n(ccrsa_ctx_private_zp(privkey));

        // TODO: Actually remember decodedKey.d.

        require_noerr(ccrsa_priv_init(privkey,
                                     decodedKey.p.length, decodedKey.p.data,
                                      decodedKey.q.length, decodedKey.q.data,
                                      decodedKey.dp.length, decodedKey.dp.data,
                                      decodedKey.dq.length, decodedKey.dq.data,
                                      decodedKey.qInv.length, decodedKey.qInv.data),
                      errOut);
    }

    result = errSecSuccess;

errOut:
    return result;
}
Example #8
0
int
ccrsa_decrypt_oaep(ccrsa_full_ctx_t key,
                   const struct ccdigest_info* di,
                   size_t *r_size, uint8_t *r,
                   size_t c_size, uint8_t *c,
                   size_t parameter_data_len,
                   const uint8_t *parameter_data)
{
    size_t m_size = ccrsa_block_size(key);
    cc_size n=ccrsa_ctx_n(key);
    cc_unit tmp[n];
    int err;

    // Sanity check
    if (m_size<di->output_size*2+1) {
        return CCRSA_INVALID_CONFIG;
    }

    // Output buffer is too small
    if(*r_size<m_size-di->output_size*2+2) {
        return CCRSA_INVALID_INPUT;
    }

    // The ciphertext does not match the expected size
    if ((c_size<m_size)
            || (ccn_read_uint(n, tmp, c_size, c))) {
        return CCRSA_INVALID_INPUT;
    }

    // RSA decryption
    if ((err = ccrsa_priv_crypt(ccrsa_ctx_private(key), tmp, tmp)) == 0) {

        // Padding decoding
        err = ccrsa_oaep_decode_parameter(di, r_size, r, m_size, tmp,
                                          parameter_data_len, parameter_data);
    }
    return err;
}
int
ccrsa_decrypt_eme_pkcs1v15(ccrsa_full_ctx_t key,
                           size_t *r_size, uint8_t *r,
                           size_t s_size, uint8_t *s)
{
    size_t m_size = ccrsa_block_size(key);
    cc_size n=ccrsa_ctx_n(key);
    cc_unit tmp[n];
    int err;
    
    if(*r_size<m_size) return CCRSA_INVALID_INPUT;
    *r_size=m_size;

    if(ccn_read_uint(n, tmp, s_size, s)) return CCRSA_INVALID_INPUT;

    // RSA decryption
    if ((err = ccrsa_priv_crypt(ccrsa_ctx_private(key), tmp, tmp)) == 0) {

        // Padding decoding
        err = ccrsa_eme_pkcs1v15_decode(r_size, r, m_size, tmp);
    }
    
    return err;
}
Example #10
0
static CFDataRef SecRSAPrivateKeyCreatePKCS1(CFAllocatorRef allocator, ccrsa_full_ctx_t fullkey)
{
    ccrsa_priv_ctx_t privkey = ccrsa_ctx_private(fullkey);

    const cc_size np = cczp_n(ccrsa_ctx_private_zp(privkey));
    const cc_size nq = cczp_n(ccrsa_ctx_private_zq(privkey));

    size_t m_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
    size_t e_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_e(fullkey));
    size_t d_size = ccn_write_int_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_d(fullkey));

    size_t p_size = ccn_write_int_size(np, cczp_prime(ccrsa_ctx_private_zp(privkey)));
    size_t q_size = ccn_write_int_size(nq, cczp_prime(ccrsa_ctx_private_zq(privkey)));

    size_t dp_size = ccn_write_int_size(np, ccrsa_ctx_private_dp(privkey));
    size_t dq_size = ccn_write_int_size(nq, ccrsa_ctx_private_dq(privkey));

    size_t qinv_size = ccn_write_int_size(np, ccrsa_ctx_private_qinv(privkey));

    const size_t seq_size = 3 +
                            DERLengthOfItem(ASN1_INTEGER, m_size) +
                            DERLengthOfItem(ASN1_INTEGER, e_size) +
                            DERLengthOfItem(ASN1_INTEGER, d_size) +
                            DERLengthOfItem(ASN1_INTEGER, p_size) +
                            DERLengthOfItem(ASN1_INTEGER, q_size) +
                            DERLengthOfItem(ASN1_INTEGER, dp_size) +
                            DERLengthOfItem(ASN1_INTEGER, dq_size) +
                            DERLengthOfItem(ASN1_INTEGER, qinv_size);

    const size_t result_size = DERLengthOfItem(ASN1_SEQUENCE, seq_size);

	CFMutableDataRef pkcs1 = CFDataCreateMutable(allocator, result_size);

    if (pkcs1 == NULL)
        return NULL;

	CFDataSetLength(pkcs1, result_size);

    uint8_t *bytes = CFDataGetMutableBytePtr(pkcs1);

    *bytes++ = ASN1_CONSTR_SEQUENCE;

    DERSize itemLength = 4;
    DEREncodeLength(seq_size, bytes, &itemLength);
    bytes += itemLength;

    *bytes++ = ASN1_INTEGER;
    *bytes++ = 0x01;
    *bytes++ = 0x00;

    ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey), m_size, &bytes);
    ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_e(fullkey), e_size, &bytes);
    ccasn_encode_int(ccrsa_ctx_n(fullkey), ccrsa_ctx_d(fullkey), d_size, &bytes);

    ccasn_encode_int(np, cczp_prime(ccrsa_ctx_private_zp(privkey)), p_size, &bytes);
    ccasn_encode_int(nq, cczp_prime(ccrsa_ctx_private_zq(privkey)), q_size, &bytes);
    ccasn_encode_int(np, ccrsa_ctx_private_dp(privkey), dp_size, &bytes);
    ccasn_encode_int(nq, ccrsa_ctx_private_dq(privkey), dq_size, &bytes);
    ccasn_encode_int(np, ccrsa_ctx_private_qinv(privkey), qinv_size, &bytes);

    return pkcs1;
}
Example #11
0
void ccrsa_dump_full_key(ccrsa_full_ctx_t key) {
    ccn_cprint(ccrsa_ctx_n(key),      "uint8_t m[]  = ", ccrsa_ctx_m(key));
    ccn_cprint(ccrsa_ctx_n(key) + 1,  "uint8_t rm[] = ", cczp_recip(ccrsa_ctx_zm(key)));
    ccn_cprint(ccrsa_ctx_n(key),      "uint8_t e[]  = ", ccrsa_ctx_e(key));
    ccn_cprint(ccrsa_ctx_n(key),      "uint8_t d[]  = ", ccrsa_ctx_d(key));

    printf("cc_size np = %lu;\n", cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))),     "uint8_t p[]  = ",
               cczp_prime(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))) + 1, "uint8_t rp[] = ",
               cczp_recip(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))));
    printf("cc_size nq = %lu;\n", cczp_n(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))),     "uint8_t q[]  = ",
               cczp_prime(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))) + 1, "uint8_t rq[] = ",
               cczp_recip(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))),     "uint8_t dp[] = ",
               ccrsa_ctx_private_dp(ccrsa_ctx_private(key)));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zq(ccrsa_ctx_private(key))),     "uint8_t dq[] = ",
               ccrsa_ctx_private_dq(ccrsa_ctx_private(key)));
    ccn_cprint(cczp_n(ccrsa_ctx_private_zp(ccrsa_ctx_private(key))),     "uint8_t qinv[] = ",
               ccrsa_ctx_private_qinv(ccrsa_ctx_private(key)));
    printf("--\n");
}
Example #12
0
static OSStatus SecRSAPrivateKeyRawDecrypt(SecKeyRef key, SecPadding padding,
	const uint8_t *cipherText, size_t cipherTextLen,
	uint8_t *plainText, size_t *plainTextLen) {
    OSStatus result = errSSLCrypto;

    ccrsa_full_ctx_t fullkey;
    fullkey.full = key->key;

    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));

    cc_unit s[ccrsa_ctx_n(fullkey)];
    uint8_t recoveredData[ccn_sizeof_n(ccrsa_ctx_n(fullkey))];

    ccn_read_uint(ccrsa_ctx_n(fullkey), s, cipherTextLen, cipherText);
    ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);

    const uint8_t* sBytes = (uint8_t*) s;
    const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(fullkey));

    require(plainTextLen, errOut);

    switch (padding) {
        case kSecPaddingNone:
            ccn_swap(ccrsa_ctx_n(fullkey), s);
            // Skip Zeros since our contract is to do so.
            while (sBytes < sEnd && *sBytes == 0x00)
                ++sBytes;
            break;

        case kSecPaddingPKCS1:
        {
            ccn_swap(ccrsa_ctx_n(fullkey), s);
            // Verify and skip PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_ENCRYPT), 0xFF .. 0x00, signedData
            //
            
            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(fullkey)) - m_size;
            
            while (prefix_zeros--)
                require_quiet(*sBytes++ == 0x00, errOut);
            
            require_quiet(*sBytes++ == 0x00, errOut);
            require_quiet(*sBytes++ == RSA_PKCS1_PAD_ENCRYPT, errOut);

            while (*sBytes != 0x00) {
                require_quiet(++sBytes < sEnd, errOut);
            }
            // Required to have at least 8 non-zeros
            require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);

            require_quiet(*sBytes == 0x00, errOut);
            require_quiet(++sBytes < sEnd, errOut);
            break;
        }
        case kSecPaddingOAEP:
        {
            size_t length = sizeof(recoveredData);

            require_noerr_quiet(ccrsa_oaep_decode(ccsha1_di(),
                                                  ccn_write_uint_size(ccrsa_ctx_n(fullkey),ccrsa_ctx_m(fullkey)), s,
                                                  &length, recoveredData), errOut);

            sBytes = recoveredData;
            sEnd = recoveredData + length;
            break;
        }
        default:
            goto errOut;
    }

    require((sEnd - sBytes) <= (ptrdiff_t)*plainTextLen, errOut);
    *plainTextLen = sEnd - sBytes;
    memcpy(plainText, sBytes, *plainTextLen);

    result = errSecSuccess;

errOut:
    bzero(recoveredData, sizeof(recoveredData));
    ccn_zero(ccrsa_ctx_n(fullkey), s);

    return result;
}
Example #13
0
static OSStatus SecRSAPrivateKeyRawSign(SecKeyRef key, SecPadding padding,
    const uint8_t *dataToSign, size_t dataToSignLen,
    uint8_t *sig, size_t *sigLen) {

    OSStatus result = errSecParam;

    ccrsa_full_ctx_t fullkey;
    fullkey.full = key->key;

    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
    cc_unit s[ccrsa_ctx_n(fullkey)];

    uint8_t* sBytes = (uint8_t*) s;

    require(sigLen, errOut);
    require(*sigLen >= m_size, errOut);

    switch (padding) {
        case kSecPaddingNone:
            require_noerr_quiet(ccn_read_uint(ccrsa_ctx_n(fullkey), s, dataToSignLen, dataToSign), errOut);
            require_quiet(ccn_cmp(ccrsa_ctx_n(fullkey), s, ccrsa_ctx_m(fullkey)) < 0, errOut);
            break;

        case kSecPaddingPKCS1:
        {
            // Create PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_SIGN), 0xFF .. 0x00, signedData
            //
            const int kMinimumPadding = 1 + 1 + 8 + 1;

            require(dataToSignLen < m_size - kMinimumPadding, errOut);

            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(fullkey)) - m_size;
            
            while (prefix_zeros--)
                *sBytes++ = 0x00;
            
            size_t pad_size = m_size - dataToSignLen;

            *sBytes++ = 0x00;
            *sBytes++ = RSA_PKCS1_PAD_SIGN;

            size_t ff_size;
            for(ff_size = pad_size - 3; ff_size > 0; --ff_size)
                *sBytes++ = 0xFF;

            *sBytes++ = 0x00;

            // Get the user data into s looking like a ccn.
            memcpy(sBytes, dataToSign, dataToSignLen);
            ccn_swap(ccrsa_ctx_n(fullkey), s);

            break;
        }
        case kSecPaddingOAEP:
            result = errSecParam;
        default:
            goto errOut;
    }

    ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);

    // Pad with leading zeros to fit in modulus size
    ccn_write_uint_padded(ccrsa_ctx_n(fullkey), s, m_size, sig);
    *sigLen = m_size;

    result = errSecSuccess;

errOut:
    ccn_zero(ccrsa_ctx_n(fullkey), s);
    return result;
}