static void _ccv_init_cubic_coeffs(int si, int sz, float s, ccv_cubic_coeffs_t* coeff) { const float A = -0.75f; coeff->si[0] = ccv_max(si - 1, 0); coeff->si[1] = si; coeff->si[2] = ccv_min(si + 1, sz - 1); coeff->si[3] = ccv_min(si + 2, sz - 1); float x = s - si; coeff->coeffs[0] = ((A * (x + 1) - 5 * A) * (x + 1) + 8 * A) * (x + 1) - 4 * A; coeff->coeffs[1] = ((A + 2) * x - (A + 3)) * x * x + 1; coeff->coeffs[2] = ((A + 2) * (1 - x) - (A + 3)) * (1 - x) * (1 - x) + 1; coeff->coeffs[3] = 1.f - coeff->coeffs[0] - coeff->coeffs[1] - coeff->coeffs[2]; }
static void _ccv_init_cubic_integer_coeffs(int si, int sz, float s, ccv_cubic_integer_coeffs_t* coeff) { const float A = -0.75f; coeff->si[0] = ccv_max(si - 1, 0); coeff->si[1] = si; coeff->si[2] = ccv_min(si + 1, sz - 1); coeff->si[3] = ccv_min(si + 2, sz - 1); float x = s - si; const int W_BITS = 1 << 6; coeff->coeffs[0] = (int)((((A * (x + 1) - 5 * A) * (x + 1) + 8 * A) * (x + 1) - 4 * A) * W_BITS + 0.5); coeff->coeffs[1] = (int)((((A + 2) * x - (A + 3)) * x * x + 1) * W_BITS + 0.5); coeff->coeffs[2] = (int)((((A + 2) * (1 - x) - (A + 3)) * (1 - x) * (1 - x) + 1) * W_BITS + 0.5); coeff->coeffs[3] = W_BITS - coeff->coeffs[0] - coeff->coeffs[1] - coeff->coeffs[2]; }
static void _ccv_resample_area(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b) { assert(a->cols > 0 && b->cols > 0); ccv_area_alpha_t* xofs = (ccv_area_alpha_t*)alloca(sizeof(ccv_area_alpha_t) * a->cols * 2); int ch = CCV_GET_CHANNEL(a->type); double scale_x = (double)a->cols / b->cols; double scale_y = (double)a->rows / b->rows; double scale = 1.f / (scale_x * scale_y); int dx, dy, sx, sy, i, k; for (dx = 0, k = 0; dx < b->cols; dx++) { double fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x; int sx1 = (int)(fsx1 + 1.0 - 1e-6), sx2 = (int)(fsx2); sx1 = ccv_min(sx1, a->cols - 1); sx2 = ccv_min(sx2, a->cols - 1); if (sx1 > fsx1) { xofs[k].di = dx * ch; xofs[k].si = (sx1 - 1) * ch; xofs[k++].alpha = (float)((sx1 - fsx1) * scale); } for (sx = sx1; sx < sx2; sx++) { xofs[k].di = dx * ch; xofs[k].si = sx * ch; xofs[k++].alpha = (float)scale; } if (fsx2 - sx2 > 1e-3) { xofs[k].di = dx * ch; xofs[k].si = sx2 * ch; xofs[k++].alpha = (float)((fsx2 - sx2) * scale); } } int xofs_count = k; float* buf = (float*)alloca(b->cols * ch * sizeof(float)); float* sum = (float*)alloca(b->cols * ch * sizeof(float)); for (dx = 0; dx < b->cols * ch; dx++) buf[dx] = sum[dx] = 0; dy = 0; #define for_block(_for_get, _for_set) \ for (sy = 0; sy < a->rows; sy++) \ { \ unsigned char* a_ptr = a->data.u8 + a->step * sy; \ for (k = 0; k < xofs_count; k++) \ { \ int dxn = xofs[k].di; \ float alpha = xofs[k].alpha; \ for (i = 0; i < ch; i++) \ buf[dxn + i] += _for_get(a_ptr, xofs[k].si + i, 0) * alpha; \ } \ if ((dy + 1) * scale_y <= sy + 1 || sy == a->rows - 1) \ { \ float beta = ccv_max(sy + 1 - (dy + 1) * scale_y, 0.f); \ float beta1 = 1 - beta; \ unsigned char* b_ptr = b->data.u8 + b->step * dy; \ if (fabs(beta) < 1e-3) \ { \ for (dx = 0; dx < b->cols * ch; dx++) \ { \ _for_set(b_ptr, dx, sum[dx] + buf[dx], 0); \ sum[dx] = buf[dx] = 0; \ } \ } else { \ for (dx = 0; dx < b->cols * ch; dx++) \ { \ _for_set(b_ptr, dx, sum[dx] + buf[dx] * beta1, 0); \ sum[dx] = buf[dx] * beta; \ buf[dx] = 0; \ } \ } \ dy++; \ } \ else \ { \ for(dx = 0; dx < b->cols * ch; dx++) \ { \ sum[dx] += buf[dx]; \ buf[dx] = 0; \ } \ } \ } ccv_matrix_getter(a->type, ccv_matrix_setter, b->type, for_block); #undef for_block }
static void _ccv_resample_area_8u(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b) { assert(a->cols > 0 && b->cols > 0); ccv_int_alpha* xofs = (ccv_int_alpha*)alloca(sizeof(ccv_int_alpha) * a->cols * 2); int ch = ccv_clamp(CCV_GET_CHANNEL(a->type), 1, 4); double scale_x = (double)a->cols / b->cols; double scale_y = (double)a->rows / b->rows; // double scale = 1.f / (scale_x * scale_y); unsigned int inv_scale_256 = (int)(scale_x * scale_y * 0x10000); int dx, dy, sx, sy, i, k; for (dx = 0, k = 0; dx < b->cols; dx++) { double fsx1 = dx * scale_x, fsx2 = fsx1 + scale_x; int sx1 = (int)(fsx1 + 1.0 - 1e-6), sx2 = (int)(fsx2); sx1 = ccv_min(sx1, a->cols - 1); sx2 = ccv_min(sx2, a->cols - 1); if (sx1 > fsx1) { xofs[k].di = dx * ch; xofs[k].si = (sx1 - 1) * ch; xofs[k++].alpha = (unsigned int)((sx1 - fsx1) * 0x100); } for (sx = sx1; sx < sx2; sx++) { xofs[k].di = dx * ch; xofs[k].si = sx * ch; xofs[k++].alpha = 256; } if (fsx2 - sx2 > 1e-3) { xofs[k].di = dx * ch; xofs[k].si = sx2 * ch; xofs[k++].alpha = (unsigned int)((fsx2 - sx2) * 256); } } int xofs_count = k; unsigned int* buf = (unsigned int*)alloca(b->cols * ch * sizeof(unsigned int)); unsigned int* sum = (unsigned int*)alloca(b->cols * ch * sizeof(unsigned int)); for (dx = 0; dx < b->cols * ch; dx++) buf[dx] = sum[dx] = 0; dy = 0; for (sy = 0; sy < a->rows; sy++) { unsigned char* a_ptr = a->data.u8 + a->step * sy; for (k = 0; k < xofs_count; k++) { int dxn = xofs[k].di; unsigned int alpha = xofs[k].alpha; for (i = 0; i < ch; i++) buf[dxn + i] += a_ptr[xofs[k].si + i] * alpha; } if ((dy + 1) * scale_y <= sy + 1 || sy == a->rows - 1) { unsigned int beta = (int)(ccv_max(sy + 1 - (dy + 1) * scale_y, 0.f) * 256); unsigned int beta1 = 256 - beta; unsigned char* b_ptr = b->data.u8 + b->step * dy; if (beta <= 0) { for (dx = 0; dx < b->cols * ch; dx++) { b_ptr[dx] = ccv_clamp((sum[dx] + buf[dx] * 256) / inv_scale_256, 0, 255); sum[dx] = buf[dx] = 0; } } else { for (dx = 0; dx < b->cols * ch; dx++) { b_ptr[dx] = ccv_clamp((sum[dx] + buf[dx] * beta1) / inv_scale_256, 0, 255); sum[dx] = buf[dx] * beta; buf[dx] = 0; } } dy++; } else { for(dx = 0; dx < b->cols * ch; dx++) { sum[dx] += buf[dx] * 256; buf[dx] = 0; } } } }
ccv_array_t* ccv_bbf_detect_objects(ccv_dense_matrix_t* a, ccv_bbf_classifier_cascade_t** _cascade, int count, ccv_bbf_param_t params) { int hr = a->rows / ENDORSE(params.size.height); int wr = a->cols / ENDORSE(params.size.width); double scale = pow(2., 1. / (params.interval + 1.)); APPROX int next = params.interval + 1; int scale_upto = (int)(log((double)ccv_min(hr, wr)) / log(scale)); ccv_dense_matrix_t** pyr = (ccv_dense_matrix_t**)alloca(ENDORSE(scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); memset(pyr, 0, (scale_upto + next * 2) * 4 * sizeof(ccv_dense_matrix_t*)); if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_resample(a, &pyr[0], 0, a->rows * ENDORSE(_cascade[0]->size.height / params.size.height), a->cols * ENDORSE(_cascade[0]->size.width / params.size.width), CCV_INTER_AREA); else pyr[0] = a; APPROX int i; int j, k, t, x, y, q; for (i = 1; ENDORSE(i < ccv_min(params.interval + 1, scale_upto + next * 2)); i++) ccv_resample(pyr[0], &pyr[i * 4], 0, (int)(pyr[0]->rows / pow(scale, i)), (int)(pyr[0]->cols / pow(scale, i)), CCV_INTER_AREA); for (i = next; ENDORSE(i < scale_upto + next * 2); i++) ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4], 0, 0, 0); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 1], 0, 1, 0); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 2], 0, 0, 1); ccv_sample_down(pyr[i * 4 - next * 4], &pyr[i * 4 + 3], 0, 1, 1); } ccv_array_t* idx_seq; ccv_array_t* seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); ccv_array_t* result_seq = ccv_array_new(sizeof(ccv_comp_t), 64, 0); /* detect in multi scale */ for (t = 0; t < count; t++) { ccv_bbf_classifier_cascade_t* cascade = _cascade[t]; APPROX float scale_x = (float) params.size.width / (float) cascade->size.width; APPROX float scale_y = (float) params.size.height / (float) cascade->size.height; ccv_array_clear(seq); for (i = 0; ENDORSE(i < scale_upto); i++) { APPROX int dx[] = {0, 1, 0, 1}; APPROX int dy[] = {0, 0, 1, 1}; APPROX int i_rows = pyr[i * 4 + next * 8]->rows - ENDORSE(cascade->size.height >> 2); APPROX int steps[] = { pyr[i * 4]->step, pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8]->step }; APPROX int i_cols = pyr[i * 4 + next * 8]->cols - ENDORSE(cascade->size.width >> 2); int paddings[] = { pyr[i * 4]->step * 4 - i_cols * 4, pyr[i * 4 + next * 4]->step * 2 - i_cols * 2, pyr[i * 4 + next * 8]->step - i_cols }; for (q = 0; q < (params.accurate ? 4 : 1); q++) { APPROX unsigned char* u8[] = { pyr[i * 4]->data.u8 + dx[q] * 2 + dy[q] * pyr[i * 4]->step * 2, pyr[i * 4 + next * 4]->data.u8 + dx[q] + dy[q] * pyr[i * 4 + next * 4]->step, pyr[i * 4 + next * 8 + q]->data.u8 }; for (y = 0; ENDORSE(y < i_rows); y++) { for (x = 0; ENDORSE(x < i_cols); x++) { APPROX float sum; APPROX int flag = 1; ccv_bbf_stage_classifier_t* classifier = cascade->stage_classifier; for (j = 0; j < ENDORSE(cascade->count); ++j, ++classifier) { sum = 0; APPROX float* alpha = classifier->alpha; ccv_bbf_feature_t* feature = classifier->feature; for (k = 0; k < ENDORSE(classifier->count); ++k, alpha += 2, ++feature) sum += alpha[_ccv_run_bbf_feature(feature, ENDORSE(steps), u8)]; if (ENDORSE(sum) < ENDORSE(classifier->threshold)) { flag = 0; break; } } if (ENDORSE(flag)) { ccv_comp_t comp; comp.rect = ccv_rect((int)((x * 4 + dx[q] * 2) * scale_x + 0.5), (int)((y * 4 + dy[q] * 2) * scale_y + 0.5), (int)(cascade->size.width * scale_x + 0.5), (int)(cascade->size.height * scale_y + 0.5)); comp.neighbors = 1; comp.classification.id = t; comp.classification.confidence = sum; ccv_array_push(seq, &comp); } u8[0] += 4; u8[1] += 2; u8[2] += 1; } u8[0] += paddings[0]; u8[1] += paddings[1]; u8[2] += paddings[2]; } } scale_x *= scale; scale_y *= scale; } /* the following code from OpenCV's haar feature implementation */ if(params.min_neighbors == 0) { for (i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t* comp = (ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); ccv_array_push(result_seq, comp); } } else { idx_seq = 0; ccv_array_clear(seq2); // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(seq, &idx_seq, _ccv_is_equal_same_class, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors) == 0) comps[idx].classification.confidence = r1.classification.confidence; ++comps[idx].neighbors; comps[idx].rect.x += r1.rect.x; comps[idx].rect.y += r1.rect.y; comps[idx].rect.width += r1.rect.width; comps[idx].rect.height += r1.rect.height; comps[idx].classification.id = r1.classification.id; comps[idx].classification.confidence = ccv_max(comps[idx].classification.confidence, r1.classification.confidence); } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) { int n = ENDORSE(comps[i].neighbors); if(n >= params.min_neighbors) { ccv_comp_t comp; comp.rect.x = (comps[i].rect.x * 2 + n) / (2 * n); comp.rect.y = (comps[i].rect.y * 2 + n) / (2 * n); comp.rect.width = (comps[i].rect.width * 2 + n) / (2 * n); comp.rect.height = (comps[i].rect.height * 2 + n) / (2 * n); comp.neighbors = comps[i].neighbors; comp.classification.id = comps[i].classification.id; comp.classification.confidence = comps[i].classification.confidence; ccv_array_push(seq2, &comp); } } // filter out small face rectangles inside large face rectangles for(i = 0; ENDORSE(i < seq2->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, i)); APPROX int flag = 1; for(j = 0; ENDORSE(j < seq2->rnum); j++) { ccv_comp_t r2 = *(ccv_comp_t*)ENDORSE(ccv_array_get(seq2, j)); APPROX int distance = (int)(r2.rect.width * 0.25 + 0.5); if(ENDORSE(i != j && r1.classification.id == r2.classification.id && r1.rect.x >= r2.rect.x - distance && r1.rect.y >= r2.rect.y - distance && r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance && r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance && (r2.neighbors > ccv_max(3, r1.neighbors) || r1.neighbors < 3))) { flag = 0; break; } } if(ENDORSE(flag)) ccv_array_push(result_seq, &r1); } ccv_array_free(idx_seq); ccfree(comps); } } ccv_array_free(seq); ccv_array_free(seq2); ccv_array_t* result_seq2; /* the following code from OpenCV's haar feature implementation */ if (params.flags & CCV_BBF_NO_NESTED) { result_seq2 = ccv_array_new(sizeof(ccv_comp_t), 64, 0); idx_seq = 0; // group retrieved rectangles in order to filter out noise int ncomp = ccv_array_group(result_seq, &idx_seq, _ccv_is_equal, 0); ccv_comp_t* comps = (ccv_comp_t*)ccmalloc((ncomp + 1) * sizeof(ccv_comp_t)); memset(comps, 0, (ncomp + 1) * sizeof(ccv_comp_t)); // count number of neighbors for(i = 0; ENDORSE(i < result_seq->rnum); i++) { ccv_comp_t r1 = *(ccv_comp_t*)ENDORSE(ccv_array_get(result_seq, i)); int idx = *(int*)ENDORSE(ccv_array_get(idx_seq, i)); if (ENDORSE(comps[idx].neighbors == 0 || comps[idx].classification.confidence < r1.classification.confidence)) { comps[idx].classification.confidence = r1.classification.confidence; comps[idx].neighbors = 1; comps[idx].rect = r1.rect; comps[idx].classification.id = r1.classification.id; } } // calculate average bounding box for(i = 0; ENDORSE(i < ncomp); i++) if(ENDORSE(comps[i].neighbors)) ccv_array_push(result_seq2, &comps[i]); ccv_array_free(result_seq); ccfree(comps); } else { result_seq2 = result_seq; } for (i = 1; ENDORSE(i < scale_upto + next * 2); i++) ccv_matrix_free(pyr[i * 4]); if (params.accurate) for (i = next * 2; ENDORSE(i < scale_upto + next * 2); i++) { ccv_matrix_free(pyr[i * 4 + 1]); ccv_matrix_free(pyr[i * 4 + 2]); ccv_matrix_free(pyr[i * 4 + 3]); } if (ENDORSE(params.size.height != _cascade[0]->size.height || params.size.width != _cascade[0]->size.width)) ccv_matrix_free(pyr[0]); return result_seq2; }
/* this code is a rewrite from OpenCV's legendary Lucas-Kanade optical flow implementation */ void ccv_optical_flow_lucas_kanade(ccv_dense_matrix_t* a, ccv_dense_matrix_t* b, ccv_array_t* point_a, ccv_array_t** point_b, ccv_size_t win_size, int level, double min_eigen) { assert(a && b && a->rows == b->rows && a->cols == b->cols); assert(CCV_GET_CHANNEL(a->type) == CCV_GET_CHANNEL(b->type) && CCV_GET_DATA_TYPE(a->type) == CCV_GET_DATA_TYPE(b->type)); assert(CCV_GET_CHANNEL(a->type) == 1); assert(CCV_GET_DATA_TYPE(a->type) == CCV_8U); assert(point_a->rnum > 0); level = ccv_clamp(level + 1, 1, (int)(log((double)ccv_min(a->rows, a->cols) / ccv_max(win_size.width * 2, win_size.height * 2)) / log(2.0) + 0.5)); ccv_declare_derived_signature(sig, a->sig != 0 && b->sig != 0 && point_a->sig != 0, ccv_sign_with_format(128, "ccv_optical_flow_lucas_kanade(%d,%d,%d,%la)", win_size.width, win_size.height, level, min_eigen), a->sig, b->sig, point_a->sig, CCV_EOF_SIGN); ccv_array_t* seq = *point_b = ccv_array_new(sizeof(ccv_decimal_point_with_status_t), point_a->rnum, sig); ccv_object_return_if_cached(, seq); seq->rnum = point_a->rnum; ccv_dense_matrix_t** pyr_a = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dx = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_a_dy = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); ccv_dense_matrix_t** pyr_b = (ccv_dense_matrix_t**)malloc(sizeof(ccv_dense_matrix_t*) * level); int i, j, t, x, y; /* generating image pyramid */ pyr_a[0] = a; pyr_a_dx[0] = pyr_a_dy[0] = 0; ccv_sobel(pyr_a[0], &pyr_a_dx[0], 0, 3, 0); ccv_sobel(pyr_a[0], &pyr_a_dy[0], 0, 0, 3); pyr_b[0] = b; for (i = 1; i < level; i++) { pyr_a[i] = pyr_a_dx[i] = pyr_a_dy[i] = pyr_b[i] = 0; ccv_sample_down(pyr_a[i - 1], &pyr_a[i], 0, 0, 0); ccv_sobel(pyr_a[i], &pyr_a_dx[i], 0, 3, 0); ccv_sobel(pyr_a[i], &pyr_a_dy[i], 0, 0, 3); ccv_sample_down(pyr_b[i - 1], &pyr_b[i], 0, 0, 0); } int* wi = (int*)malloc(sizeof(int) * win_size.width * win_size.height); int* widx = (int*)malloc(sizeof(int) * win_size.width * win_size.height); int* widy = (int*)malloc(sizeof(int) * win_size.width * win_size.height); ccv_decimal_point_t half_win = ccv_decimal_point((win_size.width - 1) * 0.5f, (win_size.height - 1) * 0.5f); const int W_BITS14 = 14, W_BITS7 = 7, W_BITS9 = 9; const float FLT_SCALE = 1.0f / (1 << 25); // clean up status to 1 for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); point_with_status->status = 1; } int prev_rows, prev_cols; for (t = level - 1; t >= 0; t--) { ccv_dense_matrix_t* a = pyr_a[t]; ccv_dense_matrix_t* adx = pyr_a_dx[t]; ccv_dense_matrix_t* ady = pyr_a_dy[t]; assert(CCV_GET_DATA_TYPE(adx->type) == CCV_32S); assert(CCV_GET_DATA_TYPE(ady->type) == CCV_32S); ccv_dense_matrix_t* b = pyr_b[t]; for (i = 0; i < point_a->rnum; i++) { ccv_decimal_point_t prev_point = *(ccv_decimal_point_t*)ccv_array_get(point_a, i); ccv_decimal_point_with_status_t* point_with_status = (ccv_decimal_point_with_status_t*)ccv_array_get(seq, i); prev_point.x = prev_point.x / (float)(1 << t); prev_point.y = prev_point.y / (float)(1 << t); ccv_decimal_point_t next_point; if (t == level - 1) next_point = prev_point; else { next_point.x = point_with_status->point.x * 2 + (a->cols - prev_cols * 2) * 0.5; next_point.y = point_with_status->point.y * 2 + (a->rows - prev_rows * 2) * 0.5; } point_with_status->point = next_point; prev_point.x -= half_win.x; prev_point.y -= half_win.y; ccv_point_t iprev_point = ccv_point((int)prev_point.x, (int)prev_point.y); if (iprev_point.x < 0 || iprev_point.x >= a->cols - win_size.width - 1 || iprev_point.y < 0 || iprev_point.y >= a->rows - win_size.height - 1) { if (t == 0) point_with_status->status = 0; continue; } float xd = prev_point.x - iprev_point.x; float yd = prev_point.y - iprev_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float a11 = 0, a12 = 0, a22 = 0; unsigned char* a_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, a, iprev_point.y, iprev_point.x, 0); int* adx_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, adx, iprev_point.y, iprev_point.x, 0); int* ady_ptr = (int*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_32S, ady, iprev_point.y, iprev_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { wi_ptr[x] = ccv_descale(a_ptr[x] * iw00 + a_ptr[x + 1] * iw01 + a_ptr[x + a->step] * iw10 + a_ptr[x + a->step + 1] * iw11, W_BITS7); // because we use 3x3 sobel, which scaled derivative up by 4 widx_ptr[x] = ccv_descale(adx_ptr[x] * iw00 + adx_ptr[x + 1] * iw01 + adx_ptr[x + adx->cols] * iw10 + adx_ptr[x + adx->cols + 1] * iw11, W_BITS9); widy_ptr[x] = ccv_descale(ady_ptr[x] * iw00 + ady_ptr[x + 1] * iw01 + ady_ptr[x + ady->cols] + iw10 + ady_ptr[x + ady->cols + 1] * iw11, W_BITS9); a11 += (float)(widx_ptr[x] * widx_ptr[x]); a12 += (float)(widx_ptr[x] * widy_ptr[x]); a22 += (float)(widy_ptr[x] * widy_ptr[x]); } a_ptr += a->step; adx_ptr += adx->cols; ady_ptr += ady->cols; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } a11 *= FLT_SCALE; a12 *= FLT_SCALE; a22 *= FLT_SCALE; float D = a11 * a22 - a12 * a12; float eigen = (a22 + a11 - sqrtf((a11 - a22) * (a11 - a22) + 4.0f * a12 * a12)) / (2 * win_size.width * win_size.height); if (eigen < min_eigen || D < FLT_EPSILON) { if (t == 0) point_with_status->status = 0; continue; } D = 1.0f / D; next_point.x -= half_win.x; next_point.y -= half_win.y; ccv_decimal_point_t prev_delta; for (j = 0; j < LK_MAX_ITER; j++) { ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) break; float xd = next_point.x - inext_point.x; float yd = next_point.y - inext_point.y; int iw00 = (int)((1 - xd) * (1 - yd) * (1 << W_BITS14) + 0.5); int iw01 = (int)(xd * (1 - yd) * (1 << W_BITS14) + 0.5); int iw10 = (int)((1 - xd) * yd * (1 << W_BITS14) + 0.5); int iw11 = (1 << W_BITS14) - iw00 - iw01 - iw10; float b1 = 0, b2 = 0; unsigned char* b_ptr = (unsigned char*)ccv_get_dense_matrix_cell_by(CCV_C1 | CCV_8U, b, inext_point.y, inext_point.x, 0); int* wi_ptr = wi; int* widx_ptr = widx; int* widy_ptr = widy; for (y = 0; y < win_size.height; y++) { for (x = 0; x < win_size.width; x++) { int diff = ccv_descale(b_ptr[x] * iw00 + b_ptr[x + 1] * iw01 + b_ptr[x + b->step] * iw10 + b_ptr[x + b->step + 1] * iw11, W_BITS7) - wi_ptr[x]; b1 += (float)(diff * widx_ptr[x]); b2 += (float)(diff * widy_ptr[x]); } b_ptr += b->step; wi_ptr += win_size.width; widx_ptr += win_size.width; widy_ptr += win_size.width; } b1 *= FLT_SCALE; b2 *= FLT_SCALE; ccv_decimal_point_t delta = ccv_decimal_point((a12 * b2 - a22 * b1) * D, (a12 * b1 - a11 * b2) * D); next_point.x += delta.x; next_point.y += delta.y; if (delta.x * delta.x + delta.y * delta.y < LK_EPSILON) break; if (j > 0 && fabs(prev_delta.x - delta.x) < 0.01 && fabs(prev_delta.y - delta.y) < 0.01) { next_point.x -= delta.x * 0.5; next_point.y -= delta.y * 0.5; break; } prev_delta = delta; } ccv_point_t inext_point = ccv_point((int)next_point.x, (int)next_point.y); if (inext_point.x < 0 || inext_point.x >= a->cols - win_size.width - 1 || inext_point.y < 0 || inext_point.y >= a->rows - win_size.height - 1) point_with_status->status = 0; else { point_with_status->point.x = next_point.x + half_win.x; point_with_status->point.y = next_point.y + half_win.y; } } prev_rows = a->rows; prev_cols = a->cols; ccv_matrix_free(adx); ccv_matrix_free(ady); if (t > 0) { ccv_matrix_free(a); ccv_matrix_free(b); } } free(widy); free(widx); free(wi); free(pyr_b); free(pyr_a_dy); free(pyr_a_dx); free(pyr_a); }
// compute harmonic mean of precision / recall of swt static void _ccv_evaluate_wolf(ccv_array_t* words, ccv_array_t* truth, ccv_swt_param_t params, double* precision, double* recall) { if (words->rnum == 0 || truth->rnum == 0) return; int j, k; double total_recall = 0, total_precision = 0; int* cG = (int*)ccmalloc(sizeof(int) * truth->rnum); int* cD = (int*)ccmalloc(sizeof(int) * words->rnum); memset(cG, 0, sizeof(int) * truth->rnum); memset(cD, 0, sizeof(int) * words->rnum); double* mG = (double*)ccmalloc(sizeof(double) * truth->rnum * words->rnum); double* mD = (double*)ccmalloc(sizeof(double) * truth->rnum * words->rnum); memset(mG, 0, sizeof(double) * truth->rnum * words->rnum); memset(mD, 0, sizeof(double) * truth->rnum * words->rnum); for (j = 0; j < truth->rnum; j++) { ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(truth, j); for (k = 0; k < words->rnum; k++) { ccv_rect_t* target = (ccv_rect_t*)ccv_array_get(words, k); int match = ccv_max(ccv_min(target->x + target->width, rect->x + rect->width) - ccv_max(target->x, rect->x), 0) * ccv_max(ccv_min(target->y + target->height, rect->y + rect->height) - ccv_max(target->y, rect->y), 0); if (match > 0) { mG[j * words->rnum + k] = (double)match / (double)(rect->width * rect->height); mD[k * truth->rnum + j] = (double)match / (double)(target->width * target->height); ++cG[j]; ++cD[k]; } } } unsigned char* tG = (unsigned char*)ccmalloc(truth->rnum); unsigned char* tD = (unsigned char*)ccmalloc(words->rnum); memset(tG, 0, truth->rnum); memset(tD, 0, words->rnum); // one to one match for (j = 0; j < truth->rnum; j++) { if (cG[j] != 1) continue; ccv_rect_t* rect = (ccv_rect_t*)ccv_array_get(truth, j); for (k = 0; k < words->rnum; k++) { if (cD[k] != 1) continue; ccv_rect_t* target = (ccv_rect_t*)ccv_array_get(words, k); if (mG[j * words->rnum + k] >= one_g && mD[k * truth->rnum + j] >= one_d) { double dx = (target->x + target->width * 0.5) - (rect->x + rect->width * 0.5); double dy = (target->y + target->height * 0.5) - (rect->y + rect->height * 0.5); double d = sqrt(dx * dx + dy * dy) * 2.0 / (sqrt(target->width * target->width + target->height * target->height) + sqrt(rect->width * rect->width + rect->height * rect->height)); if (d < center_diff_thr) { total_recall += 1.0; total_precision += 1.0; assert(tG[j] == 0); assert(tD[k] == 0); tG[j] = tD[k] = 1; } } } } int* many = (int*)ccmalloc(sizeof(int) * ccv_max(words->rnum, truth->rnum)); // one to many match, starts with ground truth for (j = 0; j < truth->rnum; j++) { if (tG[j] || cG[j] <= 1) continue; double one_sum = 0; int no_many = 0; for (k = 0; k < words->rnum; k++) { if (tD[k]) continue; double many_single = mD[k * truth->rnum + j]; if (many_single >= one_d) { one_sum += mG[j * words->rnum + k]; many[no_many] = k; ++no_many; } } if (no_many == 1) { // degrade to one to one match if (mG[j * words->rnum + many[0]] >= one_g && mD[many[0] * truth->rnum + j] >= one_d) { total_recall += 1.0; total_precision += 1.0; tG[j] = tD[many[0]] = 1; } } else if (one_sum >= one_g) { for (k = 0; k < no_many; k++) tD[many[k]] = 1; total_recall += om_one; total_precision += om_one / (1 + log(no_many)); } } // one to many match, with estimate for (k = 0; k < words->rnum; k++) { if (tD[k] || cD[k] <= 1) continue; double one_sum = 0; int no_many = 0; for (j = 0; j < truth->rnum; j++) { if (tG[j]) continue; double many_single = mG[j * words->rnum + k]; if (many_single >= one_g) { one_sum += mD[k * truth->rnum + j]; many[no_many] = j; ++no_many; } } if (no_many == 1) { // degrade to one to one match if (mG[many[0] * words->rnum + k] >= one_g && mD[k * truth->rnum + many[0]] >= one_d) { total_recall += 1.0; total_precision += 1.0; tG[many[0]] = tD[k] = 1; } } else if (one_sum >= one_g) { for (j = 0; j < no_many; j++) tG[many[j]] = 1; total_recall += om_one / (1 + log(no_many)); total_precision += om_one; } } ccfree(many); ccfree(tG); ccfree(tD); ccfree(cG); ccfree(cD); ccfree(mG); ccfree(mD); assert(total_precision < words->rnum + 0.1); assert(total_recall < truth->rnum + 0.1); if (precision) *precision = total_precision; if (recall) *recall = total_recall; }
int main(int argc, char** argv) { static struct option swt_options[] = { /* help */ {"help", 0, 0, 0}, /* optional parameters */ {"size", 1, 0, 0}, {"low-thresh", 1, 0, 0}, {"high-thresh", 1, 0, 0}, {"max-height", 1, 0, 0}, {"min-height", 1, 0, 0}, {"min-area", 1, 0, 0}, {"aspect-ratio", 1, 0, 0}, {"std-ratio", 1, 0, 0}, {"thickness-ratio", 1, 0, 0}, {"height-ratio", 1, 0, 0}, {"intensity-thresh", 1, 0, 0}, {"letter-occlude-thresh", 1, 0, 0}, {"distance-ratio", 1, 0, 0}, {"intersect-ratio", 1, 0, 0}, {"letter-thresh", 1, 0, 0}, {"elongate-ratio", 1, 0, 0}, {"breakdown-ratio", 1, 0, 0}, {"breakdown", 1, 0, 0}, {"iterations", 1, 0, 0}, {"base-dir", 1, 0, 0}, {0, 0, 0, 0} }; if (argc <= 1) exit_with_help(); ccv_swt_param_t params = { .interval = 1, .same_word_thresh = { 0.2, 0.8 }, .min_neighbors = 1, .scale_invariant = 0, .size = 3, .low_thresh = 78, .high_thresh = 214, .max_height = 300, .min_height = 10, .min_area = 75, .letter_occlude_thresh = 2, .aspect_ratio = 10, .std_ratio = 0.5, .thickness_ratio = 1.5, .height_ratio = 2.0, .intensity_thresh = 45, .distance_ratio = 3.0, .intersect_ratio = 2.0, .letter_thresh = 3, .elongate_ratio = 1.3, .breakdown = 1, .breakdown_ratio = 1.0, }; ccv_swt_range_t size_range = { .min_value = 1, .max_value = 3, .step = 2, .enable = 1, }; ccv_swt_range_t low_thresh_range = { .min_value = 50, .max_value = 150, .step = 1, .enable = 1, }; ccv_swt_range_t high_thresh_range = { .min_value = 200, .max_value = 350, .step = 1, .enable = 1, }; ccv_swt_range_t max_height_range = { .min_value = 500, .max_value = 500, .step = 1, .enable = 1, }; ccv_swt_range_t min_height_range = { .min_value = 5, .max_value = 30, .step = 1, .enable = 1, }; ccv_swt_range_t min_area_range = { .min_value = 10, .max_value = 100, .step = 1, .enable = 1, }; ccv_swt_range_t letter_occlude_thresh_range = { .min_value = 0, .max_value = 5, .step = 1, .enable = 1, }; ccv_swt_range_t aspect_ratio_range = { .min_value = 5, .max_value = 15, .step = 1, .enable = 1, }; ccv_swt_range_t std_ratio_range = { .min_value = 0.1, .max_value = 1.0, .step = 0.01, .enable = 1, }; ccv_swt_range_t thickness_ratio_range = { .min_value = 1.0, .max_value = 2.0, .step = 0.1, .enable = 1, }; ccv_swt_range_t height_ratio_range = { .min_value = 1.0, .max_value = 3.0, .step = 0.1, .enable = 1, }; ccv_swt_range_t intensity_thresh_range = { .min_value = 1, .max_value = 50, .step = 1, .enable = 1, }; ccv_swt_range_t distance_ratio_range = { .min_value = 1.0, .max_value = 5.0, .step = 0.1, .enable = 1, }; ccv_swt_range_t intersect_ratio_range = { .min_value = 0.0, .max_value = 5.0, .step = 0.1, .enable = 1, }; ccv_swt_range_t letter_thresh_range = { .min_value = 0, .max_value = 5, .step = 1, .enable = 1, }; ccv_swt_range_t elongate_ratio_range = { .min_value = 0.1, .max_value = 2.5, .step = 0.1, .enable = 1, }; ccv_swt_range_t breakdown_ratio_range = { .min_value = 0.5, .max_value = 1.5, .step = 0.01, .enable = 1, }; int i, j, k, iterations = 10; while (getopt_long_only(argc - 1, argv + 1, "", swt_options, &k) != -1) { switch (k) { case 0: exit_with_help(); case 1: decode_range(optarg, &size_range); break; case 2: decode_range(optarg, &low_thresh_range); break; case 3: decode_range(optarg, &high_thresh_range); break; case 4: decode_range(optarg, &max_height_range); break; case 5: decode_range(optarg, &min_height_range); break; case 6: decode_range(optarg, &min_area_range); break; case 7: decode_range(optarg, &aspect_ratio_range); break; case 8: decode_range(optarg, &std_ratio_range); break; case 9: decode_range(optarg, &thickness_ratio_range); break; case 10: decode_range(optarg, &height_ratio_range); break; case 11: decode_range(optarg, &intensity_thresh_range); break; case 12: decode_range(optarg, &letter_occlude_thresh_range); break; case 13: decode_range(optarg, &distance_ratio_range); break; case 14: decode_range(optarg, &intersect_ratio_range); break; case 15: decode_range(optarg, &letter_thresh_range); break; case 16: decode_range(optarg, &elongate_ratio_range); break; case 17: decode_range(optarg, &breakdown_ratio_range); break; case 18: params.breakdown = !!atoi(optarg); break; case 19: iterations = atoi(optarg); break; case 20: chdir(optarg); break; } } FILE* r = fopen(argv[1], "rt"); if (!r) exit_with_help(); ccv_enable_cache(1024 * 1024 * 1024); ccv_array_t* aof = ccv_array_new(sizeof(char*), 64, 0); ccv_array_t* aow = ccv_array_new(sizeof(ccv_array_t*), 64, 0); ccv_array_t* cw = 0; char* file = (char*)malloc(1024); size_t len = 1024; ssize_t read; while ((read = getline(&file, &len, r)) != -1) { while(read > 1 && isspace(file[read - 1])) read--; file[read] = 0; double x, y, width, height; int recognized = sscanf(file, "%lf %lf %lf %lf", &x, &y, &width, &height); if (recognized == 4) { ccv_rect_t rect = { .x = (int)(x + 0.5), .y = (int)(y + 0.5), .width = (int)(width + 0.5), .height = (int)(height + 0.5) }; ccv_array_push(cw, &rect); } else { char* name = (char*)malloc(ccv_min(1023, strlen(file)) + 1); strncpy(name, file, ccv_min(1023, strlen(file)) + 1); ccv_array_push(aof, &name); cw = ccv_array_new(sizeof(ccv_rect_t), 1, 0); ccv_array_push(aow, &cw); } } free(file); printf("loaded %d images for parameter search of:\n", aof->rnum); if (size_range.enable) printf(" - canny size from %d to %d, += %lg\n", (int)(size_range.min_value + 0.5), (int)(size_range.max_value + 0.5), size_range.step); if (std_ratio_range.enable) printf(" - std threshold ratio from %lg to %lg, += %lg\n", std_ratio_range.min_value, std_ratio_range.max_value, std_ratio_range.step); if (max_height_range.enable) printf(" - maximum height from %d to %d, += %lg\n", (int)(max_height_range.min_value + 0.5), (int)(max_height_range.max_value + 0.5), max_height_range.step); if (min_height_range.enable) printf(" - minimum height from %d to %d, += %lg\n", (int)(min_height_range.min_value + 0.5), (int)(min_height_range.max_value + 0.5), min_height_range.step); if (min_area_range.enable) printf(" - minimum area from %d to %d, += %lg\n", (int)(min_area_range.min_value + 0.5), (int)(min_area_range.max_value + 0.5), min_area_range.step); if (letter_occlude_thresh_range.enable) printf(" - letter occlude threshold from %d to %d, += %lg\n", (int)(letter_occlude_thresh_range.min_value + 0.5), (int)(letter_occlude_thresh_range.max_value + 0.5), letter_occlude_thresh_range.step); if (aspect_ratio_range.enable) printf(" - aspect ratio threshold from %lg to %lg, += %lg\n", aspect_ratio_range.min_value, aspect_ratio_range.max_value, aspect_ratio_range.step); if (thickness_ratio_range.enable) printf(" - thickness ratio threshold from %lg to %lg, += %lg\n", thickness_ratio_range.min_value, thickness_ratio_range.max_value, thickness_ratio_range.step); if (height_ratio_range.enable) printf(" - height ratio threshold from %lg to %lg, += %lg\n", height_ratio_range.min_value, height_ratio_range.max_value, height_ratio_range.step); if (intensity_thresh_range.enable) printf(" - intensity threshold from %d to %d, += %lg\n", (int)(intensity_thresh_range.min_value + 0.5), (int)(intensity_thresh_range.max_value + 0.5), intensity_thresh_range.step); if (distance_ratio_range.enable) printf(" - distance ratio threshold from %lg to %lg, += %lg\n", distance_ratio_range.min_value, distance_ratio_range.max_value, distance_ratio_range.step); if (intersect_ratio_range.enable) printf(" - intersect ratio threshold from %lg to %lg, += %lg\n", intersect_ratio_range.min_value, intersect_ratio_range.max_value, intersect_ratio_range.step); if (letter_thresh_range.enable) printf(" - minimum number of letters from %d to %d, += %lg\n", (int)(letter_thresh_range.min_value + 0.5), (int)(letter_thresh_range.max_value + 0.5), letter_thresh_range.step); if (elongate_ratio_range.enable) printf(" - elongate ratio threshold from %lg to %lg, += %lg\n", elongate_ratio_range.min_value, elongate_ratio_range.max_value, elongate_ratio_range.step); if (breakdown_ratio_range.enable) printf(" - breakdown ratio threshold from %lg to %lg, += %lg\n", breakdown_ratio_range.min_value, breakdown_ratio_range.max_value, breakdown_ratio_range.step); if (low_thresh_range.enable) printf(" - canny low threshold from %d to %d, += %lg\n", (int)(low_thresh_range.min_value + 0.5), (int)(low_thresh_range.max_value + 0.5), low_thresh_range.step); if (high_thresh_range.enable) printf(" - canny high threshold from %d to %d, += %lg\n", (int)(high_thresh_range.min_value + 0.5), (int)(high_thresh_range.max_value + 0.5), high_thresh_range.step); double best_f = 0, best_precision = 0, best_recall = 0; double a = 0.5; double v; ccv_swt_param_t best_params = params; #define optimize(parameter, type, rounding) \ if (parameter##_range.enable) \ { \ params = best_params; \ int total_iterations = 0; \ for (v = parameter##_range.min_value; v <= parameter##_range.max_value; v += parameter##_range.step) \ ++total_iterations; \ double* precision = (double*)ccmalloc(sizeof(double) * total_iterations); \ double* recall = (double*)ccmalloc(sizeof(double) * total_iterations); \ double* total_words = (double*)ccmalloc(sizeof(double) * total_iterations); \ memset(precision, 0, sizeof(double) * total_iterations); \ memset(recall, 0, sizeof(double) * total_iterations); \ memset(total_words, 0, sizeof(double) * total_iterations); \ double total_truth = 0; \ for (j = 0; j < aof->rnum; j++) \ { \ char* name = *(char**)ccv_array_get(aof, j); \ ccv_dense_matrix_t* image = 0; \ ccv_read(name, &image, CCV_IO_GRAY | CCV_IO_ANY_FILE); \ ccv_array_t* truth = *(ccv_array_t**)ccv_array_get(aow, j); \ total_truth += truth->rnum; \ for (v = parameter##_range.min_value, k = 0; v <= parameter##_range.max_value; v += parameter##_range.step, k++) \ { \ params.parameter = (type)(v + rounding); \ ccv_array_t* words = ccv_swt_detect_words(image, params); \ double one_precision = 0, one_recall = 0; \ _ccv_evaluate_wolf(words, truth, params, &one_precision, &one_recall); \ assert(one_precision <= words->rnum + 0.1); \ precision[k] += one_precision; \ recall[k] += one_recall; \ total_words[k] += words->rnum; \ ccv_array_free(words); \ FLUSH("perform SWT on %s (%d / %d) for " #parameter " = (%lg <- [%lg, %lg])", name, j + 1, aof->rnum, v, parameter##_range.min_value, parameter##_range.max_value); \ } \ ccv_matrix_free(image); \ } \ for (v = parameter##_range.min_value, j = 0; v <= parameter##_range.max_value; v += parameter##_range.step, j++) \ { \ params.parameter = (type)(v + rounding); \ double f, total_precision = precision[j], total_recall = recall[j]; \ total_precision /= total_words[j]; \ total_recall /= total_truth; \ f = 1.0 / (a / total_precision + (1.0 - a) / total_recall); \ if (f > best_f) \ { \ best_params = params; \ best_f = f; \ best_precision = total_precision; \ best_recall = total_recall; \ } \ FLUSH("current harmonic mean : %.2lf%%, precision : %.2lf%%, recall : %.2lf%% ; best harmonic mean : %.2lf%%, precision : %.2lf%%, recall : %.2lf%% ; at " #parameter " = %lg (%lg <- [%lg, %lg])", f * 100, total_precision * 100, total_recall * 100, best_f * 100, best_precision * 100, best_recall * 100, (double)best_params.parameter, v, parameter##_range.min_value, parameter##_range.max_value); \ } \ printf("\n"); \ ccfree(precision); \ ccfree(recall); \ ccfree(total_words); \ } for (i = 0; i < iterations; i++) { optimize(size, int, 0.5); optimize(std_ratio, double, 0); optimize(max_height, int, 0.5); optimize(min_height, int, 0.5); optimize(min_area, int, 0.5); optimize(letter_occlude_thresh, int, 0.5); optimize(aspect_ratio, double, 0); optimize(thickness_ratio, double, 0); optimize(height_ratio, double, 0); optimize(intensity_thresh, int, 0.5); optimize(distance_ratio, double, 0); optimize(intersect_ratio, double, 0); optimize(letter_thresh, int, 0.5); optimize(elongate_ratio, double, 0); optimize(breakdown_ratio, double, 0); optimize(low_thresh, int, 0.5); optimize(high_thresh, int, 0.5); printf("At iteration %d(of %d) : best parameters for swt is:\n" "\tsize = %d\n" "\tlow_thresh = %d\n" "\thigh_thresh = %d\n" "\tmax_height = %d\n" "\tmin_height = %d\n" "\tmin_area = %d\n" "\tletter_occlude_thresh = %d\n" "\taspect_ratio = %lf\n" "\tstd_ratio = %lf\n" "\tthickness_ratio = %lf\n" "\theight_ratio = %lf\n" "\tintensity_thresh = %d\n" "\tdistance_ratio = %lf\n" "\tintersect_ratio = %lf\n" "\tletter_thresh = %d\n" "\telongate_ratio = %lf\n" "\tbreakdown_ratio = %lf\n", i + 1, iterations, best_params.size, best_params.low_thresh, best_params.high_thresh, best_params.max_height, best_params.min_height, best_params.min_area, best_params.letter_occlude_thresh, best_params.aspect_ratio, best_params.std_ratio, best_params.thickness_ratio, best_params.height_ratio, best_params.intensity_thresh, best_params.distance_ratio, best_params.intersect_ratio, best_params.letter_thresh, best_params.elongate_ratio, best_params.breakdown_ratio); } #undef optimize for (i = 0; i < aof->rnum; i++) { char* name = *(char**)ccv_array_get(aof, i); free(name); ccv_array_t* cw = *(ccv_array_t**)ccv_array_get(aow, i); ccv_array_free(cw); } ccv_array_free(aof); ccv_array_free(aow); ccv_drain_cache(); return 0; }