DLLEXPORT MKL_INT c_qr_factor(MKL_INT m, MKL_INT n, MKL_Complex8 r[], MKL_Complex8 tau[], MKL_Complex8 q[], MKL_Complex8 work[], MKL_INT len) { MKL_INT info = 0; cgeqrf_(&m, &n, r, &m, tau, work, &len, &info); for (MKL_INT i = 0; i < m; ++i) { for (MKL_INT j = 0; j < m && j < n; ++j) { if (i > j) { q[j * m + i] = r[j * m + i]; } } } //compute the q elements explicitly if (m <= n) { cungqr_(&m, &m, &m, q, &m, tau, work, &len, &info); } else { cungqr_(&m, &n, &n, q, &m, tau, work, &len, &info); } return info; }
DLLEXPORT int c_qr_factor(int m, int n, complex r[], complex tau[], complex q[], complex work[], int len) { int info = 0; cgeqrf_(&m, &n, r, &m, tau, work, &len, &info); for (int i = 0; i < m; ++i) { for (int j = 0; j < m && j < n; ++j) { if (i > j) { q[j * m + i] = r[j * m + i]; } } } //compute the q elements explicitly if (m <= n) { cungqr_(&m, &m, &m, q, &m, tau, work, &len, &info); } else { cungqr_(&m, &n, &n, q, &m, tau, work, &len, &info); } return info; }
DLLEXPORT MKL_INT c_qr_thin_factor(MKL_INT m, MKL_INT n, MKL_Complex8 q[], MKL_Complex8 tau[], MKL_Complex8 r[], MKL_Complex8 work[], MKL_INT len) { MKL_INT info = 0; cgeqrf_(&m, &n, q, &m, tau, work, &len, &info); for (MKL_INT i = 0; i < n; ++i) { for (MKL_INT j = 0; j < n; ++j) { if( i <= j) { r[j * n + i] = q[j * m + i]; } } } cungqr_(&m, &n, &n, q, &m, tau, work, &len, &info); return info; }
DLLEXPORT int c_qr_solve(int m, int n, int bn, complex r[], complex b[], complex x[], complex work[], int len) { int info = 0; complex* clone_r = new complex[m*n]; memcpy(clone_r, r, m*n*sizeof(complex)); complex* tau = new complex[min(m,n)]; cgeqrf_(&m, &n, clone_r, &m, tau, work, &len, &info); if (info != 0) { delete[] clone_r; delete[] tau; return info; } char side ='L'; char tran = 'C'; complex* clone_b = new complex[m*bn]; memcpy(clone_b, b, m*bn*sizeof(complex)); cunmqr_(&side, &tran, &m, &bn, &n, clone_r, &m, tau, clone_b, &m, work, &len, &info); complex one = {1.0, 0.0}; cblas_ctrsm(CblasColMajor, CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, n, bn, &one, clone_r, m, clone_b, m); for (int i = 0; i < n; ++i) { for (int j = 0; j < bn; ++j) { x[j * n + i] = clone_b[j * m + i]; } } delete[] clone_r; delete[] tau; delete[] clone_b; return info; }
/* Subroutine */ int cgegs_(char *jobvsl, char *jobvsr, integer *n, complex * a, integer *lda, complex *b, integer *ldb, complex *alpha, complex * beta, complex *vsl, integer *ldvsl, complex *vsr, integer *ldvsr, complex *work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2, i__3; /* Local variables */ integer nb, nb1, nb2, nb3, ihi, ilo; real eps, anrm, bnrm; integer itau, lopt; extern logical lsame_(char *, char *); integer ileft, iinfo, icols; logical ilvsl; integer iwork; logical ilvsr; integer irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); integer ijobvl, iright, ijobvr; real anrmto; integer lwkmin; real bnrmto; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); real smlnum; integer irwork, lwkopt; logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine CGGES. */ /* CGEGS computes the eigenvalues, Schur form, and, optionally, the */ /* left and or/right Schur vectors of a complex matrix pair (A,B). */ /* Given two square matrices A and B, the generalized Schur */ /* factorization has the form */ /* A = Q*S*Z**H, B = Q*T*Z**H */ /* where Q and Z are unitary matrices and S and T are upper triangular. */ /* The columns of Q are the left Schur vectors */ /* and the columns of Z are the right Schur vectors. */ /* If only the eigenvalues of (A,B) are needed, the driver routine */ /* CGEGV should be used instead. See CGEGV for a description of the */ /* eigenvalues of the generalized nonsymmetric eigenvalue problem */ /* (GNEP). */ /* Arguments */ /* ========= */ /* JOBVSL (input) CHARACTER*1 */ /* = 'N': do not compute the left Schur vectors; */ /* = 'V': compute the left Schur vectors (returned in VSL). */ /* JOBVSR (input) CHARACTER*1 */ /* = 'N': do not compute the right Schur vectors; */ /* = 'V': compute the right Schur vectors (returned in VSR). */ /* N (input) INTEGER */ /* The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA, N) */ /* On entry, the matrix A. */ /* On exit, the upper triangular matrix S from the generalized */ /* Schur factorization. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB, N) */ /* On entry, the matrix B. */ /* On exit, the upper triangular matrix T from the generalized */ /* Schur factorization. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* ALPHA (output) COMPLEX array, dimension (N) */ /* The complex scalars alpha that define the eigenvalues of */ /* GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur */ /* form of A. */ /* BETA (output) COMPLEX array, dimension (N) */ /* The non-negative real scalars beta that define the */ /* eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element */ /* of the triangular factor T. */ /* Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */ /* represent the j-th eigenvalue of the matrix pair (A,B), in */ /* one of the forms lambda = alpha/beta or mu = beta/alpha. */ /* Since either lambda or mu may overflow, they should not, */ /* in general, be computed. */ /* VSL (output) COMPLEX array, dimension (LDVSL,N) */ /* If JOBVSL = 'V', the matrix of left Schur vectors Q. */ /* Not referenced if JOBVSL = 'N'. */ /* LDVSL (input) INTEGER */ /* The leading dimension of the matrix VSL. LDVSL >= 1, and */ /* if JOBVSL = 'V', LDVSL >= N. */ /* VSR (output) COMPLEX array, dimension (LDVSR,N) */ /* If JOBVSR = 'V', the matrix of right Schur vectors Z. */ /* Not referenced if JOBVSR = 'N'. */ /* LDVSR (input) INTEGER */ /* The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* if JOBVSR = 'V', LDVSR >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* For good performance, LWORK must generally be larger. */ /* To compute the optimal value of LWORK, call ILAENV to get */ /* blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: */ /* NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */ /* the optimal LWORK is N*(NB+1). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (3*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* =1,...,N: */ /* The QZ iteration failed. (A,B) are not in Schur */ /* form, but ALPHA(j) and BETA(j) should be correct for */ /* j=INFO+1,...,N. */ /* > N: errors that usually indicate LAPACK problems: */ /* =N+1: error return from CGGBAL */ /* =N+2: error return from CGEQRF */ /* =N+3: error return from CUNMQR */ /* =N+4: error return from CUNGQR */ /* =N+5: error return from CGGHRD */ /* =N+6: error return from CHGEQZ (other than failed */ /* iteration) */ /* =N+7: error return from CGGBAK (computing VSL) */ /* =N+8: error return from CGGBAK (computing VSR) */ /* =N+9: error return from CLASCL (various places) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } /* Test the input arguments */ /* Computing MAX */ i__1 = *n << 1; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -11; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -13; } else if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info == 0) { nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1); nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); lopt = *n * (nb + 1); work[1].r = (real) lopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEGS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); smlnum = *n * safmin / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Permute the matrix to make it more nearly triangular */ ileft = 1; iright = *n + 1; irwork = iright + *n; iwork = 1; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L10; } /* Reduce B to triangular form, and initialize VSL and/or VSR */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L10; } i__1 = *lwork + 1 - iwork; cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L10; } if (ilvsl) { claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo + 1 + ilo * vsl_dim1], ldvsl); i__1 = *lwork + 1 - iwork; cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L10; } } if (ilvsr) { claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 5; goto L10; } /* Perform QZ algorithm, computing Schur vectors if desired */ iwork = itau; i__1 = *lwork + 1 - iwork; chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L10; } /* Apply permutation to VSL and VSR */ if (ilvsl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &iinfo); if (iinfo != 0) { *info = *n + 7; goto L10; } } if (ilvsr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L10; } } /* Undo scaling */ if (ilascl) { clascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } clascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } if (ilbscl) { clascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } clascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } L10: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGEGS */ } /* cgegs_ */
/* Subroutine */ int cggevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta, complex *vl, integer *ldvl, complex * vr, integer *ldvr, integer *ilo, integer *ihi, real *lscale, real * rscale, real *abnrm, real *bbnrm, real *rconde, real *rcondv, complex *work, integer *lwork, real *rwork, integer *iwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; complex q__1; /* Builtin functions */ double sqrt(doublereal), r_imag(complex *); /* Local variables */ integer i__, j, m, jc, in, jr; real eps; logical ilv; real anrm, bnrm; integer ierr, itau; real temp; logical ilvl, ilvr; integer iwrk, iwrk1; extern logical lsame_(char *, char *); integer icols; logical noscl; integer irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *), slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), ctgevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *); logical ldumma[1]; char chtemp[1]; real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), ctgsna_(char *, char *, logical *, integer *, complex *, integer * , complex *, integer *, complex *, integer *, complex *, integer * , real *, real *, integer *, integer *, complex *, integer *, integer *, integer *); integer ijobvl; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern doublereal slamch_(char *); integer ijobvr; logical wantsb; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); real anrmto; logical wantse; real bnrmto; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer minwrk, maxwrk; logical wantsn; real smlnum; logical lquery, wantsv; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGGEVX computes for a pair of N-by-N complex nonsymmetric matrices */ /* (A,B) the generalized eigenvalues, and optionally, the left and/or */ /* right generalized eigenvectors. */ /* Optionally, it also computes a balancing transformation to improve */ /* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */ /* LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */ /* the eigenvalues (RCONDE), and reciprocal condition numbers for the */ /* right eigenvectors (RCONDV). */ /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */ /* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */ /* singular. It is usually represented as the pair (alpha,beta), as */ /* there is a reasonable interpretation for beta=0, and even for both */ /* being zero. */ /* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */ /* of (A,B) satisfies */ /* A * v(j) = lambda(j) * B * v(j) . */ /* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */ /* of (A,B) satisfies */ /* u(j)**H * A = lambda(j) * u(j)**H * B. */ /* where u(j)**H is the conjugate-transpose of u(j). */ /* Arguments */ /* ========= */ /* BALANC (input) CHARACTER*1 */ /* Specifies the balance option to be performed: */ /* = 'N': do not diagonally scale or permute; */ /* = 'P': permute only; */ /* = 'S': scale only; */ /* = 'B': both permute and scale. */ /* Computed reciprocal condition numbers will be for the */ /* matrices after permuting and/or balancing. Permuting does */ /* not change condition numbers (in exact arithmetic), but */ /* balancing does. */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': do not compute the left generalized eigenvectors; */ /* = 'V': compute the left generalized eigenvectors. */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': do not compute the right generalized eigenvectors; */ /* = 'V': compute the right generalized eigenvectors. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N': none are computed; */ /* = 'E': computed for eigenvalues only; */ /* = 'V': computed for eigenvectors only; */ /* = 'B': computed for eigenvalues and eigenvectors. */ /* N (input) INTEGER */ /* The order of the matrices A, B, VL, and VR. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA, N) */ /* On entry, the matrix A in the pair (A,B). */ /* On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */ /* or both, then A contains the first part of the complex Schur */ /* form of the "balanced" versions of the input A and B. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB, N) */ /* On entry, the matrix B in the pair (A,B). */ /* On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */ /* or both, then B contains the second part of the complex */ /* Schur form of the "balanced" versions of the input A and B. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* ALPHA (output) COMPLEX array, dimension (N) */ /* BETA (output) COMPLEX array, dimension (N) */ /* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized */ /* eigenvalues. */ /* Note: the quotient ALPHA(j)/BETA(j) ) may easily over- or */ /* underflow, and BETA(j) may even be zero. Thus, the user */ /* should avoid naively computing the ratio ALPHA/BETA. */ /* However, ALPHA will be always less than and usually */ /* comparable with norm(A) in magnitude, and BETA always less */ /* than and usually comparable with norm(B). */ /* VL (output) COMPLEX array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left generalized eigenvectors u(j) are */ /* stored one after another in the columns of VL, in the same */ /* order as their eigenvalues. */ /* Each eigenvector will be scaled so the largest component */ /* will have abs(real part) + abs(imag. part) = 1. */ /* Not referenced if JOBVL = 'N'. */ /* LDVL (input) INTEGER */ /* The leading dimension of the matrix VL. LDVL >= 1, and */ /* if JOBVL = 'V', LDVL >= N. */ /* VR (output) COMPLEX array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right generalized eigenvectors v(j) are */ /* stored one after another in the columns of VR, in the same */ /* order as their eigenvalues. */ /* Each eigenvector will be scaled so the largest component */ /* will have abs(real part) + abs(imag. part) = 1. */ /* Not referenced if JOBVR = 'N'. */ /* LDVR (input) INTEGER */ /* The leading dimension of the matrix VR. LDVR >= 1, and */ /* if JOBVR = 'V', LDVR >= N. */ /* ILO (output) INTEGER */ /* IHI (output) INTEGER */ /* ILO and IHI are integer values such that on exit */ /* A(i,j) = 0 and B(i,j) = 0 if i > j and */ /* j = 1,...,ILO-1 or i = IHI+1,...,N. */ /* If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */ /* LSCALE (output) REAL array, dimension (N) */ /* Details of the permutations and scaling factors applied */ /* to the left side of A and B. If PL(j) is the index of the */ /* row interchanged with row j, and DL(j) is the scaling */ /* factor applied to row j, then */ /* LSCALE(j) = PL(j) for j = 1,...,ILO-1 */ /* = DL(j) for j = ILO,...,IHI */ /* = PL(j) for j = IHI+1,...,N. */ /* The order in which the interchanges are made is N to IHI+1, */ /* then 1 to ILO-1. */ /* RSCALE (output) REAL array, dimension (N) */ /* Details of the permutations and scaling factors applied */ /* to the right side of A and B. If PR(j) is the index of the */ /* column interchanged with column j, and DR(j) is the scaling */ /* factor applied to column j, then */ /* RSCALE(j) = PR(j) for j = 1,...,ILO-1 */ /* = DR(j) for j = ILO,...,IHI */ /* = PR(j) for j = IHI+1,...,N */ /* The order in which the interchanges are made is N to IHI+1, */ /* then 1 to ILO-1. */ /* ABNRM (output) REAL */ /* The one-norm of the balanced matrix A. */ /* BBNRM (output) REAL */ /* The one-norm of the balanced matrix B. */ /* RCONDE (output) REAL array, dimension (N) */ /* If SENSE = 'E' or 'B', the reciprocal condition numbers of */ /* the eigenvalues, stored in consecutive elements of the array. */ /* If SENSE = 'N' or 'V', RCONDE is not referenced. */ /* RCONDV (output) REAL array, dimension (N) */ /* If SENSE = 'V' or 'B', the estimated reciprocal condition */ /* numbers of the eigenvectors, stored in consecutive elements */ /* of the array. If the eigenvalues cannot be reordered to */ /* compute RCONDV(j), RCONDV(j) is set to 0; this can only occur */ /* when the true value would be very small anyway. */ /* If SENSE = 'N' or 'E', RCONDV is not referenced. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* If SENSE = 'E', LWORK >= max(1,4*N). */ /* If SENSE = 'V' or 'B', LWORK >= max(1,2*N*N+2*N). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (lrwork) */ /* lrwork must be at least max(1,6*N) if BALANC = 'S' or 'B', */ /* and at least max(1,2*N) otherwise. */ /* Real workspace. */ /* IWORK (workspace) INTEGER array, dimension (N+2) */ /* If SENSE = 'E', IWORK is not referenced. */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* If SENSE = 'N', BWORK is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* = 1,...,N: */ /* The QZ iteration failed. No eigenvectors have been */ /* calculated, but ALPHA(j) and BETA(j) should be correct */ /* for j=INFO+1,...,N. */ /* > N: =N+1: other than QZ iteration failed in CHGEQZ. */ /* =N+2: error return from CTGEVC. */ /* Further Details */ /* =============== */ /* Balancing a matrix pair (A,B) includes, first, permuting rows and */ /* columns to isolate eigenvalues, second, applying diagonal similarity */ /* transformation to the rows and columns to make the rows and columns */ /* as close in norm as possible. The computed reciprocal condition */ /* numbers correspond to the balanced matrix. Permuting rows and columns */ /* will not change the condition numbers (in exact arithmetic) but */ /* diagonal scaling will. For further explanation of balancing, see */ /* section 4.11.1.2 of LAPACK Users' Guide. */ /* An approximate error bound on the chordal distance between the i-th */ /* computed generalized eigenvalue w and the corresponding exact */ /* eigenvalue lambda is */ /* chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */ /* An approximate error bound for the angle between the i-th computed */ /* eigenvector VL(i) or VR(i) is given by */ /* EPS * norm(ABNRM, BBNRM) / DIF(i). */ /* For further explanation of the reciprocal condition numbers RCONDE */ /* and RCONDV, see section 4.11 of LAPACK User's Guide. */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --lscale; --rscale; --rconde; --rcondv; --work; --rwork; --iwork; --bwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; noscl = lsame_(balanc, "N") || lsame_(balanc, "P"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (! (noscl || lsame_(balanc, "S") || lsame_( balanc, "B"))) { *info = -1; } else if (ijobvl <= 0) { *info = -2; } else if (ijobvr <= 0) { *info = -3; } else if (! (wantsn || wantse || wantsb || wantsv)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -13; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -15; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV. The workspace is */ /* computed assuming ILO = 1 and IHI = N, the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { minwrk = *n << 1; if (wantse) { minwrk = *n << 2; } else if (wantsv || wantsb) { minwrk = (*n << 1) * (*n + 1); } maxwrk = minwrk; /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, & c__1, n, &c__0); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, & c__1, n, &c__0); maxwrk = max(i__1,i__2); if (ilvl) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", " ", n, &c__1, n, &c__0); maxwrk = max(i__1,i__2); } } work[1].r = (real) maxwrk, work[1].i = 0.f; if (*lwork < minwrk && ! lquery) { *info = -25; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGEVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute and/or balance the matrix pair (A,B) */ /* (Real Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */ cggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, & lscale[1], &rscale[1], &rwork[1], &ierr); /* Compute ABNRM and BBNRM */ *abnrm = clange_("1", n, n, &a[a_offset], lda, &rwork[1]); if (ilascl) { rwork[1] = *abnrm; slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &rwork[1], & c__1, &ierr); *abnrm = rwork[1]; } *bbnrm = clange_("1", n, n, &b[b_offset], ldb, &rwork[1]); if (ilbscl) { rwork[1] = *bbnrm; slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &rwork[1], & c__1, &ierr); *bbnrm = rwork[1]; } /* Reduce B to triangular form (QR decomposition of B) */ /* (Complex Workspace: need N, prefer N*NB ) */ irows = *ihi + 1 - *ilo; if (ilv || ! wantsn) { icols = *n + 1 - *ilo; } else { icols = irows; } itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; cgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the unitary transformation to A */ /* (Complex Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; cunmqr_("L", "C", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, & work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VL and/or VR */ /* (Workspace: need N, prefer N*NB) */ if (ilvl) { claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl); if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[ *ilo + 1 + *ilo * vl_dim1], ldvl); } i__1 = *lwork + 1 - iwrk; cungqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, & work[itau], &work[iwrk], &i__1, &ierr); } if (ilvr) { claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr); } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ if (ilv || ! wantsn) { /* Eigenvectors requested -- work on whole matrix. */ cgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } else { cgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &ierr); } /* Perform QZ algorithm (Compute eigenvalues, and optionally, the */ /* Schur forms and Schur vectors) */ /* (Complex Workspace: need N) */ /* (Real Workspace: need N) */ iwrk = itau; if (ilv || ! wantsn) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwrk; chgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset] , ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &rwork[1], &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L90; } /* Compute Eigenvectors and estimate condition numbers if desired */ /* CTGEVC: (Complex Workspace: need 2*N ) */ /* (Real Workspace: need 2*N ) */ /* CTGSNA: (Complex Workspace: need 2*N*N if SENSE='V' or 'B') */ /* (Integer Workspace: need N+2 ) */ if (ilv || ! wantsn) { if (ilv) { if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, & work[iwrk], &rwork[1], &ierr); if (ierr != 0) { *info = *n + 2; goto L90; } } if (! wantsn) { /* compute eigenvectors (STGEVC) and estimate condition */ /* numbers (STGSNA). Note that the definition of the condition */ /* number is not invariant under transformation (u,v) to */ /* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */ /* Schur form (S,T), Q and Z are orthogonal matrices. In order */ /* to avoid using extra 2*N*N workspace, we have to */ /* re-calculate eigenvectors and estimate the condition numbers */ /* one at a time. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = 1; j <= i__2; ++j) { bwork[j] = FALSE_; /* L10: */ } bwork[i__] = TRUE_; iwrk = *n + 1; iwrk1 = iwrk + *n; if (wantse || wantsb) { ctgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, & c__1, &m, &work[iwrk1], &rwork[1], &ierr); if (ierr != 0) { *info = *n + 2; goto L90; } } i__2 = *lwork - iwrk1 + 1; ctgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[ i__], &rcondv[i__], &c__1, &m, &work[iwrk1], &i__2, & iwork[1], &ierr); /* L20: */ } } } /* Undo balancing on VL and VR and normalization */ /* (Workspace: none needed) */ if (ilvl) { cggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[ vl_offset], ldvl, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = jr + jc * vl_dim1; r__3 = temp, r__4 = (r__1 = vl[i__3].r, dabs(r__1)) + (r__2 = r_imag(&vl[jr + jc * vl_dim1]), dabs(r__2)); temp = dmax(r__3,r__4); /* L30: */ } if (temp < smlnum) { goto L50; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = jr + jc * vl_dim1; i__4 = jr + jc * vl_dim1; q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i; vl[i__3].r = q__1.r, vl[i__3].i = q__1.i; /* L40: */ } L50: ; } } if (ilvr) { cggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[ vr_offset], ldvr, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = jr + jc * vr_dim1; r__3 = temp, r__4 = (r__1 = vr[i__3].r, dabs(r__1)) + (r__2 = r_imag(&vr[jr + jc * vr_dim1]), dabs(r__2)); temp = dmax(r__3,r__4); /* L60: */ } if (temp < smlnum) { goto L80; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = jr + jc * vr_dim1; i__4 = jr + jc * vr_dim1; q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i; vr[i__3].r = q__1.r, vr[i__3].i = q__1.i; /* L70: */ } L80: ; } } /* Undo scaling if necessary */ if (ilascl) { clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, & ierr); } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } L90: work[1].r = (real) maxwrk, work[1].i = 0.f; return 0; /* End of CGGEVX */ } /* cggevx_ */
/* Subroutine */ int cgegv_(char *jobvl, char *jobvr, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex * work, integer *lwork, real *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= This routine is deprecated and has been replaced by routine CGGEV. CGEGV computes for a pair of N-by-N complex nonsymmetric matrices A and B, the generalized eigenvalues (alpha, beta), and optionally, the left and/or right generalized eigenvectors (VL and VR). A generalized eigenvalue for a pair of matrices (A,B) is, roughly speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A good beginning reference is the book, "Matrix Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) A right generalized eigenvector corresponding to a generalized eigenvalue w for a pair of matrices (A,B) is a vector r such that (A - w B) r = 0 . A left generalized eigenvector is a vector l such that l**H * (A - w B) = 0, where l**H is the conjugate-transpose of l. Note: this routine performs "full balancing" on A and B -- see "Further Details", below. Arguments ========= JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors. JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors. N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the first of the pair of matrices whose generalized eigenvalues and (optionally) generalized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of A on exit, see "Further Details", below.) LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB, N) On entry, the second of the pair of matrices whose generalized eigenvalues and (optionally) generalized eigenvectors are to be computed. On exit, the contents will have been destroyed. (For a description of the contents of B on exit, see "Further Details", below.) LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHA (output) COMPLEX array, dimension (N) BETA (output) COMPLEX array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) COMPLEX array, dimension (LDVL,N) If JOBVL = 'V', the left generalized eigenvectors. (See "Purpose", above.) Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) COMPLEX array, dimension (LDVR,N) If JOBVR = 'V', the right generalized eigenvectors. (See "Purpose", above.) Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1, *except* that for eigenvalues with alpha=beta=0, a zero vector will be returned as the corresponding eigenvector. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; The optimal LWORK is MAX( 2*N, N*(NB+1) ). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace/output) REAL array, dimension (8*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. =1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from CGGBAL =N+2: error return from CGEQRF =N+3: error return from CUNMQR =N+4: error return from CUNGQR =N+5: error return from CGGHRD =N+6: error return from CHGEQZ (other than failed iteration) =N+7: error return from CTGEVC =N+8: error return from CGGBAK (computing VL) =N+9: error return from CGGBAK (computing VR) =N+10: error return from CLASCL (various calls) Further Details =============== Balancing --------- This driver calls CGGBAL to both permute and scale rows and columns of A and B. The permutations PL and PR are chosen so that PL*A*PR and PL*B*R will be upper triangular except for the diagonal blocks A(i:j,i:j) and B(i:j,i:j), with i and j as close together as possible. The diagonal scaling matrices DL and DR are chosen so that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to one (except for the elements that start out zero.) After the eigenvalues and eigenvectors of the balanced matrices have been computed, CGGBAK transforms the eigenvectors back to what they would have been (in perfect arithmetic) if they had not been balanced. Contents of A and B on Exit -------- -- - --- - -- ---- If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or both), then on exit the arrays A and B will contain the complex Schur form[*] of the "balanced" versions of A and B. If no eigenvectors are computed, then only the diagonal blocks will be correct. [*] In other words, upper triangular form. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; static integer c_n1 = -1; static real c_b29 = 1.f; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; complex q__1, q__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ static real absb, anrm, bnrm; static integer itau; static real temp; static logical ilvl, ilvr; static integer lopt; static real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols, iwork, irows, jc; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *); static integer nb, in; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); static integer jr; extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *); static real salfai; extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static real salfar; extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static real safmin; extern /* Subroutine */ int ctgevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *); static real safmax; static char chtemp[1]; static logical ldumma[1]; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer ijobvl, iright; static logical ilimit; static integer ijobvr; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static integer lwkmin, nb1, nb2, nb3; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer irwork, lwkopt; static logical lquery; static integer ihi, ilo; static real eps; static logical ilv; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1 #define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)] #define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1 #define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alpha; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments Computing MAX */ i__1 = *n << 1; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -11; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -13; } else if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info == 0) { nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n << 1, i__2 = *n * (nb + 1); lopt = max(i__1,i__2); work[1].r = (real) lopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); safmin += safmin; safmax = 1.f / safmin; /* Scale A */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); anrm1 = anrm; anrm2 = 1.f; if (anrm < 1.f) { if (safmax * anrm < 1.f) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.f) { clascl_("G", &c_n1, &c_n1, &anrm, &c_b29, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); bnrm1 = bnrm; bnrm2 = 1.f; if (bnrm < 1.f) { if (safmax * bnrm < 1.f) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.f) { clascl_("G", &c_n1, &c_n1, &bnrm, &c_b29, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular Also "balance" the matrix. */ ileft = 1; iright = *n + 1; irwork = iright + *n; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L80; } /* Reduce B to triangular form, and initialize VL and/or VR */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = 1; iwork = itau + irows; i__1 = *lwork + 1 - iwork; cgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L80; } i__1 = *lwork + 1 - iwork; cunmqr_("L", "C", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L80; } if (ilvl) { claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1, ilo), ldvl); i__1 = *lwork + 1 - iwork; cungqr_(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L80; } } if (ilvr) { claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr); } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { cgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, & b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L80; } /* Perform QZ algorithm */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &work[iwork], &i__1, &rwork[irwork], &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L80; } if (ilv) { /* Compute Eigenvectors */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L80; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L80; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = vl_subscr(jr, jc); r__3 = temp, r__4 = (r__1 = vl[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vl_ref(jr, jc)), dabs(r__2)); temp = dmax(r__3,r__4); /* L10: */ } if (temp < safmin) { goto L30; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = vl_subscr(jr, jc); i__4 = vl_subscr(jr, jc); q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i; vl[i__3].r = q__1.r, vl[i__3].i = q__1.i; /* L20: */ } L30: ; } } if (ilvr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L80; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = vr_subscr(jr, jc); r__3 = temp, r__4 = (r__1 = vr[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vr_ref(jr, jc)), dabs(r__2)); temp = dmax(r__3,r__4); /* L40: */ } if (temp < safmin) { goto L60; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = vr_subscr(jr, jc); i__4 = vr_subscr(jr, jc); q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i; vr[i__3].r = q__1.r, vr[i__3].i = q__1.i; /* L50: */ } L60: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta Note: this does not give the alpha and beta for the unscaled problem. Un-scaling is limited to avoid underflow in alpha and beta if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { i__2 = jc; absar = (r__1 = alpha[i__2].r, dabs(r__1)); absai = (r__1 = r_imag(&alpha[jc]), dabs(r__1)); i__2 = jc; absb = (r__1 = beta[i__2].r, dabs(r__1)); i__2 = jc; salfar = anrm * alpha[i__2].r; salfai = anrm * r_imag(&alpha[jc]); i__2 = jc; sbeta = bnrm * beta[i__2].r; ilimit = FALSE_; scale = 1.f; /* Check for significant underflow in imaginary part of ALPHA Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfai) < safmin && absai >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ r__1 = safmin, r__2 = anrm2 * absai; scale = safmin / anrm1 / dmax(r__1,r__2); } /* Check for significant underflow in real part of ALPHA Computing MAX */ r__1 = safmin, r__2 = eps * absai, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfar) < safmin && absar >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ r__3 = safmin, r__4 = anrm2 * absar; r__1 = scale, r__2 = safmin / anrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for significant underflow in BETA Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absai; if (dabs(sbeta) < safmin && absb >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX Computing MAX */ r__3 = safmin, r__4 = bnrm2 * absb; r__1 = scale, r__2 = safmin / bnrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ r__1 = dabs(salfar), r__2 = dabs(salfai), r__1 = max(r__1,r__2), r__2 = dabs(sbeta); temp = scale * safmin * dmax(r__1,r__2); if (temp > 1.f) { scale /= temp; } if (scale < 1.f) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHA, BETA if necessary. */ if (ilimit) { i__2 = jc; salfar = scale * alpha[i__2].r * anrm; salfai = scale * r_imag(&alpha[jc]) * anrm; i__2 = jc; q__2.r = scale * beta[i__2].r, q__2.i = scale * beta[i__2].i; q__1.r = bnrm * q__2.r, q__1.i = bnrm * q__2.i; sbeta = q__1.r; } i__2 = jc; q__1.r = salfar, q__1.i = salfai; alpha[i__2].r = q__1.r, alpha[i__2].i = q__1.i; i__2 = jc; beta[i__2].r = sbeta, beta[i__2].i = 0.f; /* L70: */ } L80: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGEGV */ } /* cgegv_ */
/* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, integer *rank, complex *work, integer *lwork, real *rwork, integer * iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; real r__1; complex q__1; /* Local variables */ static real anrm, bnrm; static integer itau, iascl, ibscl; static real sfmin; static integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il; extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, integer *, integer *), slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); static integer mm; extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clalsd_( char *, integer *, integer *, integer *, real *, real *, complex * , integer *, real *, integer *, complex *, real *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer ldwork; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer minwrk, maxwrk; static real smlnum; static logical lquery; static integer nrwork, smlsiz; static real eps; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999 Purpose ======= CGELSD computes the minimum-norm solution to a real linear least squares problem: minimize 2-norm(| b - A*x |) using the singular value decomposition (SVD) of A. A is an M-by-N matrix which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. The problem is solved in three steps: (1) Reduce the coefficient matrix A to bidiagonal form with Householder tranformations, reducing the original problem into a "bidiagonal least squares problem" (BLS) (2) Solve the BLS using a divide and conquer approach. (3) Apply back all the Householder tranformations to solve the original least squares problem. The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, A has been destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). B (input/output) COMPLEX array, dimension (LDB,NRHS) On entry, the M-by-NRHS right hand side matrix B. On exit, B is overwritten by the N-by-NRHS solution matrix X. If m >= n and RANK = n, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements n+1:m in that column. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,M,N). S (output) REAL array, dimension (min(M,N)) The singular values of A in decreasing order. The condition number of A in the 2-norm = S(1)/S(min(m,n)). RCOND (input) REAL RCOND is used to determine the effective rank of A. Singular values S(i) <= RCOND*S(1) are treated as zero. If RCOND < 0, machine precision is used instead. RANK (output) INTEGER The effective rank of A, i.e., the number of singular values which are greater than RCOND*S(1). WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK must be at least 1. The exact minimum amount of workspace needed depends on M, N and NRHS. As long as LWORK is at least 2 * N + N * NRHS if M is greater than or equal to N or 2 * M + M * NRHS if M is less than N, the code will execute correctly. For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) REAL array, dimension at least 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2 if M is greater than or equal to N or 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + (SMLSIZ+1)**2 if M is less than N, the code will execute correctly. SMLSIZ is returned by ILAENV and is equal to the maximum size of the subproblems at the bottom of the computation tree (usually about 25), and NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) IWORK (workspace) INTEGER array, dimension (LIWORK) LIWORK >= 3 * MINMN * NLVL + 11 * MINMN, where MINMN = MIN( M,N ). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: the algorithm for computing the SVD failed to converge; if INFO = i, i off-diagonal elements of an intermediate bidiagonal form did not converge to zero. Further Details =============== Based on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA ===================================================================== Test the input arguments. Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --s; --work; --rwork; --iwork; /* Function Body */ *info = 0; minmn = min(*m,*n); maxmn = max(*m,*n); mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, ( ftnlen)1); lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,maxmn)) { *info = -7; } smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0, ( ftnlen)6, (ftnlen)1); /* Compute workspace. (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV.) */ minwrk = 1; if (*info == 0) { maxwrk = 0; mm = *m; if (*m >= *n && *m >= mnthr) { /* Path 1a - overdetermined, with many more rows than columns. */ mm = *n; /* Computing MAX */ i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, & c_n1, &c_n1, (ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2); maxwrk = max(i__1,i__2); } if (*m >= *n) { /* Path 1 - overdetermined or exactly determined. Computing MAX */ i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1) ; maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, "CUN" "MBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs; maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs; minwrk = max(i__1,i__2); } if (*n > *m) { if (*n >= mnthr) { /* Path 2a - underdetermined, with many more columns than rows. */ maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, ( ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(& c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, ( ftnlen)3); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1, ( ftnlen)6, (ftnlen)2); maxwrk = max(i__1,i__2); if (*nrhs > 1) { /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs; maxwrk = max(i__1,i__2); } else { /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + (*m << 1); maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs; maxwrk = max(i__1,i__2); } else { /* Path 2 - underdetermined. */ maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, ( ftnlen)3); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, "CUNMBR" , "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3); maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs; maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs; minwrk = max(i__1,i__2); } minwrk = min(minwrk,maxwrk); r__1 = (real) maxwrk; q__1.r = r__1, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; if (*lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGELSD", &i__1); return 0; } else if (lquery) { goto L10; } /* Quick return if possible. */ if (*m == 0 || *n == 0) { *rank = 0; return 0; } /* Get machine parameters. */ eps = slamch_("P"); sfmin = slamch_("S"); smlnum = sfmin / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A if max entry outside range [SMLNUM,BIGNUM]. */ anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM. */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); slaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1); *rank = 0; goto L10; } /* Scale B if max entry outside range [SMLNUM,BIGNUM]. */ bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM. */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM. */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info); ibscl = 2; } /* If M < N make sure B(M+1:N,:) = 0 */ if (*m < *n) { i__1 = *n - *m; claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb); } /* Overdetermined case. */ if (*m >= *n) { /* Path 1 - overdetermined or exactly determined. */ mm = *m; if (*m >= mnthr) { /* Path 1a - overdetermined, with many more rows than columns */ mm = *n; itau = 1; nwork = itau + *n; /* Compute A=Q*R. (RWorkspace: need N) (CWorkspace: need N, prefer N*NB) */ i__1 = *lwork - nwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info); /* Multiply B by transpose(Q). (RWorkspace: need N) (CWorkspace: need NRHS, prefer NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info); /* Zero out below R. */ if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a_ref(2, 1), lda); } } itauq = 1; itaup = itauq + *n; nwork = itaup + *n; ie = 1; nrwork = ie + *n; /* Bidiagonalize R in A. (RWorkspace: need N) (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors of R. (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of R. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], & b[b_offset], ldb, &work[nwork], &i__1, info); } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max( i__1,*nrhs), i__2 = *n - *m * 3; if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) { /* Path 2a - underdetermined, with many more columns than rows and sufficient workspace for an efficient algorithm. */ ldwork = *m; /* Computing MAX Computing MAX */ i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = max(i__3,*nrhs), i__4 = *n - *m * 3; i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + *m + *m * *nrhs; if (*lwork >= max(i__1,i__2)) { ldwork = *lda; } itau = 1; nwork = *m + 1; /* Compute A=L*Q. (CWorkspace: need 2*M, prefer M+M*NB) */ i__1 = *lwork - nwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info); il = nwork; /* Copy L to WORK(IL), zeroing out above its diagonal. */ clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork); i__1 = *m - 1; i__2 = *m - 1; claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], & ldwork); itauq = il + ldwork * *m; itaup = itauq + *m; nwork = itaup + *m; ie = 1; nrwork = ie + *m; /* Bidiagonalize L in WORK(IL). (RWorkspace: need M) (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors of L. (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of L. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[ itaup], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Zero out below first M rows of B. */ i__1 = *n - *m; claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb); nwork = itau + *m; /* Multiply transpose(Q) by B. (CWorkspace: need NRHS, prefer NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info); } else { /* Path 2 - remaining underdetermined cases. */ itauq = 1; itaup = itauq + *m; nwork = itaup + *m; ie = 1; nrwork = ie + *m; /* Bidiagonalize A. (RWorkspace: need M) (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors. (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] , &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of A. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup] , &b[b_offset], ldb, &work[nwork], &i__1, info); } } /* Undo scaling. */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } L10: r__1 = (real) maxwrk; q__1.r = r__1, q__1.i = 0.f; work[1].r = q__1.r, work[1].i = q__1.i; return 0; /* End of CGELSD */ } /* cgelsd_ */
/* Subroutine */ int cggqrf_(integer *n, integer *m, integer *p, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CGGQRF computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B: A = Q*R, B = Q*T*Z, where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, and R and T assume one of the forms: if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, ( 0 ) N-M N M-N M where R11 is upper triangular, and if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, P-N N ( T21 ) P P where T12 or T21 is upper triangular. In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR factorization of inv(B)*A: inv(B)*A = Z'*(inv(T)*R) where inv(B) denotes the inverse of the matrix B, and Z' denotes the conjugate transpose of matrix Z. Arguments ========= N (input) INTEGER The number of rows of the matrices A and B. N >= 0. M (input) INTEGER The number of columns of the matrix A. M >= 0. P (input) INTEGER The number of columns of the matrix B. P >= 0. A (input/output) COMPLEX array, dimension (LDA,M) On entry, the N-by-M matrix A. On exit, the elements on and above the diagonal of the array contain the min(N,M)-by-M upper trapezoidal matrix R (R is upper triangular if N >= M); the elements below the diagonal, with the array TAUA, represent the unitary matrix Q as a product of min(N,M) elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAUA (output) COMPLEX array, dimension (min(N,M)) The scalar factors of the elementary reflectors which represent the unitary matrix Q (see Further Details). B (input/output) COMPLEX array, dimension (LDB,P) On entry, the N-by-P matrix B. On exit, if N <= P, the upper triangle of the subarray B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; if N > P, the elements on and above the (N-P)-th subdiagonal contain the N-by-P upper trapezoidal matrix T; the remaining elements, with the array TAUB, represent the unitary matrix Z as a product of elementary reflectors (see Further Details). LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). TAUB (output) COMPLEX array, dimension (min(N,P)) The scalar factors of the elementary reflectors which represent the unitary matrix Z (see Further Details). WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N,M,P). For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the optimal blocksize for the QR factorization of an N-by-M matrix, NB2 is the optimal blocksize for the RQ factorization of an N-by-P matrix, and NB3 is the optimal blocksize for a call of CUNMQR. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(n,m). Each H(i) has the form H(i) = I - taua * v * v' where taua is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine CUNGQR. To use Q to update another matrix, use LAPACK subroutine CUNMQR. The matrix Z is represented as a product of elementary reflectors Z = H(1) H(2) . . . H(k), where k = min(n,p). Each H(i) has the form H(i) = I - taub * v * v' where taub is a complex scalar, and v is a complex vector with v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine CUNGRQ. To use Z to update another matrix, use LAPACK subroutine CUNMRQ. ===================================================================== Test the input parameters Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ static integer lopt, nb; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static integer nb1, nb2, nb3; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer lwkopt; static logical lquery; a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; --taua; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --taub; --work; /* Function Body */ *info = 0; nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "CGERQF", " ", n, p, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "CUNMQR", " ", n, m, p, &c_n1, (ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = max(*n,*m); lwkopt = max(i__1,*p) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*n < 0) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*p < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*n), i__1 = max(i__1,*m); if (*lwork < max(i__1,*p) && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGQRF", &i__1); return 0; } else if (lquery) { return 0; } /* QR factorization of N-by-M matrix A: A = Q*R */ cgeqrf_(n, m, &a[a_offset], lda, &taua[1], &work[1], lwork, info); lopt = work[1].r; /* Update B := Q'*B. */ i__1 = min(*n,*m); cunmqr_("Left", "Conjugate Transpose", n, p, &i__1, &a[a_offset], lda, & taua[1], &b[b_offset], ldb, &work[1], lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[1].r; lopt = max(i__1,i__2); /* RQ factorization of N-by-P matrix B: B = T*Z. */ cgerqf_(n, p, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); /* Computing MAX */ i__2 = lopt, i__3 = (integer) work[1].r; i__1 = max(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGQRF */ } /* cggqrf_ */
/* Subroutine */ int cggrqf_(integer *m, integer *p, integer *n, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ integer nb, nb1, nb2, nb3, lopt; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int cunmrq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGGRQF computes a generalized RQ factorization of an M-by-N matrix A */ /* and a P-by-N matrix B: */ /* A = R*Q, B = Z*T*Q, */ /* where Q is an N-by-N unitary matrix, Z is a P-by-P unitary */ /* matrix, and R and T assume one of the forms: */ /* if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, */ /* N-M M ( R21 ) N */ /* N */ /* where R12 or R21 is upper triangular, and */ /* if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, */ /* ( 0 ) P-N P N-P */ /* N */ /* where T11 is upper triangular. */ /* In particular, if B is square and nonsingular, the GRQ factorization */ /* of A and B implicitly gives the RQ factorization of A*inv(B): */ /* A*inv(B) = (R*inv(T))*Z' */ /* where inv(B) denotes the inverse of the matrix B, and Z' denotes the */ /* conjugate transpose of the matrix Z. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* P (input) INTEGER */ /* The number of rows of the matrix B. P >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and B. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, if M <= N, the upper triangle of the subarray */ /* A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; */ /* if M > N, the elements on and above the (M-N)-th subdiagonal */ /* contain the M-by-N upper trapezoidal matrix R; the remaining */ /* elements, with the array TAUA, represent the unitary */ /* matrix Q as a product of elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAUA (output) COMPLEX array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the unitary matrix Q (see Further Details). */ /* B (input/output) COMPLEX array, dimension (LDB,N) */ /* On entry, the P-by-N matrix B. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(P,N)-by-N upper trapezoidal matrix T (T is */ /* upper triangular if P >= N); the elements below the diagonal, */ /* with the array TAUB, represent the unitary matrix Z as a */ /* product of elementary reflectors (see Further Details). */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,P). */ /* TAUB (output) COMPLEX array, dimension (min(P,N)) */ /* The scalar factors of the elementary reflectors which */ /* represent the unitary matrix Z (see Further Details). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,N,M,P). */ /* For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), */ /* where NB1 is the optimal blocksize for the RQ factorization */ /* of an M-by-N matrix, NB2 is the optimal blocksize for the */ /* QR factorization of a P-by-N matrix, and NB3 is the optimal */ /* blocksize for a call of CUNMRQ. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO=-i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - taua * v * v' */ /* where taua is a complex scalar, and v is a complex vector with */ /* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */ /* A(m-k+i,1:n-k+i-1), and taua in TAUA(i). */ /* To form Q explicitly, use LAPACK subroutine CUNGRQ. */ /* To use Q to update another matrix, use LAPACK subroutine CUNMRQ. */ /* The matrix Z is represented as a product of elementary reflectors */ /* Z = H(1) H(2) . . . H(k), where k = min(p,n). */ /* Each H(i) has the form */ /* H(i) = I - taub * v * v' */ /* where taub is a complex scalar, and v is a complex vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), */ /* and taub in TAUB(i). */ /* To form Z explicitly, use LAPACK subroutine CUNGQR. */ /* To use Z to update another matrix, use LAPACK subroutine CUNMQR. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --taua; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --taub; --work; /* Function Body */ *info = 0; nb1 = ilaenv_(&c__1, "CGERQF", " ", m, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CGEQRF", " ", p, n, &c_n1, &c_n1); nb3 = ilaenv_(&c__1, "CUNMRQ", " ", m, n, p, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = max(*n,*m); lwkopt = max(i__1,*p) * nb; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*p < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,*p)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m), i__1 = max(i__1,*p); if (*lwork < max(i__1,*n) && ! lquery) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGRQF", &i__1); return 0; } else if (lquery) { return 0; } /* RQ factorization of M-by-N matrix A: A = R*Q */ cgerqf_(m, n, &a[a_offset], lda, &taua[1], &work[1], lwork, info); lopt = work[1].r; /* Update B := B*Q' */ i__1 = min(*m,*n); /* Computing MAX */ i__2 = 1, i__3 = *m - *n + 1; cunmrq_("Right", "Conjugate Transpose", p, n, &i__1, &a[max(i__2, i__3)+ a_dim1], lda, &taua[1], &b[b_offset], ldb, &work[1], lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) work[1].r; lopt = max(i__1,i__2); /* QR factorization of P-by-N matrix B: B = Z*T */ cgeqrf_(p, n, &b[b_offset], ldb, &taub[1], &work[1], lwork, info); /* Computing MAX */ i__2 = lopt, i__3 = (integer) work[1].r; i__1 = max(i__2,i__3); work[1].r = (real) i__1, work[1].i = 0.f; return 0; /* End of CGGRQF */ } /* cggrqf_ */
/* Subroutine */ int cgegs_(char *jobvsl, char *jobvsr, integer *n, complex * a, integer *lda, complex *b, integer *ldb, complex *alpha, complex * beta, complex *vsl, integer *ldvsl, complex *vsr, integer *ldvsr, complex *work, integer *lwork, real *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= This routine is deprecated and has been replaced by routine CGGES. CGEGS computes for a pair of N-by-N complex nonsymmetric matrices A, B: the generalized eigenvalues (alpha, beta), the complex Schur form (A, B), and optionally left and/or right Schur vectors (VSL and VSR). (If only the generalized eigenvalues are needed, use the driver CGEGV instead.) A generalized eigenvalue for a pair of matrices (A,B) is, roughly speaking, a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. A good beginning reference is the book, "Matrix Computations", by G. Golub & C. van Loan (Johns Hopkins U. Press) The (generalized) Schur form of a pair of matrices is the result of multiplying both matrices on the left by one unitary matrix and both on the right by another unitary matrix, these two unitary matrices being chosen so as to bring the pair of matrices into upper triangular form with the diagonal elements of B being non-negative real numbers (this is also called complex Schur form.) The left and right Schur vectors are the columns of VSL and VSR, respectively, where VSL and VSR are the unitary matrices which reduce A and B to Schur form: Schur form of (A,B) = ( (VSL)**H A (VSR), (VSL)**H B (VSR) ) Arguments ========= JOBVSL (input) CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors. JOBVSR (input) CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors. N (input) INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the first of the pair of matrices whose generalized eigenvalues and (optionally) Schur vectors are to be computed. On exit, the generalized Schur form of A. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB, N) On entry, the second of the pair of matrices whose generalized eigenvalues and (optionally) Schur vectors are to be computed. On exit, the generalized Schur form of B. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHA (output) COMPLEX array, dimension (N) BETA (output) COMPLEX array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), j=1,...,N are the diagonals of the complex Schur form (A,B) output by CGEGS. The BETA(j) will be non-negative real. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VSL (output) COMPLEX array, dimension (LDVSL,N) If JOBVSL = 'V', VSL will contain the left Schur vectors. (See "Purpose", above.) Not referenced if JOBVSL = 'N'. LDVSL (input) INTEGER The leading dimension of the matrix VSL. LDVSL >= 1, and if JOBVSL = 'V', LDVSL >= N. VSR (output) COMPLEX array, dimension (LDVSR,N) If JOBVSR = 'V', VSR will contain the right Schur vectors. (See "Purpose", above.) Not referenced if JOBVSR = 'N'. LDVSR (input) INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. To compute the optimal value of LWORK, call ILAENV to get blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; the optimal LWORK is N*(NB+1). If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) REAL array, dimension (3*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. =1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: errors that usually indicate LAPACK problems: =N+1: error return from CGGBAL =N+2: error return from CGEQRF =N+3: error return from CUNMQR =N+4: error return from CUNGQR =N+5: error return from CGGHRD =N+6: error return from CHGEQZ (other than failed iteration) =N+7: error return from CGGBAK (computing VSL) =N+8: error return from CGGBAK (computing VSR) =N+9: error return from CLASCL (various places) ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2, i__3; /* Local variables */ static real anrm, bnrm; static integer itau, lopt; extern logical lsame_(char *, char *); static integer ileft, iinfo, icols; static logical ilvsl; static integer iwork; static logical ilvsr; static integer irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *); static integer nb; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); static logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); static real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); static integer ijobvl, iright, ijobvr; static real anrmto; static integer lwkmin, nb1, nb2, nb3; static real bnrmto; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static real smlnum; static integer irwork, lwkopt; static logical lquery; static integer ihi, ilo; static real eps; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define vsl_subscr(a_1,a_2) (a_2)*vsl_dim1 + a_1 #define vsl_ref(a_1,a_2) vsl[vsl_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1 * 1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1 * 1; vsr -= vsr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } /* Test the input arguments Computing MAX */ i__1 = *n << 1; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -11; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -13; } else if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info == 0) { nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, ( ftnlen)1); nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, ( ftnlen)1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); lopt = *n * (nb + 1); work[1].r = (real) lopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEGS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); smlnum = *n * safmin / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } /* Permute the matrix to make it more nearly triangular */ ileft = 1; iright = *n + 1; irwork = iright + *n; iwork = 1; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L10; } /* Reduce B to triangular form, and initialize VSL and/or VSR */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = iwork; iwork = itau + irows; i__1 = *lwork + 1 - iwork; cgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L10; } i__1 = *lwork + 1 - iwork; cunmqr_("L", "C", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L10; } if (ilvsl) { claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vsl_ref(ilo + 1, ilo), ldvsl); i__1 = *lwork + 1 - iwork; cungqr_(&irows, &irows, &irows, &vsl_ref(ilo, ilo), ldvsl, &work[itau] , &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L10; } } if (ilvsr) { claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 5; goto L10; } /* Perform QZ algorithm, computing Schur vectors if desired */ iwork = itau; i__1 = *lwork + 1 - iwork; chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L10; } /* Apply permutation to VSL and VSR */ if (ilvsl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &iinfo); if (iinfo != 0) { *info = *n + 7; goto L10; } } if (ilvsr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L10; } } /* Undo scaling */ if (ilascl) { clascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } clascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } if (ilbscl) { clascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } clascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & iinfo); if (iinfo != 0) { *info = *n + 9; return 0; } } L10: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGEGS */ } /* cgegs_ */
/* Subroutine */ int cerrqr_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static complex a[4] /* was [2][2] */, b[2]; static integer i__, j; static complex w[2], x[2]; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2r_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *); static complex af[4] /* was [2][2] */; extern /* Subroutine */ int alaesm_(char *, logical *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgeqrs_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_subscr(a_1,a_2) (a_2)*2 + a_1 - 3 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define af_subscr(a_1,a_2) (a_2)*2 + a_1 - 3 #define af_ref(a_1,a_2) af[af_subscr(a_1,a_2)] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= CERRQR tests the error exits for the COMPLEX routines that use the QR decomposition of a general matrix. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = a_subscr(i__, j); r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = af_subscr(i__, j); r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization CGEQRF */ s_copy(srnamc_1.srnamt, "CGEQRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQR2 */ s_copy(srnamc_1.srnamt, "CGEQR2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQRS */ s_copy(srnamc_1.srnamt, "CGEQRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNGQR */ s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cungqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cungqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cungqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNG2R */ s_copy(srnamc_1.srnamt, "CUNG2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cung2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cung2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNMQR */ s_copy(srnamc_1.srnamt, "CUNMQR", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cunmqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunmqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunmqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunmqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNM2R */ s_copy(srnamc_1.srnamt, "CUNM2R", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; cunm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRQR */ } /* cerrqr_ */
/* Subroutine */ int cggev_(char *jobvl, char *jobvr, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex * work, integer *lwork, real *rwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CGGEV computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. A generalized eigenvalue for a pair of matrices (A,B) is a scalar lambda or a ratio alpha/beta = lambda, such that A - lambda*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0, and even for both being zero. The right generalized eigenvector v(j) corresponding to the generalized eigenvalue lambda(j) of (A,B) satisfies A * v(j) = lambda(j) * B * v(j). The left generalized eigenvector u(j) corresponding to the generalized eigenvalues lambda(j) of (A,B) satisfies u(j)**H * A = lambda(j) * u(j)**H * B where u(j)**H is the conjugate-transpose of u(j). Arguments ========= JOBVL (input) CHARACTER*1 = 'N': do not compute the left generalized eigenvectors; = 'V': compute the left generalized eigenvectors. JOBVR (input) CHARACTER*1 = 'N': do not compute the right generalized eigenvectors; = 'V': compute the right generalized eigenvectors. N (input) INTEGER The order of the matrices A, B, VL, and VR. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the matrix A in the pair (A,B). On exit, A has been overwritten. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB, N) On entry, the matrix B in the pair (A,B). On exit, B has been overwritten. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). ALPHA (output) COMPLEX array, dimension (N) BETA (output) COMPLEX array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VL (output) COMPLEX array, dimension (LDVL,N) If JOBVL = 'V', the left generalized eigenvectors u(j) are stored one after another in the columns of VL, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1. Not referenced if JOBVL = 'N'. LDVL (input) INTEGER The leading dimension of the matrix VL. LDVL >= 1, and if JOBVL = 'V', LDVL >= N. VR (output) COMPLEX array, dimension (LDVR,N) If JOBVR = 'V', the right generalized eigenvectors v(j) are stored one after another in the columns of VR, in the same order as their eigenvalues. Each eigenvector will be scaled so the largest component will have abs(real part) + abs(imag. part) = 1. Not referenced if JOBVR = 'N'. LDVR (input) INTEGER The leading dimension of the matrix VR. LDVR >= 1, and if JOBVR = 'V', LDVR >= N. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,2*N). For good performance, LWORK must generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace/output) REAL array, dimension (8*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. =1,...,N: The QZ iteration failed. No eigenvectors have been calculated, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other then QZ iteration failed in SHGEQZ, =N+2: error return from STGEVC. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; static integer c__0 = 0; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; complex q__1; /* Builtin functions */ double sqrt(doublereal), r_imag(complex *); /* Local variables */ static real anrm, bnrm; static integer ierr, itau; static real temp; static logical ilvl, ilvr; static integer iwrk; extern logical lsame_(char *, char *); static integer ileft, icols, irwrk, irows, jc; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *), slabad_(real *, real *); static integer in; extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); static integer jr; extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); static logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), ctgevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *), xerbla_(char *, integer *); static logical ldumma[1]; static char chtemp[1]; static real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern doublereal slamch_(char *); static integer ijobvl, iright, ijobvr; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static real anrmto; static integer lwkmin; static real bnrmto; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static real smlnum; static integer lwkopt; static logical lquery; static integer ihi, ilo; static real eps; static logical ilv; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define vl_subscr(a_1,a_2) (a_2)*vl_dim1 + a_1 #define vl_ref(a_1,a_2) vl[vl_subscr(a_1,a_2)] #define vr_subscr(a_1,a_2) (a_2)*vr_dim1 + a_1 #define vr_ref(a_1,a_2) vr[vr_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alpha; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1 * 1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1 * 1; vr -= vr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -11; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -13; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV. The workspace is computed assuming ILO = 1 and IHI = N, the worst case.) */ lwkmin = 1; if (*info == 0 && (*lwork >= 1 || lquery)) { lwkopt = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &c__1, n, &c__0, ( ftnlen)6, (ftnlen)1); /* Computing MAX */ i__1 = 1, i__2 = *n << 1; lwkmin = max(i__1,i__2); work[1].r = (real) lwkopt, work[1].i = 0.f; } if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info != 0) { i__1 = -(*info); xerbla_("CGGEV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ work[1].r = (real) lwkopt, work[1].i = 0.f; if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrices A, B to isolate eigenvalues if possible (Real Workspace: need 6*N) */ ileft = 1; iright = *n + 1; irwrk = iright + *n; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) (Complex Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; cgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], & i__1, &ierr); /* Apply the orthogonal transformation to matrix A (Complex Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; cunmqr_("L", "C", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr); /* Initialize VL (Complex Workspace: need N, prefer N*NB) */ if (ilvl) { claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1, ilo), ldvl); i__1 = *lwork + 1 - iwrk; cungqr_(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VR */ if (ilvr) { claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr); } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } else { cgghrd_("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, & b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr); } /* Perform QZ algorithm (Compute eigenvalues, and optionally, the Schur form and Schur vectors) (Complex Workspace: need N) (Real Workspace: need N) */ iwrk = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwrk; chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &work[iwrk], &i__1, &rwork[irwrk], &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L70; } /* Compute Eigenvectors (Real Workspace: need 2*N) (Complex Workspace: need 2*N) */ if (ilv) { if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwrk], &rwork[irwrk], &ierr); if (ierr != 0) { *info = *n + 2; goto L70; } /* Undo balancing on VL and VR and normalization (Workspace: none needed) */ if (ilvl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vl[vl_offset], ldvl, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = vl_subscr(jr, jc); r__3 = temp, r__4 = (r__1 = vl[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vl_ref(jr, jc)), dabs(r__2)); temp = dmax(r__3,r__4); /* L10: */ } if (temp < smlnum) { goto L30; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = vl_subscr(jr, jc); i__4 = vl_subscr(jr, jc); q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i; vl[i__3].r = q__1.r, vl[i__3].i = q__1.i; /* L20: */ } L30: ; } } if (ilvr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vr[vr_offset], ldvr, &ierr); i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = vr_subscr(jr, jc); r__3 = temp, r__4 = (r__1 = vr[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vr_ref(jr, jc)), dabs(r__2)); temp = dmax(r__3,r__4); /* L40: */ } if (temp < smlnum) { goto L60; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = vr_subscr(jr, jc); i__4 = vr_subscr(jr, jc); q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i; vr[i__3].r = q__1.r, vr[i__3].i = q__1.i; /* L50: */ } L60: ; } } } /* Undo scaling if necessary */ if (ilascl) { clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, & ierr); } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } L70: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGGEV */ } /* cggev_ */
/* Subroutine */ int cggqrf_(integer *n, integer *m, integer *p, complex *a, integer *lda, complex *taua, complex *b, integer *ldb, complex *taub, complex *work, integer *lwork, integer *info) { /* -- LAPACK routine (version 2.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 Purpose ======= CGGQRF computes a generalized QR factorization of an N-by-M matrix A and an N-by-P matrix B: A = Q*R, B = Q*T*Z, where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix, and R and T assume one of the forms: if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N, ( 0 ) N-M N M-N M where R11 is upper triangular, and if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P, P-N N ( T21 ) P P where T12 or T21 is upper triangular. In particular, if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR factorization of inv(B)*A: inv(B)*A = Z'*(inv(T)*R) where inv(B) denotes the inverse of the matrix B, and Z' denotes the conjugate transpose of matrix Z. Arguments ========= N (input) INTEGER The number of rows of the matrices A and B. N >= 0. M (input) INTEGER The number of columns of the matrix A. M >= 0. P (input) INTEGER The number of columns of the matrix B. P >= 0. A (input/output) COMPLEX array, dimension (LDA,M) On entry, the N-by-M matrix A. On exit, the elements on and above the diagonal of the array contain the min(N,M)-by-M upper trapezoidal matrix R (R is upper triangular if N >= M); the elements below the diagonal, with the array TAUA, represent the unitary matrix Q as a product of min(N,M) elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAUA (output) COMPLEX array, dimension (min(N,M)) The scalar factors of the elementary reflectors which represent the unitary matrix Q (see Further Details). B (input/output) COMPLEX array, dimension (LDB,P) On entry, the N-by-P matrix B. On exit, if N <= P, the upper triangle of the subarray B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; if N > P, the elements on and above the (N-P)-th subdiagonal contain the N-by-P upper trapezoidal matrix T; the remaining elements, with the array TAUB, represent the unitary matrix Z as a product of elementary reflectors (see Further Details). LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). TAUB (output) COMPLEX array, dimension (min(N,P)) The scalar factors of the elementary reflectors which represent the unitary matrix Z (see Further Details). WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= max(1,N,M,P). For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), where NB1 is the optimal blocksize for the QR factorization of an N-by-M matrix, NB2 is the optimal blocksize for the RQ factorization of an N-by-P matrix, and NB3 is the optimal blocksize for a call of CUNMQR. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(n,m). Each H(i) has the form H(i) = I - taua * v * v' where taua is a complex scalar, and v is a complex vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and taua in TAUA(i). To form Q explicitly, use LAPACK subroutine CUNGQR. To use Q to update another matrix, use LAPACK subroutine CUNMQR. The matrix Z is represented as a product of elementary reflectors Z = H(1) H(2) . . . H(k), where k = min(n,p). Each H(i) has the form H(i) = I - taub * v * v' where taub is a complex scalar, and v is a complex vector with v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in B(n-k+i,1:p-k+i-1), and taub in TAUB(i). To form Z explicitly, use LAPACK subroutine CUNGRQ. To use Z to update another matrix, use LAPACK subroutine CUNMRQ. ===================================================================== Test the input parameters Parameter adjustments Function Body */ /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; doublereal d__1; /* Local variables */ static integer lopt; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgerqf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_(char *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex * , integer *, complex *, complex *, integer *, complex *, integer * , integer *); #define TAUA(I) taua[(I)-1] #define TAUB(I) taub[(I)-1] #define WORK(I) work[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] #define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] *info = 0; if (*n < 0) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*p < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*n), i__1 = max(i__1,*m); if (*lwork < max(i__1,*p)) { *info = -11; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGQRF", &i__1); return 0; } /* QR factorization of N-by-M matrix A: A = Q*R */ cgeqrf_(n, m, &A(1,1), lda, &TAUA(1), &WORK(1), lwork, info); lopt = WORK(1).r; /* Update B := Q'*B. */ i__1 = min(*n,*m); cunmqr_("Left", "Conjugate Transpose", n, p, &i__1, &A(1,1), lda, & TAUA(1), &B(1,1), ldb, &WORK(1), lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) WORK(1).r; lopt = max(i__1,i__2); /* RQ factorization of N-by-P matrix B: B = T*Z. */ cgerqf_(n, p, &B(1,1), ldb, &TAUB(1), &WORK(1), lwork, info); /* Computing MAX */ i__1 = lopt, i__2 = (integer) WORK(1).r; d__1 = (doublereal) max(i__1,i__2); WORK(1).r = d__1, WORK(1).i = 0.f; return 0; /* End of CGGQRF */ } /* cggqrf_ */
/* Subroutine */ int cgges_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, integer *n, complex *a, integer *lda, complex *b, integer * ldb, integer *sdim, complex *alpha, complex *beta, complex *vsl, integer *ldvsl, complex *vsr, integer *ldvsr, complex *work, integer * lwork, real *rwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__; real dif[2]; integer ihi, ilo; real eps, anrm, bnrm; integer idum[1], ierr, itau, iwrk; real pvsl, pvsr; extern logical lsame_(char *, char *); integer ileft, icols; logical cursl, ilvsl, ilvsr; integer irwrk, irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *), slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), ctgsen_(integer *, logical *, logical *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, integer *, real *, real *, real *, complex *, integer *, integer *, integer *, integer *); integer ijobvl, iright, ijobvr; real anrmto; integer lwkmin; logical lastsl; real bnrmto; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); real smlnum; logical wantst, lquery; integer lwkopt; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGGES computes for a pair of N-by-N complex nonsymmetric matrices */ /* (A,B), the generalized eigenvalues, the generalized complex Schur */ /* form (S, T), and optionally left and/or right Schur vectors (VSL */ /* and VSR). This gives the generalized Schur factorization */ /* (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H ) */ /* where (VSR)**H is the conjugate-transpose of VSR. */ /* Optionally, it also orders the eigenvalues so that a selected cluster */ /* of eigenvalues appears in the leading diagonal blocks of the upper */ /* triangular matrix S and the upper triangular matrix T. The leading */ /* columns of VSL and VSR then form an unitary basis for the */ /* corresponding left and right eigenspaces (deflating subspaces). */ /* (If only the generalized eigenvalues are needed, use the driver */ /* CGGEV instead, which is faster.) */ /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */ /* or a ratio alpha/beta = w, such that A - w*B is singular. It is */ /* usually represented as the pair (alpha,beta), as there is a */ /* reasonable interpretation for beta=0, and even for both being zero. */ /* A pair of matrices (S,T) is in generalized complex Schur form if S */ /* and T are upper triangular and, in addition, the diagonal elements */ /* of T are non-negative real numbers. */ /* Arguments */ /* ========= */ /* JOBVSL (input) CHARACTER*1 */ /* = 'N': do not compute the left Schur vectors; */ /* = 'V': compute the left Schur vectors. */ /* JOBVSR (input) CHARACTER*1 */ /* = 'N': do not compute the right Schur vectors; */ /* = 'V': compute the right Schur vectors. */ /* SORT (input) CHARACTER*1 */ /* Specifies whether or not to order the eigenvalues on the */ /* diagonal of the generalized Schur form. */ /* = 'N': Eigenvalues are not ordered; */ /* = 'S': Eigenvalues are ordered (see SELCTG). */ /* SELCTG (external procedure) LOGICAL FUNCTION of two COMPLEX arguments */ /* SELCTG must be declared EXTERNAL in the calling subroutine. */ /* If SORT = 'N', SELCTG is not referenced. */ /* If SORT = 'S', SELCTG is used to select eigenvalues to sort */ /* to the top left of the Schur form. */ /* An eigenvalue ALPHA(j)/BETA(j) is selected if */ /* SELCTG(ALPHA(j),BETA(j)) is true. */ /* Note that a selected complex eigenvalue may no longer satisfy */ /* SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since */ /* ordering may change the value of complex eigenvalues */ /* (especially if the eigenvalue is ill-conditioned), in this */ /* case INFO is set to N+2 (See INFO below). */ /* N (input) INTEGER */ /* The order of the matrices A, B, VSL, and VSR. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA, N) */ /* On entry, the first of the pair of matrices. */ /* On exit, A has been overwritten by its generalized Schur */ /* form S. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB, N) */ /* On entry, the second of the pair of matrices. */ /* On exit, B has been overwritten by its generalized Schur */ /* form T. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* SDIM (output) INTEGER */ /* If SORT = 'N', SDIM = 0. */ /* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */ /* for which SELCTG is true. */ /* ALPHA (output) COMPLEX array, dimension (N) */ /* BETA (output) COMPLEX array, dimension (N) */ /* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */ /* generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j), */ /* j=1,...,N are the diagonals of the complex Schur form (A,B) */ /* output by CGGES. The BETA(j) will be non-negative real. */ /* Note: the quotients ALPHA(j)/BETA(j) may easily over- or */ /* underflow, and BETA(j) may even be zero. Thus, the user */ /* should avoid naively computing the ratio alpha/beta. */ /* However, ALPHA will be always less than and usually */ /* comparable with norm(A) in magnitude, and BETA always less */ /* than and usually comparable with norm(B). */ /* VSL (output) COMPLEX array, dimension (LDVSL,N) */ /* If JOBVSL = 'V', VSL will contain the left Schur vectors. */ /* Not referenced if JOBVSL = 'N'. */ /* LDVSL (input) INTEGER */ /* The leading dimension of the matrix VSL. LDVSL >= 1, and */ /* if JOBVSL = 'V', LDVSL >= N. */ /* VSR (output) COMPLEX array, dimension (LDVSR,N) */ /* If JOBVSR = 'V', VSR will contain the right Schur vectors. */ /* Not referenced if JOBVSR = 'N'. */ /* LDVSR (input) INTEGER */ /* The leading dimension of the matrix VSR. LDVSR >= 1, and */ /* if JOBVSR = 'V', LDVSR >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* For good performance, LWORK must generally be larger. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) REAL array, dimension (8*N) */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* Not referenced if SORT = 'N'. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* =1,...,N: */ /* The QZ iteration failed. (A,B) are not in Schur */ /* form, but ALPHA(j) and BETA(j) should be correct for */ /* j=INFO+1,...,N. */ /* > N: =N+1: other than QZ iteration failed in CHGEQZ */ /* =N+2: after reordering, roundoff changed values of */ /* some complex eigenvalues so that leading */ /* eigenvalues in the Generalized Schur form no */ /* longer satisfy SELCTG=.TRUE. This could also */ /* be caused due to scaling. */ /* =N+3: reordering falied in CTGSEN. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1; vsr -= vsr_offset; --work; --rwork; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); /* Test the input arguments */ *info = 0; lquery = *lwork == -1; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -14; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -16; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV.) */ if (*info == 0) { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; lwkmin = max(i__1,i__2); /* Computing MAX */ i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &c__1, n, &c__0); lwkopt = max(i__1,i__2); /* Computing MAX */ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, & c__1, n, &c_n1); lwkopt = max(i__1,i__2); if (ilvsl) { /* Computing MAX */ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", " ", n, & c__1, n, &c_n1); lwkopt = max(i__1,i__2); } work[1].r = (real) lwkopt, work[1].i = 0.f; if (*lwork < lwkmin && ! lquery) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGES ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (Real Workspace: need 6*N) */ ileft = 1; iright = *n + 1; irwrk = iright + *n; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) */ /* (Complex Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwrk], &i__1, &ierr); /* Apply the orthogonal transformation to matrix A */ /* (Complex Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, & ierr); /* Initialize VSL */ /* (Complex Workspace: need N, prefer N*NB) */ if (ilvsl) { claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); if (irows > 1) { i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ ilo + 1 + ilo * vsl_dim1], ldvsl); } i__1 = *lwork + 1 - iwrk; cungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & work[itau], &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form */ /* (Workspace: none needed) */ cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); *sdim = 0; /* Perform QZ algorithm, computing Schur vectors if desired */ /* (Complex Workspace: need N) */ /* (Real Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L30; } /* Sort eigenvalues ALPHA/BETA if desired */ /* (Workspace: none needed) */ if (wantst) { /* Undo scaling on eigenvalues before selecting */ if (ilascl) { clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, &c__1, &alpha[1], n, &ierr); } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]); /* L10: */ } i__1 = *lwork - iwrk + 1; ctgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr); if (ierr == 1) { *info = *n + 3; } } /* Apply back-permutation to VSL and VSR */ /* (Workspace: none needed) */ if (ilvsl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &ierr); } if (ilvsr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &ierr); } /* Undo scaling */ if (ilascl) { clascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, & ierr); } if (ilbscl) { clascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; *sdim = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alpha[i__], &beta[i__]); if (cursl) { ++(*sdim); } if (cursl && ! lastsl) { *info = *n + 2; } lastsl = cursl; /* L20: */ } } L30: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGGES */ } /* cgges_ */
/* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, integer *rank, complex *work, integer *lwork, real *rwork, integer * iwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4; /* Builtin functions */ double log(doublereal); /* Local variables */ integer ie, il, mm; real eps, anrm, bnrm; integer itau, nlvl, iascl, ibscl; real sfmin; integer minmn, maxmn, itaup, itauq, mnthr, nwork; extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, integer *, integer *), slabad_(real *, real *); extern real clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clalsd_( char *, integer *, integer *, integer *, real *, real *, complex * , integer *, real *, integer *, complex *, real *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern real slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer ldwork; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer liwork, minwrk, maxwrk; real smlnum; integer lrwork; logical lquery; integer nrwork, smlsiz; /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --s; --work; --rwork; --iwork; /* Function Body */ *info = 0; minmn = min(*m,*n); maxmn = max(*m,*n); lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,maxmn)) { *info = -7; } /* Compute workspace. */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* NB refers to the optimal block size for the immediately */ /* following subroutine, as returned by ILAENV.) */ if (*info == 0) { minwrk = 1; maxwrk = 1; liwork = 1; lrwork = 1; if (minmn > 0) { smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0); mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1); /* Computing MAX */ i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log( 2.f)) + 1; nlvl = max(i__1,0); liwork = minmn * 3 * nlvl + minmn * 11; mm = *m; if (*m >= *n && *m >= mnthr) { /* Path 1a - overdetermined, with many more rows than */ /* columns. */ mm = *n; /* Computing MAX */ i__1 = maxwrk; i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &c_n1); // , expr subst maxwrk = max(i__1,i__2); } if (*m >= *n) { /* Path 1 - overdetermined or exactly determined. */ /* Computing MAX */ /* Computing 2nd power */ i__3 = smlsiz + 1; i__1 = i__3 * i__3; i__2 = *n * (*nrhs + 1) + (*nrhs << 1); // , expr subst lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl + smlsiz * 3 * *nrhs + max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, "CGEBRD", " ", &mm, n, &c_n1, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", &mm, nrhs, n, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, "CUNMBR", "PLN", n, nrhs, n, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + *n * *nrhs; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = (*n << 1) + mm; i__2 = (*n << 1) + *n * *nrhs; // , expr subst minwrk = max(i__1,i__2); } if (*n > *m) { /* Computing MAX */ /* Computing 2nd power */ i__3 = smlsiz + 1; i__1 = i__3 * i__3; i__2 = *n * (*nrhs + 1) + (*nrhs << 1); // , expr subst lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl + smlsiz * 3 * *nrhs + max(i__1,i__2); if (*n >= mnthr) { /* Path 2a - underdetermined, with many more columns */ /* than rows. */ maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & c_n1, &c_n1); /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 2) + (*m << 1) * ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 2) + (*m - 1) * ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1); // , expr subst maxwrk = max(i__1,i__2); if (*nrhs > 1) { /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + *m + *m * *nrhs; // , expr subst maxwrk = max(i__1,i__2); } else { /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 1); // , expr subst maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 2) + *m * *nrhs; // , expr subst maxwrk = max(i__1,i__2); /* XXX: Ensure the Path 2a case below is triggered. The workspace */ /* calculation should use queries for all routines eventually. */ /* Computing MAX */ /* Computing MAX */ i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4); i__3 = max(i__3,*nrhs); i__4 = *n - *m * 3; // ; expr subst i__1 = maxwrk; i__2 = (*m << 2) + *m * *m + max(i__3,i__4) ; // , expr subst maxwrk = max(i__1,i__2); } else { /* Path 2 - underdetermined. */ maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", " ", m, n, &c_n1, &c_n1); /* Computing MAX */ i__1 = maxwrk; i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*m << 1) + *m * ilaenv_(&c__1, "CUNMBR", "PLN", n, nrhs, m, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*m << 1) + *m * *nrhs; // , expr subst maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = (*m << 1) + *n; i__2 = (*m << 1) + *m * *nrhs; // , expr subst minwrk = max(i__1,i__2); } } minwrk = min(minwrk,maxwrk); work[1].r = (real) maxwrk; work[1].i = 0.f; // , expr subst iwork[1] = liwork; rwork[1] = (real) lrwork; if (*lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGELSD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0) { *rank = 0; return 0; } /* Get machine parameters. */ eps = slamch_("P"); sfmin = slamch_("S"); smlnum = sfmin / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A if max entry outside range [SMLNUM,BIGNUM]. */ anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM. */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1); *rank = 0; goto L10; } /* Scale B if max entry outside range [SMLNUM,BIGNUM]. */ bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM. */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM. */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info); ibscl = 2; } /* If M < N make sure B(M+1:N,:) = 0 */ if (*m < *n) { i__1 = *n - *m; claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb); } /* Overdetermined case. */ if (*m >= *n) { /* Path 1 - overdetermined or exactly determined. */ mm = *m; if (*m >= mnthr) { /* Path 1a - overdetermined, with many more rows than columns */ mm = *n; itau = 1; nwork = itau + *n; /* Compute A=Q*R. */ /* (RWorkspace: need N) */ /* (CWorkspace: need N, prefer N*NB) */ i__1 = *lwork - nwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info); /* Multiply B by transpose(Q). */ /* (RWorkspace: need N) */ /* (CWorkspace: need NRHS, prefer NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info); /* Zero out below R. */ if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda); } } itauq = 1; itaup = itauq + *n; nwork = itaup + *n; ie = 1; nrwork = ie + *n; /* Bidiagonalize R in A. */ /* (RWorkspace: need N) */ /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors of R. */ /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of R. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], & b[b_offset], ldb, &work[nwork], &i__1, info); } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2); i__1 = max( i__1,*nrhs); i__2 = *n - *m * 3; // ; expr subst if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) { /* Path 2a - underdetermined, with many more columns than rows */ /* and sufficient workspace for an efficient algorithm. */ ldwork = *m; /* Computing MAX */ /* Computing MAX */ i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4); i__3 = max(i__3,*nrhs); i__4 = *n - *m * 3; // ; expr subst i__1 = (*m << 2) + *m * *lda + max(i__3,i__4); i__2 = *m * *lda + *m + *m * *nrhs; // , expr subst if (*lwork >= max(i__1,i__2)) { ldwork = *lda; } itau = 1; nwork = *m + 1; /* Compute A=L*Q. */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ i__1 = *lwork - nwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info); il = nwork; /* Copy L to WORK(IL), zeroing out above its diagonal. */ clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork); i__1 = *m - 1; i__2 = *m - 1; claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], & ldwork); itauq = il + ldwork * *m; itaup = itauq + *m; nwork = itaup + *m; ie = 1; nrwork = ie + *m; /* Bidiagonalize L in WORK(IL). */ /* (RWorkspace: need M) */ /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors of L. */ /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ itauq], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of L. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[ itaup], &b[b_offset], ldb, &work[nwork], &i__1, info); /* Zero out below first M rows of B. */ i__1 = *n - *m; claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb); nwork = itau + *m; /* Multiply transpose(Q) by B. */ /* (CWorkspace: need NRHS, prefer NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info); } else { /* Path 2 - remaining underdetermined cases. */ itauq = 1; itaup = itauq + *m; nwork = itaup + *m; ie = 1; nrwork = ie + *m; /* Bidiagonalize A. */ /* (RWorkspace: need M) */ /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */ i__1 = *lwork - nwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors. */ /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */ i__1 = *lwork - nwork + 1; cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] , &b[b_offset], ldb, &work[nwork], &i__1, info); /* Solve the bidiagonal least squares problem. */ clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info); if (*info != 0) { goto L10; } /* Multiply B by right bidiagonalizing vectors of A. */ i__1 = *lwork - nwork + 1; cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup] , &b[b_offset], ldb, &work[nwork], &i__1, info); } } /* Undo scaling. */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } L10: work[1].r = (real) maxwrk; work[1].i = 0.f; // , expr subst iwork[1] = liwork; rwork[1] = (real) lrwork; return 0; /* End of CGELSD */ }
/* Subroutine */ int cgeqp3_(integer *m, integer *n, complex *a, integer *lda, integer *jpvt, complex *tau, complex *work, integer *lwork, real * rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; /* Local variables */ integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd, nbmin; extern /* Subroutine */ int cswap_(integer *, complex *, integer *, complex *, integer *); integer minmn, minws; extern /* Subroutine */ int claqp2_(integer *, integer *, integer *, complex *, integer *, integer *, complex *, real *, real *, complex *); extern real scnrm2_(integer *, complex *, integer *); extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), xerbla_( char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int claqps_(integer *, integer *, integer *, integer *, integer *, complex *, integer *, integer *, complex *, real *, real *, complex *, complex *, integer *); integer topbmn, sminmn; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer lwkopt; logical lquery; /* -- LAPACK computational routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test input arguments */ /* ==================== */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --jpvt; --tau; --work; --rwork; /* Function Body */ *info = 0; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } if (*info == 0) { minmn = min(*m,*n); if (minmn == 0) { iws = 1; lwkopt = 1; } else { iws = *n + 1; nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); lwkopt = (*n + 1) * nb; } work[1].r = (real) lwkopt; work[1].i = 0.f; // , expr subst if (*lwork < iws && ! lquery) { *info = -8; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGEQP3", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible. */ if (minmn == 0) { return 0; } /* Move initial columns up front. */ nfxd = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (jpvt[j] != 0) { if (j != nfxd) { cswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], & c__1); jpvt[j] = jpvt[nfxd]; jpvt[nfxd] = j; } else { jpvt[j] = j; } ++nfxd; } else { jpvt[j] = j; } /* L10: */ } --nfxd; /* Factorize fixed columns */ /* ======================= */ /* Compute the QR factorization of fixed columns and update */ /* remaining columns. */ if (nfxd > 0) { na = min(*m,nfxd); /* CC CALL CGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */ cgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info); /* Computing MAX */ i__1 = iws; i__2 = (integer) work[1].r; // , expr subst iws = max(i__1,i__2); if (na < *n) { /* CC CALL CUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, */ /* CC $ NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, */ /* CC $ INFO ) */ i__1 = *n - na; cunmqr_("Left", "Conjugate Transpose", m, &i__1, &na, &a[a_offset] , lda, &tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork, info); /* Computing MAX */ i__1 = iws; i__2 = (integer) work[1].r; // , expr subst iws = max(i__1,i__2); } } /* Factorize free columns */ /* ====================== */ if (nfxd < minmn) { sm = *m - nfxd; sn = *n - nfxd; sminmn = minmn - nfxd; /* Determine the block size. */ nb = ilaenv_(&c__1, "CGEQRF", " ", &sm, &sn, &c_n1, &c_n1); nbmin = 2; nx = 0; if (nb > 1 && nb < sminmn) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0; i__2 = ilaenv_(&c__3, "CGEQRF", " ", &sm, &sn, &c_n1, & c_n1); // , expr subst nx = max(i__1,i__2); if (nx < sminmn) { /* Determine if workspace is large enough for blocked code. */ minws = (sn + 1) * nb; iws = max(iws,minws); if (*lwork < minws) { /* Not enough workspace to use optimal NB: Reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / (sn + 1); /* Computing MAX */ i__1 = 2; i__2 = ilaenv_(&c__2, "CGEQRF", " ", &sm, &sn, & c_n1, &c_n1); // , expr subst nbmin = max(i__1,i__2); } } } /* Initialize partial column norms. The first N elements of work */ /* store the exact column norms. */ i__1 = *n; for (j = nfxd + 1; j <= i__1; ++j) { rwork[j] = scnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1); rwork[*n + j] = rwork[j]; /* L20: */ } if (nb >= nbmin && nb < sminmn && nx < sminmn) { /* Use blocked code initially. */ j = nfxd + 1; /* Compute factorization: while loop. */ topbmn = minmn - nx; L30: if (j <= topbmn) { /* Computing MIN */ i__1 = nb; i__2 = topbmn - j + 1; // , expr subst jb = min(i__1,i__2); /* Factorize JB columns among columns J:N. */ i__1 = *n - j + 1; i__2 = j - 1; i__3 = *n - j + 1; claqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, & jpvt[j], &tau[j], &rwork[j], &rwork[*n + j], &work[1], &work[jb + 1], &i__3); j += fjb; goto L30; } } else { j = nfxd + 1; } /* Use unblocked code to factor the last or only block. */ if (j <= minmn) { i__1 = *n - j + 1; i__2 = j - 1; claqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[ j], &rwork[j], &rwork[*n + j], &work[1]); } } work[1].r = (real) iws; work[1].i = 0.f; // , expr subst return 0; /* End of CGEQP3 */ }
/* Subroutine */ int cggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp selctg, char *sense, integer *n, complex *a, integer *lda, complex *b, integer *ldb, integer *sdim, complex *alpha, complex *beta, complex * vsl, integer *ldvsl, complex *vsr, integer *ldvsr, real *rconde, real *rcondv, complex *work, integer *lwork, real *rwork, integer *iwork, integer *liwork, logical *bwork, integer *info) { /* -- LAPACK driver routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 Purpose ======= CGGESX computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the complex Schur form (S,T), and, optionally, the left and/or right matrices of Schur vectors (VSL and VSR). This gives the generalized Schur factorization (A,B) = ( (VSL) S (VSR)**H, (VSL) T (VSR)**H ) where (VSR)**H is the conjugate-transpose of VSR. Optionally, it also orders the eigenvalues so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the upper triangular matrix S and the upper triangular matrix T; computes a reciprocal condition number for the average of the selected eigenvalues (RCONDE); and computes a reciprocal condition number for the right and left deflating subspaces corresponding to the selected eigenvalues (RCONDV). The leading columns of VSL and VSR then form an orthonormal basis for the corresponding left and right eigenspaces (deflating subspaces). A generalized eigenvalue for a pair of matrices (A,B) is a scalar w or a ratio alpha/beta = w, such that A - w*B is singular. It is usually represented as the pair (alpha,beta), as there is a reasonable interpretation for beta=0 or for both being zero. A pair of matrices (S,T) is in generalized complex Schur form if T is upper triangular with non-negative diagonal and S is upper triangular. Arguments ========= JOBVSL (input) CHARACTER*1 = 'N': do not compute the left Schur vectors; = 'V': compute the left Schur vectors. JOBVSR (input) CHARACTER*1 = 'N': do not compute the right Schur vectors; = 'V': compute the right Schur vectors. SORT (input) CHARACTER*1 Specifies whether or not to order the eigenvalues on the diagonal of the generalized Schur form. = 'N': Eigenvalues are not ordered; = 'S': Eigenvalues are ordered (see SELCTG). SELCTG (input) LOGICAL FUNCTION of two COMPLEX arguments SELCTG must be declared EXTERNAL in the calling subroutine. If SORT = 'N', SELCTG is not referenced. If SORT = 'S', SELCTG is used to select eigenvalues to sort to the top left of the Schur form. Note that a selected complex eigenvalue may no longer satisfy SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since ordering may change the value of complex eigenvalues (especially if the eigenvalue is ill-conditioned), in this case INFO is set to N+3 see INFO below). SENSE (input) CHARACTER Determines which reciprocal condition numbers are computed. = 'N' : None are computed; = 'E' : Computed for average of selected eigenvalues only; = 'V' : Computed for selected deflating subspaces only; = 'B' : Computed for both. If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. N (input) INTEGER The order of the matrices A, B, VSL, and VSR. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the first of the pair of matrices. On exit, A has been overwritten by its generalized Schur form S. LDA (input) INTEGER The leading dimension of A. LDA >= max(1,N). B (input/output) COMPLEX array, dimension (LDB, N) On entry, the second of the pair of matrices. On exit, B has been overwritten by its generalized Schur form T. LDB (input) INTEGER The leading dimension of B. LDB >= max(1,N). SDIM (output) INTEGER If SORT = 'N', SDIM = 0. If SORT = 'S', SDIM = number of eigenvalues (after sorting) for which SELCTG is true. ALPHA (output) COMPLEX array, dimension (N) BETA (output) COMPLEX array, dimension (N) On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the generalized eigenvalues. ALPHA(j) and BETA(j),j=1,...,N are the diagonals of the complex Schur form (S,T). BETA(j) will be non-negative real. Note: the quotients ALPHA(j)/BETA(j) may easily over- or underflow, and BETA(j) may even be zero. Thus, the user should avoid naively computing the ratio alpha/beta. However, ALPHA will be always less than and usually comparable with norm(A) in magnitude, and BETA always less than and usually comparable with norm(B). VSL (output) COMPLEX array, dimension (LDVSL,N) If JOBVSL = 'V', VSL will contain the left Schur vectors. Not referenced if JOBVSL = 'N'. LDVSL (input) INTEGER The leading dimension of the matrix VSL. LDVSL >=1, and if JOBVSL = 'V', LDVSL >= N. VSR (output) COMPLEX array, dimension (LDVSR,N) If JOBVSR = 'V', VSR will contain the right Schur vectors. Not referenced if JOBVSR = 'N'. LDVSR (input) INTEGER The leading dimension of the matrix VSR. LDVSR >= 1, and if JOBVSR = 'V', LDVSR >= N. RCONDE (output) REAL array, dimension ( 2 ) If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the reciprocal condition numbers for the average of the selected eigenvalues. Not referenced if SENSE = 'N' or 'V'. RCONDV (output) REAL array, dimension ( 2 ) If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the reciprocal condition number for the selected deflating subspaces. Not referenced if SENSE = 'N' or 'E'. WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The dimension of the array WORK. LWORK >= 2*N. If SENSE = 'E', 'V', or 'B', LWORK >= MAX(2*N, 2*SDIM*(N-SDIM)). RWORK (workspace) REAL array, dimension ( 8*N ) Real workspace. IWORK (workspace/output) INTEGER array, dimension (LIWORK) Not referenced if SENSE = 'N'. On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. LIWORK (input) INTEGER The dimension of the array WORK. LIWORK >= N+2. BWORK (workspace) LOGICAL array, dimension (N) Not referenced if SORT = 'N'. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. = 1,...,N: The QZ iteration failed. (A,B) are not in Schur form, but ALPHA(j) and BETA(j) should be correct for j=INFO+1,...,N. > N: =N+1: other than QZ iteration failed in CHGEQZ =N+2: after reordering, roundoff changed values of some complex eigenvalues so that leading eigenvalues in the Generalized Schur form no longer satisfy SELCTG=.TRUE. This could also be caused due to scaling. =N+3: reordering failed in CTGSEN. ===================================================================== Decode the input arguments Parameter adjustments */ /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, vsr_dim1, vsr_offset, i__1, i__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static integer ijob; static real anrm, bnrm; static integer ierr, itau, iwrk, i__; extern logical lsame_(char *, char *); static integer ileft, icols; static logical cursl, ilvsl, ilvsr; static integer irwrk, irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *), slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); static real pl; extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *); static real pr; static logical ilascl, ilbscl; extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern doublereal slamch_(char *); static real bignum; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), ctgsen_(integer *, logical *, logical *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, integer *, real *, real *, real *, complex *, integer *, integer *, integer *, integer *); static integer ijobvl, iright, ijobvr; static logical wantsb; static integer liwmin; static logical wantse, lastsl; static real anrmto, bnrmto; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static integer minwrk, maxwrk; static logical wantsn; static real smlnum; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static logical wantst, wantsv; static real dif[2]; static integer ihi, ilo; static real eps; #define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1 #define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)] #define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1 #define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)] #define vsl_subscr(a_1,a_2) (a_2)*vsl_dim1 + a_1 #define vsl_ref(a_1,a_2) vsl[vsl_subscr(a_1,a_2)] a_dim1 = *lda; a_offset = 1 + a_dim1 * 1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1 * 1; b -= b_offset; --alpha; --beta; vsl_dim1 = *ldvsl; vsl_offset = 1 + vsl_dim1 * 1; vsl -= vsl_offset; vsr_dim1 = *ldvsr; vsr_offset = 1 + vsr_dim1 * 1; vsr -= vsr_offset; --rconde; --rcondv; --work; --rwork; --iwork; --bwork; /* Function Body */ if (lsame_(jobvsl, "N")) { ijobvl = 1; ilvsl = FALSE_; } else if (lsame_(jobvsl, "V")) { ijobvl = 2; ilvsl = TRUE_; } else { ijobvl = -1; ilvsl = FALSE_; } if (lsame_(jobvsr, "N")) { ijobvr = 1; ilvsr = FALSE_; } else if (lsame_(jobvsr, "V")) { ijobvr = 2; ilvsr = TRUE_; } else { ijobvr = -1; ilvsr = FALSE_; } wantst = lsame_(sort, "S"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); if (wantsn) { ijob = 0; iwork[1] = 1; } else if (wantse) { ijob = 1; } else if (wantsv) { ijob = 2; } else if (wantsb) { ijob = 4; } /* Test the input arguments */ *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (! wantst && ! lsame_(sort, "N")) { *info = -3; } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! wantsn) { *info = -5; } else if (*n < 0) { *info = -6; } else if (*lda < max(1,*n)) { *info = -8; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { *info = -15; } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { *info = -17; } /* Compute workspace (Note: Comments in the code beginning "Workspace:" describe the minimal amount of workspace needed at that point in the code, as well as the preferred amount for good performance. NB refers to the optimal block size for the immediately following subroutine, as returned by ILAENV.) */ minwrk = 1; if (*info == 0 && *lwork >= 1) { /* Computing MAX */ i__1 = 1, i__2 = *n << 1; minwrk = max(i__1,i__2); maxwrk = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &c__1, n, &c__0, ( ftnlen)6, (ftnlen)1); if (ilvsl) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", " ", n, & c__1, n, &c_n1, (ftnlen)6, (ftnlen)1); maxwrk = max(i__1,i__2); } work[1].r = (real) maxwrk, work[1].i = 0.f; } if (! wantsn) { liwmin = *n + 2; } else { liwmin = 1; } iwork[1] = liwmin; if (*info == 0 && *lwork < minwrk) { *info = -21; } else if (*info == 0 && ijob >= 1) { if (*liwork < liwmin) { *info = -24; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGGESX", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = slamch_("P"); smlnum = slamch_("S"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1.f / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); ilascl = FALSE_; if (anrm > 0.f && anrm < smlnum) { anrmto = smlnum; ilascl = TRUE_; } else if (anrm > bignum) { anrmto = bignum; ilascl = TRUE_; } if (ilascl) { clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, & ierr); } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); ilbscl = FALSE_; if (bnrm > 0.f && bnrm < smlnum) { bnrmto = smlnum; ilbscl = TRUE_; } else if (bnrm > bignum) { bnrmto = bignum; ilbscl = TRUE_; } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & ierr); } /* Permute the matrix to make it more nearly triangular (Real Workspace: need 6*N) */ ileft = 1; iright = *n + 1; irwrk = iright + *n; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwrk], &ierr); /* Reduce B to triangular form (QR decomposition of B) (Complex Workspace: need N, prefer N*NB) */ irows = ihi + 1 - ilo; icols = *n + 1 - ilo; itau = 1; iwrk = itau + irows; i__1 = *lwork + 1 - iwrk; cgeqrf_(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], & i__1, &ierr); /* Apply the unitary transformation to matrix A (Complex Workspace: need N, prefer N*NB) */ i__1 = *lwork + 1 - iwrk; cunmqr_("L", "C", &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[ itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr); /* Initialize VSL (Complex Workspace: need N, prefer N*NB) */ if (ilvsl) { claset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vsl_ref(ilo + 1, ilo), ldvsl); i__1 = *lwork + 1 - iwrk; cungqr_(&irows, &irows, &irows, &vsl_ref(ilo, ilo), ldvsl, &work[itau] , &work[iwrk], &i__1, &ierr); } /* Initialize VSR */ if (ilvsr) { claset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr); } /* Reduce to generalized Hessenberg form (Workspace: none needed) */ cgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr); *sdim = 0; /* Perform QZ algorithm, computing Schur vectors if desired (Complex Workspace: need N) (Real Workspace: need N) */ iwrk = itau; i__1 = *lwork + 1 - iwrk; chgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, & vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &rwork[irwrk], &ierr); if (ierr != 0) { if (ierr > 0 && ierr <= *n) { *info = ierr; } else if (ierr > *n && ierr <= *n << 1) { *info = ierr - *n; } else { *info = *n + 1; } goto L40; } /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of condition number(s) */ if (wantst) { /* Undo scaling on eigenvalues before SELCTGing */ if (ilascl) { clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &ierr); } if (ilbscl) { clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &ierr); } /* Select eigenvalues */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*selctg)(&alpha[i__], &beta[i__]); /* L10: */ } /* Reorder eigenvalues, transform Generalized Schur vectors, and compute reciprocal condition numbers (Complex Workspace: If IJOB >= 1, need MAX(1, 2*SDIM*(N-SDIM)) otherwise, need 1 ) */ i__1 = *lwork - iwrk + 1; ctgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr, dif, &work[iwrk], & i__1, &iwork[1], liwork, &ierr); if (ijob >= 1) { /* Computing MAX */ i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); maxwrk = max(i__1,i__2); } if (ierr == -21) { /* not enough complex workspace */ *info = -21; } else { rconde[1] = pl; rconde[2] = pl; rcondv[1] = dif[0]; rcondv[2] = dif[1]; if (ierr == 1) { *info = *n + 3; } } } /* Apply permutation to VSL and VSR (Workspace: none needed) */ if (ilvsl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsl[vsl_offset], ldvsl, &ierr); } if (ilvsr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, & vsr[vsr_offset], ldvsr, &ierr); } /* Undo scaling */ if (ilascl) { clascl_("U", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, & ierr); clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, & ierr); } if (ilbscl) { clascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & ierr); clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & ierr); } /* L20: */ if (wantst) { /* Check if reordering is correct */ lastsl = TRUE_; *sdim = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { cursl = (*selctg)(&alpha[i__], &beta[i__]); if (cursl) { ++(*sdim); } if (cursl && ! lastsl) { *info = *n + 2; } lastsl = cursl; /* L30: */ } } L40: work[1].r = (real) maxwrk, work[1].i = 0.f; iwork[1] = liwmin; return 0; /* End of CGGESX */ } /* cggesx_ */
/* Subroutine */ int cgegv_(char *jobvl, char *jobvr, integer *n, complex *a, integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta, complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex * work, integer *lwork, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4; complex q__1, q__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo; real eps; logical ilv; real absb, anrm, bnrm; integer itau; real temp; logical ilvl, ilvr; integer lopt; real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; extern logical lsame_(char *, char *); integer ileft, iinfo, icols, iwork, irows; extern /* Subroutine */ int cggbak_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, complex *, integer *, integer *), cggbal_(char *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, real *, real *, real *, integer *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgghrd_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *); real salfai; extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); real salfar; extern doublereal slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); real safmin; extern /* Subroutine */ int ctgevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *); real safmax; char chtemp[1]; logical ldumma[1]; extern /* Subroutine */ int chgeqz_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ijobvl, iright; logical ilimit; integer ijobvr; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer irwork, lwkopt; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine CGGEV. */ /* CGEGV computes the eigenvalues and, optionally, the left and/or right */ /* eigenvectors of a complex matrix pair (A,B). */ /* Given two square matrices A and B, */ /* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */ /* eigenvalues lambda and corresponding (non-zero) eigenvectors x such */ /* that */ /* A*x = lambda*B*x. */ /* An alternate form is to find the eigenvalues mu and corresponding */ /* eigenvectors y such that */ /* mu*A*y = B*y. */ /* These two forms are equivalent with mu = 1/lambda and x = y if */ /* neither lambda nor mu is zero. In order to deal with the case that */ /* lambda or mu is zero or small, two values alpha and beta are returned */ /* for each eigenvalue, such that lambda = alpha/beta and */ /* mu = beta/alpha. */ /* The vectors x and y in the above equations are right eigenvectors of */ /* the matrix pair (A,B). Vectors u and v satisfying */ /* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */ /* are left eigenvectors of (A,B). */ /* Note: this routine performs "full balancing" on A and B -- see */ /* "Further Details", below. */ /* Arguments */ /* ========= */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': do not compute the left generalized eigenvectors; */ /* = 'V': compute the left generalized eigenvectors (returned */ /* in VL). */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': do not compute the right generalized eigenvectors; */ /* = 'V': compute the right generalized eigenvectors (returned */ /* in VR). */ /* N (input) INTEGER */ /* The order of the matrices A, B, VL, and VR. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA, N) */ /* On entry, the matrix A. */ /* If JOBVL = 'V' or JOBVR = 'V', then on exit A */ /* contains the Schur form of A from the generalized Schur */ /* factorization of the pair (A,B) after balancing. If no */ /* eigenvectors were computed, then only the diagonal elements */ /* of the Schur form will be correct. See CGGHRD and CHGEQZ */ /* for details. */ /* LDA (input) INTEGER */ /* The leading dimension of A. LDA >= max(1,N). */ /* B (input/output) COMPLEX array, dimension (LDB, N) */ /* On entry, the matrix B. */ /* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */ /* upper triangular matrix obtained from B in the generalized */ /* Schur factorization of the pair (A,B) after balancing. */ /* If no eigenvectors were computed, then only the diagonal */ /* elements of B will be correct. See CGGHRD and CHGEQZ for */ /* details. */ /* LDB (input) INTEGER */ /* The leading dimension of B. LDB >= max(1,N). */ /* ALPHA (output) COMPLEX array, dimension (N) */ /* The complex scalars alpha that define the eigenvalues of */ /* GNEP. */ /* BETA (output) COMPLEX array, dimension (N) */ /* The complex scalars beta that define the eigenvalues of GNEP. */ /* Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */ /* represent the j-th eigenvalue of the matrix pair (A,B), in */ /* one of the forms lambda = alpha/beta or mu = beta/alpha. */ /* Since either lambda or mu may overflow, they should not, */ /* in general, be computed. */ /* VL (output) COMPLEX array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left eigenvectors u(j) are stored */ /* in the columns of VL, in the same order as their eigenvalues. */ /* Each eigenvector is scaled so that its largest component has */ /* abs(real part) + abs(imag. part) = 1, except for eigenvectors */ /* corresponding to an eigenvalue with alpha = beta = 0, which */ /* are set to zero. */ /* Not referenced if JOBVL = 'N'. */ /* LDVL (input) INTEGER */ /* The leading dimension of the matrix VL. LDVL >= 1, and */ /* if JOBVL = 'V', LDVL >= N. */ /* VR (output) COMPLEX array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right eigenvectors x(j) are stored */ /* in the columns of VR, in the same order as their eigenvalues. */ /* Each eigenvector is scaled so that its largest component has */ /* abs(real part) + abs(imag. part) = 1, except for eigenvectors */ /* corresponding to an eigenvalue with alpha = beta = 0, which */ /* are set to zero. */ /* Not referenced if JOBVR = 'N'. */ /* LDVR (input) INTEGER */ /* The leading dimension of the matrix VR. LDVR >= 1, and */ /* if JOBVR = 'V', LDVR >= N. */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* For good performance, LWORK must generally be larger. */ /* To compute the optimal value of LWORK, call ILAENV to get */ /* blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: */ /* NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */ /* The optimal LWORK is MAX( 2*N, N*(NB+1) ). */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace/output) REAL array, dimension (8*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* =1,...,N: */ /* The QZ iteration failed. No eigenvectors have been */ /* calculated, but ALPHA(j) and BETA(j) should be */ /* correct for j=INFO+1,...,N. */ /* > N: errors that usually indicate LAPACK problems: */ /* =N+1: error return from CGGBAL */ /* =N+2: error return from CGEQRF */ /* =N+3: error return from CUNMQR */ /* =N+4: error return from CUNGQR */ /* =N+5: error return from CGGHRD */ /* =N+6: error return from CHGEQZ (other than failed */ /* iteration) */ /* =N+7: error return from CTGEVC */ /* =N+8: error return from CGGBAK (computing VL) */ /* =N+9: error return from CGGBAK (computing VR) */ /* =N+10: error return from CLASCL (various calls) */ /* Further Details */ /* =============== */ /* Balancing */ /* --------- */ /* This driver calls CGGBAL to both permute and scale rows and columns */ /* of A and B. The permutations PL and PR are chosen so that PL*A*PR */ /* and PL*B*R will be upper triangular except for the diagonal blocks */ /* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */ /* possible. The diagonal scaling matrices DL and DR are chosen so */ /* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */ /* one (except for the elements that start out zero.) */ /* After the eigenvalues and eigenvectors of the balanced matrices */ /* have been computed, CGGBAK transforms the eigenvectors back to what */ /* they would have been (in perfect arithmetic) if they had not been */ /* balanced. */ /* Contents of A and B on Exit */ /* -------- -- - --- - -- ---- */ /* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */ /* both), then on exit the arrays A and B will contain the complex Schur */ /* form[*] of the "balanced" versions of A and B. If no eigenvectors */ /* are computed, then only the diagonal blocks will be correct. */ /* [*] In other words, upper triangular form. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Decode the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alpha; --beta; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --work; --rwork; /* Function Body */ if (lsame_(jobvl, "N")) { ijobvl = 1; ilvl = FALSE_; } else if (lsame_(jobvl, "V")) { ijobvl = 2; ilvl = TRUE_; } else { ijobvl = -1; ilvl = FALSE_; } if (lsame_(jobvr, "N")) { ijobvr = 1; ilvr = FALSE_; } else if (lsame_(jobvr, "V")) { ijobvr = 2; ilvr = TRUE_; } else { ijobvr = -1; ilvr = FALSE_; } ilv = ilvl || ilvr; /* Test the input arguments */ /* Computing MAX */ i__1 = *n << 1; lwkmin = max(i__1,1); lwkopt = lwkmin; work[1].r = (real) lwkopt, work[1].i = 0.f; lquery = *lwork == -1; *info = 0; if (ijobvl <= 0) { *info = -1; } else if (ijobvr <= 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || ilvl && *ldvl < *n) { *info = -11; } else if (*ldvr < 1 || ilvr && *ldvr < *n) { *info = -13; } else if (*lwork < lwkmin && ! lquery) { *info = -15; } if (*info == 0) { nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1); nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1); nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1); /* Computing MAX */ i__1 = max(nb1,nb2); nb = max(i__1,nb3); /* Computing MAX */ i__1 = *n << 1, i__2 = *n * (nb + 1); lopt = max(i__1,i__2); work[1].r = (real) lopt, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGEGV ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = slamch_("E") * slamch_("B"); safmin = slamch_("S"); safmin += safmin; safmax = 1.f / safmin; /* Scale A */ anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]); anrm1 = anrm; anrm2 = 1.f; if (anrm < 1.f) { if (safmax * anrm < 1.f) { anrm1 = safmin; anrm2 = safmax * anrm; } } if (anrm > 0.f) { clascl_("G", &c_n1, &c_n1, &anrm, &c_b29, n, n, &a[a_offset], lda, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Scale B */ bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]); bnrm1 = bnrm; bnrm2 = 1.f; if (bnrm < 1.f) { if (safmax * bnrm < 1.f) { bnrm1 = safmin; bnrm2 = safmax * bnrm; } } if (bnrm > 0.f) { clascl_("G", &c_n1, &c_n1, &bnrm, &c_b29, n, n, &b[b_offset], ldb, & iinfo); if (iinfo != 0) { *info = *n + 10; return 0; } } /* Permute the matrix to make it more nearly triangular */ /* Also "balance" the matrix. */ ileft = 1; iright = *n + 1; irwork = iright + *n; cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ ileft], &rwork[iright], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 1; goto L80; } /* Reduce B to triangular form, and initialize VL and/or VR */ irows = ihi + 1 - ilo; if (ilv) { icols = *n + 1 - ilo; } else { icols = irows; } itau = 1; iwork = itau + irows; i__1 = *lwork + 1 - iwork; cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 2; goto L80; } i__1 = *lwork + 1 - iwork; cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 3; goto L80; } if (ilvl) { claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl); i__1 = irows - 1; i__2 = irows - 1; clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 1 + ilo * vl_dim1], ldvl); i__1 = *lwork + 1 - iwork; cungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[ itau], &work[iwork], &i__1, &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { *info = *n + 4; goto L80; } } if (ilvr) { claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr); } /* Reduce to generalized Hessenberg form */ if (ilv) { /* Eigenvectors requested -- work on whole matrix. */ cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); } else { cgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &iinfo); } if (iinfo != 0) { *info = *n + 5; goto L80; } /* Perform QZ algorithm */ iwork = itau; if (ilv) { *(unsigned char *)chtemp = 'S'; } else { *(unsigned char *)chtemp = 'E'; } i__1 = *lwork + 1 - iwork; chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[ vr_offset], ldvr, &work[iwork], &i__1, &rwork[irwork], &iinfo); if (iinfo >= 0) { /* Computing MAX */ i__3 = iwork; i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; lwkopt = max(i__1,i__2); } if (iinfo != 0) { if (iinfo > 0 && iinfo <= *n) { *info = iinfo; } else if (iinfo > *n && iinfo <= *n << 1) { *info = iinfo - *n; } else { *info = *n + 6; } goto L80; } if (ilv) { /* Compute Eigenvectors */ if (ilvl) { if (ilvr) { *(unsigned char *)chtemp = 'B'; } else { *(unsigned char *)chtemp = 'L'; } } else { *(unsigned char *)chtemp = 'R'; } ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ iwork], &rwork[irwork], &iinfo); if (iinfo != 0) { *info = *n + 7; goto L80; } /* Undo balancing on VL and VR, rescale */ if (ilvl) { cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vl[vl_offset], ldvl, &iinfo); if (iinfo != 0) { *info = *n + 8; goto L80; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = jr + jc * vl_dim1; r__3 = temp, r__4 = (r__1 = vl[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vl[jr + jc * vl_dim1]), dabs(r__2)) ; temp = dmax(r__3,r__4); /* L10: */ } if (temp < safmin) { goto L30; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = jr + jc * vl_dim1; i__4 = jr + jc * vl_dim1; q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i; vl[i__3].r = q__1.r, vl[i__3].i = q__1.i; /* L20: */ } L30: ; } } if (ilvr) { cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &vr[vr_offset], ldvr, &iinfo); if (iinfo != 0) { *info = *n + 9; goto L80; } i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { temp = 0.f; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { /* Computing MAX */ i__3 = jr + jc * vr_dim1; r__3 = temp, r__4 = (r__1 = vr[i__3].r, dabs(r__1)) + ( r__2 = r_imag(&vr[jr + jc * vr_dim1]), dabs(r__2)) ; temp = dmax(r__3,r__4); /* L40: */ } if (temp < safmin) { goto L60; } temp = 1.f / temp; i__2 = *n; for (jr = 1; jr <= i__2; ++jr) { i__3 = jr + jc * vr_dim1; i__4 = jr + jc * vr_dim1; q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i; vr[i__3].r = q__1.r, vr[i__3].i = q__1.i; /* L50: */ } L60: ; } } /* End of eigenvector calculation */ } /* Undo scaling in alpha, beta */ /* Note: this does not give the alpha and beta for the unscaled */ /* problem. */ /* Un-scaling is limited to avoid underflow in alpha and beta */ /* if they are significant. */ i__1 = *n; for (jc = 1; jc <= i__1; ++jc) { i__2 = jc; absar = (r__1 = alpha[i__2].r, dabs(r__1)); absai = (r__1 = r_imag(&alpha[jc]), dabs(r__1)); i__2 = jc; absb = (r__1 = beta[i__2].r, dabs(r__1)); i__2 = jc; salfar = anrm * alpha[i__2].r; salfai = anrm * r_imag(&alpha[jc]); i__2 = jc; sbeta = bnrm * beta[i__2].r; ilimit = FALSE_; scale = 1.f; /* Check for significant underflow in imaginary part of ALPHA */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfai) < safmin && absai >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ r__1 = safmin, r__2 = anrm2 * absai; scale = safmin / anrm1 / dmax(r__1,r__2); } /* Check for significant underflow in real part of ALPHA */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absai, r__1 = max(r__1,r__2), r__2 = eps * absb; if (dabs(salfar) < safmin && absar >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = safmin, r__4 = anrm2 * absar; r__1 = scale, r__2 = safmin / anrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for significant underflow in BETA */ /* Computing MAX */ r__1 = safmin, r__2 = eps * absar, r__1 = max(r__1,r__2), r__2 = eps * absai; if (dabs(sbeta) < safmin && absb >= dmax(r__1,r__2)) { ilimit = TRUE_; /* Computing MAX */ /* Computing MAX */ r__3 = safmin, r__4 = bnrm2 * absb; r__1 = scale, r__2 = safmin / bnrm1 / dmax(r__3,r__4); scale = dmax(r__1,r__2); } /* Check for possible overflow when limiting scaling */ if (ilimit) { /* Computing MAX */ r__1 = dabs(salfar), r__2 = dabs(salfai), r__1 = max(r__1,r__2), r__2 = dabs(sbeta); temp = scale * safmin * dmax(r__1,r__2); if (temp > 1.f) { scale /= temp; } if (scale < 1.f) { ilimit = FALSE_; } } /* Recompute un-scaled ALPHA, BETA if necessary. */ if (ilimit) { i__2 = jc; salfar = scale * alpha[i__2].r * anrm; salfai = scale * r_imag(&alpha[jc]) * anrm; i__2 = jc; q__2.r = scale * beta[i__2].r, q__2.i = scale * beta[i__2].i; q__1.r = bnrm * q__2.r, q__1.i = bnrm * q__2.i; sbeta = q__1.r; } i__2 = jc; q__1.r = salfar, q__1.i = salfai; alpha[i__2].r = q__1.r, alpha[i__2].i = q__1.i; i__2 = jc; beta[i__2].r = sbeta, beta[i__2].i = 0.f; /* L70: */ } L80: work[1].r = (real) lwkopt, work[1].i = 0.f; return 0; /* End of CGEGV */ } /* cgegv_ */
/* Subroutine */ int cgelss_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, integer *rank, complex *work, integer *lwork, real *rwork, integer * info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; real r__1; /* Local variables */ integer i__, bl, ie, il, mm; complex dum[1]; real eps, thr, anrm, bnrm; integer itau, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__, lwork_cungbr__, lwork_cunmbr__, lwork_cunmlq__, lwork_cunmqr__; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); integer iascl, ibscl; extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *); integer chunk; real sfmin; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); integer minmn, maxmn, itaup, itauq, mnthr, iwork; extern /* Subroutine */ int cgebrd_(), slabad_(real *, real *); extern real clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_( char *, integer *, integer *, real *, real *, integer *, integer * , complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern real slamch_(char *); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); real bignum; extern /* Subroutine */ int cungbr_(char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), csrscl_(integer *, real *, complex *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer ldwork; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); integer minwrk, maxwrk; real smlnum; integer irwork; logical lquery; /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --s; --work; --rwork; /* Function Body */ *info = 0; minmn = min(*m,*n); maxmn = max(*m,*n); lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else if (*ldb < max(1,maxmn)) { *info = -7; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace refers */ /* to real workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV.) */ if (*info == 0) { minwrk = 1; maxwrk = 1; if (minmn > 0) { mm = *m; mnthr = ilaenv_(&c__6, "CGELSS", " ", m, n, nrhs, &c_n1); if (*m >= *n && *m >= mnthr) { /* Path 1a - overdetermined, with many more rows than */ /* columns */ /* Compute space needed for CGEQRF */ cgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info); lwork_cgeqrf__ = dum[0].r; /* Compute space needed for CUNMQR */ cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[ b_offset], ldb, dum, &c_n1, info); lwork_cunmqr__ = dum[0].r; mm = *n; /* Computing MAX */ i__1 = maxwrk; i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *n + *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &c_n1); // , expr subst maxwrk = max(i__1,i__2); } if (*m >= *n) { /* Path 1 - overdetermined or exactly determined */ /* Compute space needed for CGEBRD */ cgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info); lwork_cgebrd__ = dum[0].r; /* Compute space needed for CUNMBR */ cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, & b[b_offset], ldb, dum, &c_n1, info); lwork_cunmbr__ = dum[0].r; /* Compute space needed for CUNGBR */ cungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, info); lwork_cungbr__ = dum[0].r; /* Compute total workspace needed */ /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + lwork_cgebrd__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + lwork_cunmbr__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*n << 1) + lwork_cungbr__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *n * *nrhs; // , expr subst maxwrk = max(i__1,i__2); minwrk = (*n << 1) + max(*nrhs,*m); } if (*n > *m) { minwrk = (*m << 1) + max(*nrhs,*n); if (*n >= mnthr) { /* Path 2a - underdetermined, with many more columns */ /* than rows */ /* Compute space needed for CGELQF */ cgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info); lwork_cgelqf__ = dum[0].r; /* Compute space needed for CGEBRD */ cgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info); lwork_cgebrd__ = dum[0].r; /* Compute space needed for CUNMBR */ cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[b_offset], ldb, dum, &c_n1, info); lwork_cunmbr__ = dum[0].r; /* Compute space needed for CUNGBR */ cungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1, info); lwork_cungbr__ = dum[0].r; /* Compute space needed for CUNMLQ */ cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[ b_offset], ldb, dum, &c_n1, info); lwork_cunmlq__ = dum[0].r; /* Compute total workspace needed */ maxwrk = *m + lwork_cgelqf__; /* Computing MAX */ i__1 = maxwrk; i__2 = *m * 3 + *m * *m + lwork_cgebrd__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *m * 3 + *m * *m + lwork_cunmbr__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *m * 3 + *m * *m + lwork_cungbr__; // , expr subst maxwrk = max(i__1,i__2); if (*nrhs > 1) { /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + *m + *m * *nrhs; // , expr subst maxwrk = max(i__1,i__2); } else { /* Computing MAX */ i__1 = maxwrk; i__2 = *m * *m + (*m << 1); // , expr subst maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk; i__2 = *m + lwork_cunmlq__; // , expr subst maxwrk = max(i__1,i__2); } else { /* Path 2 - underdetermined */ /* Compute space needed for CGEBRD */ cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info); lwork_cgebrd__ = dum[0].r; /* Compute space needed for CUNMBR */ cunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum, &b[b_offset], ldb, dum, &c_n1, info); lwork_cunmbr__ = dum[0].r; /* Compute space needed for CUNGBR */ cungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1, info); lwork_cungbr__ = dum[0].r; maxwrk = (*m << 1) + lwork_cgebrd__; /* Computing MAX */ i__1 = maxwrk; i__2 = (*m << 1) + lwork_cunmbr__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = (*m << 1) + lwork_cungbr__; // , expr subst maxwrk = max(i__1,i__2); /* Computing MAX */ i__1 = maxwrk; i__2 = *n * *nrhs; // , expr subst maxwrk = max(i__1,i__2); } } maxwrk = max(minwrk,maxwrk); } work[1].r = (real) maxwrk; work[1].i = 0.f; // , expr subst if (*lwork < minwrk && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGELSS", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*m == 0 || *n == 0) { *rank = 0; return 0; } /* Get machine parameters */ eps = slamch_("P"); sfmin = slamch_("S"); smlnum = sfmin / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); slaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn); *rank = 0; goto L70; } /* Scale B if max element outside range [SMLNUM,BIGNUM] */ bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info); ibscl = 2; } /* Overdetermined case */ if (*m >= *n) { /* Path 1 - overdetermined or exactly determined */ mm = *m; if (*m >= mnthr) { /* Path 1a - overdetermined, with many more rows than columns */ mm = *n; itau = 1; iwork = itau + *n; /* Compute A=Q*R */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1, info); /* Multiply B by transpose(Q) */ /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[iwork], &i__1, info); /* Zero out below R */ if (*n > 1) { i__1 = *n - 1; i__2 = *n - 1; claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda); } } ie = 1; itauq = 1; itaup = itauq + *n; iwork = itaup + *n; /* Bidiagonalize R in A */ /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */ /* (RWorkspace: need N) */ i__1 = *lwork - iwork + 1; cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & work[itaup], &work[iwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors of R */ /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[iwork], &i__1, info); /* Generate right bidiagonalizing vectors of R in A */ /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], & i__1, info); irwork = ie + *n; /* Perform bidiagonal QR iteration */ /* multiply B by transpose of left singular vectors */ /* compute right singular vectors in A */ /* (CWorkspace: none) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info); if (*info != 0) { goto L70; } /* Multiply B by reciprocals of singular values */ /* Computing MAX */ r__1 = *rcond * s[1]; thr = max(r__1,sfmin); if (*rcond < 0.f) { /* Computing MAX */ r__1 = eps * s[1]; thr = max(r__1,sfmin); } *rank = 0; i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (s[i__] > thr) { csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb); ++(*rank); } else { claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb); } /* L10: */ } /* Multiply B by right singular vectors */ /* (CWorkspace: need N, prefer N*NRHS) */ /* (RWorkspace: none) */ if (*lwork >= *ldb * *nrhs && *nrhs > 1) { cgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[ b_offset], ldb, &c_b1, &work[1], ldb); clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb) ; } else if (*nrhs > 1) { chunk = *lwork / *n; i__1 = *nrhs; i__2 = chunk; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = *nrhs - i__ + 1; bl = min(i__3,chunk); cgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n); clacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb); /* L20: */ } } else { cgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, & c_b1, &work[1], &c__1); ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1); } } else /* if(complicated condition) */ { /* Computing MAX */ i__2 = max(*m,*nrhs); i__1 = *n - (*m << 1); // , expr subst if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + max(i__2,i__1)) { /* Underdetermined case, M much less than N */ /* Path 2a - underdetermined, with many more columns than rows */ /* and sufficient workspace for an efficient algorithm */ ldwork = *m; /* Computing MAX */ i__2 = max(*m,*nrhs); i__1 = *n - (*m << 1); // , expr subst if (*lwork >= *m * 3 + *m * *lda + max(i__2,i__1)) { ldwork = *lda; } itau = 1; iwork = *m + 1; /* Compute A=L*Q */ /* (CWorkspace: need 2*M, prefer M+M*NB) */ /* (RWorkspace: none) */ i__2 = *lwork - iwork + 1; cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2, info); il = iwork; /* Copy L to WORK(IL), zeroing out above it */ clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork); i__2 = *m - 1; i__1 = *m - 1; claset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], & ldwork); ie = 1; itauq = il + ldwork * *m; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize L in WORK(IL) */ /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */ /* (RWorkspace: need M) */ i__2 = *lwork - iwork + 1; cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__2, info); /* Multiply B by transpose of left bidiagonalizing vectors of L */ /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */ /* (RWorkspace: none) */ i__2 = *lwork - iwork + 1; cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ itauq], &b[b_offset], ldb, &work[iwork], &i__2, info); /* Generate right bidiagonalizing vectors of R in WORK(IL) */ /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */ /* (RWorkspace: none) */ i__2 = *lwork - iwork + 1; cungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[ iwork], &i__2, info); irwork = ie + *m; /* Perform bidiagonal QR iteration, computing right singular */ /* vectors of L in WORK(IL) and multiplying B by transpose of */ /* left singular vectors */ /* (CWorkspace: need M*M) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], & ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[ irwork], info); if (*info != 0) { goto L70; } /* Multiply B by reciprocals of singular values */ /* Computing MAX */ r__1 = *rcond * s[1]; thr = max(r__1,sfmin); if (*rcond < 0.f) { /* Computing MAX */ r__1 = eps * s[1]; thr = max(r__1,sfmin); } *rank = 0; i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { if (s[i__] > thr) { csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb); ++(*rank); } else { claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb); } /* L30: */ } iwork = il + *m * ldwork; /* Multiply B by right singular vectors of L in WORK(IL) */ /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */ /* (RWorkspace: none) */ if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) { cgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[ b_offset], ldb, &c_b1, &work[iwork], ldb); clacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb); } else if (*nrhs > 1) { chunk = (*lwork - iwork + 1) / *m; i__2 = *nrhs; i__1 = chunk; for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) { /* Computing MIN */ i__3 = *nrhs - i__ + 1; bl = min(i__3,chunk); cgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[ i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m); clacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1] , ldb); /* L40: */ } } else { cgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], & c__1, &c_b1, &work[iwork], &c__1); ccopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1); } /* Zero out below first M rows of B */ i__1 = *n - *m; claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb); iwork = itau + *m; /* Multiply transpose(Q) by B */ /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[iwork], &i__1, info); } else { /* Path 2 - remaining underdetermined cases */ ie = 1; itauq = 1; itaup = itauq + *m; iwork = itaup + *m; /* Bidiagonalize A */ /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */ /* (RWorkspace: need N) */ i__1 = *lwork - iwork + 1; cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__1, info); /* Multiply B by transpose of left bidiagonalizing vectors */ /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] , &b[b_offset], ldb, &work[iwork], &i__1, info); /* Generate right bidiagonalizing vectors in A */ /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwork + 1; cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ iwork], &i__1, info); irwork = ie + *m; /* Perform bidiagonal QR iteration, */ /* computing right singular vectors of A in A and */ /* multiplying B by transpose of left singular vectors */ /* (CWorkspace: none) */ /* (RWorkspace: need BDSPAC) */ cbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info); if (*info != 0) { goto L70; } /* Multiply B by reciprocals of singular values */ /* Computing MAX */ r__1 = *rcond * s[1]; thr = max(r__1,sfmin); if (*rcond < 0.f) { /* Computing MAX */ r__1 = eps * s[1]; thr = max(r__1,sfmin); } *rank = 0; i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { if (s[i__] > thr) { csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb); ++(*rank); } else { claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb); } /* L50: */ } /* Multiply B by right singular vectors of A */ /* (CWorkspace: need N, prefer N*NRHS) */ /* (RWorkspace: none) */ if (*lwork >= *ldb * *nrhs && *nrhs > 1) { cgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[ b_offset], ldb, &c_b1, &work[1], ldb); clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb); } else if (*nrhs > 1) { chunk = *lwork / *n; i__1 = *nrhs; i__2 = chunk; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = *nrhs - i__ + 1; bl = min(i__3,chunk); cgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[ i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n); clacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb); /* L60: */ } } else { cgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], & c__1, &c_b1, &work[1], &c__1); ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1); } } } /* Undo scaling */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info); slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, info); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info); } L70: work[1].r = (real) maxwrk; work[1].i = 0.f; // , expr subst return 0; /* End of CGELSS */ }
/* Subroutine */ int cgels_(char *trans, integer *m, integer *n, integer * nrhs, complex *a, integer *lda, complex *b, integer *ldb, complex * work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; real r__1; /* Local variables */ integer i__, j, nb, mn; real anrm, bnrm; integer brow; logical tpsd; integer iascl, ibscl; extern logical lsame_(char *, char *); integer wsize; real rwork[1]; extern /* Subroutine */ int slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *); extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_( char *, integer *, integer *, real *, real *, integer *, integer * , complex *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), claset_( char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer scllen; real bignum; extern /* Subroutine */ int cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); real smlnum; logical lquery; extern /* Subroutine */ int ctrtrs_(char *, char *, char *, integer *, integer *, complex *, integer *, complex *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CGELS solves overdetermined or underdetermined complex linear systems */ /* involving an M-by-N matrix A, or its conjugate-transpose, using a QR */ /* or LQ factorization of A. It is assumed that A has full rank. */ /* The following options are provided: */ /* 1. If TRANS = 'N' and m >= n: find the least squares solution of */ /* an overdetermined system, i.e., solve the least squares problem */ /* minimize || B - A*X ||. */ /* 2. If TRANS = 'N' and m < n: find the minimum norm solution of */ /* an underdetermined system A * X = B. */ /* 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */ /* an undetermined system A**H * X = B. */ /* 4. If TRANS = 'C' and m < n: find the least squares solution of */ /* an overdetermined system, i.e., solve the least squares problem */ /* minimize || B - A**H * X ||. */ /* Several right hand side vectors b and solution vectors x can be */ /* handled in a single call; they are stored as the columns of the */ /* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ /* matrix X. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* = 'N': the linear system involves A; */ /* = 'C': the linear system involves A**H. */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of */ /* columns of the matrices B and X. NRHS >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* if M >= N, A is overwritten by details of its QR */ /* factorization as returned by CGEQRF; */ /* if M < N, A is overwritten by details of its LQ */ /* factorization as returned by CGELQF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the matrix B of right hand side vectors, stored */ /* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */ /* if TRANS = 'C'. */ /* On exit, if INFO = 0, B is overwritten by the solution */ /* vectors, stored columnwise: */ /* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */ /* squares solution vectors; the residual sum of squares for the */ /* solution in each column is given by the sum of squares of the */ /* modulus of elements N+1 to M in that column; */ /* if TRANS = 'N' and m < n, rows 1 to N of B contain the */ /* minimum norm solution vectors; */ /* if TRANS = 'C' and m >= n, rows 1 to M of B contain the */ /* minimum norm solution vectors; */ /* if TRANS = 'C' and m < n, rows 1 to M of B contain the */ /* least squares solution vectors; the residual sum of squares */ /* for the solution in each column is given by the sum of */ /* squares of the modulus of elements M+1 to N in that column. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= MAX(1,M,N). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* LWORK >= max( 1, MN + max( MN, NRHS ) ). */ /* For optimal performance, */ /* LWORK >= max( 1, MN + max( MN, NRHS )*NB ). */ /* where MN = min(M,N) and NB is the optimum block size. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the i-th diagonal element of the */ /* triangular factor of A is zero, so that A does not have */ /* full rank; the least squares solution could not be */ /* computed. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ *info = 0; mn = min(*m,*n); lquery = *lwork == -1; if (! (lsame_(trans, "N") || lsame_(trans, "C"))) { *info = -1; } else if (*m < 0) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*m)) { *info = -6; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*ldb < max(i__1,*n)) { *info = -8; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = mn + max(mn,*nrhs); if (*lwork < max(i__1,i__2) && ! lquery) { *info = -10; } } } /* Figure out optimal block size */ if (*info == 0 || *info == -10) { tpsd = TRUE_; if (lsame_(trans, "N")) { tpsd = FALSE_; } if (*m >= *n) { nb = ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); if (tpsd) { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LN", m, nrhs, n, & c_n1); nb = max(i__1,i__2); } else { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, & c_n1); nb = max(i__1,i__2); } } else { nb = ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, &c_n1); if (tpsd) { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, & c_n1); nb = max(i__1,i__2); } else { /* Computing MAX */ i__1 = nb, i__2 = ilaenv_(&c__1, "CUNMLQ", "LN", n, nrhs, m, & c_n1); nb = max(i__1,i__2); } } /* Computing MAX */ i__1 = 1, i__2 = mn + max(mn,*nrhs) * nb; wsize = max(i__1,i__2); r__1 = (real) wsize; work[1].r = r__1, work[1].i = 0.f; } if (*info != 0) { i__1 = -(*info); xerbla_("CGELS ", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ /* Computing MIN */ i__1 = min(*m,*n); if (min(i__1,*nrhs) == 0) { i__1 = max(*m,*n); claset_("Full", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); return 0; } /* Get machine parameters */ smlnum = slamch_("S") / slamch_("P"); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A, B if max element outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", m, n, &a[a_offset], lda, rwork); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb); goto L50; } brow = *m; if (tpsd) { brow = *n; } bnrm = clange_("M", &brow, nrhs, &b[b_offset], ldb, rwork); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset], ldb, info); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset], ldb, info); ibscl = 2; } if (*m >= *n) { /* compute QR factorization of A */ i__1 = *lwork - mn; cgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) ; /* workspace at least N, optimally N*NB */ if (! tpsd) { /* Least-Squares Problem min || A * X - B || */ /* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ i__1 = *lwork - mn; cunmqr_("Left", "Conjugate transpose", m, nrhs, n, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ /* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */ ctrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset] , lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } scllen = *n; } else { /* Overdetermined system of equations A' * X = B */ /* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) */ ctrtrs_("Upper", "Conjugate transpose", "Non-unit", n, nrhs, &a[ a_offset], lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } /* B(N+1:M,1:NRHS) = ZERO */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = *n + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; /* L10: */ } /* L20: */ } /* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */ i__1 = *lwork - mn; cunmqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, & work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ scllen = *m; } } else { /* Compute LQ factorization of A */ i__1 = *lwork - mn; cgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info) ; /* workspace at least M, optimally M*NB. */ if (! tpsd) { /* underdetermined system of equations A * X = B */ /* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */ ctrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset] , lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } /* B(M+1:N,1:NRHS) = 0 */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = *m + 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; /* L30: */ } /* L40: */ } /* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) */ i__1 = *lwork - mn; cunmlq_("Left", "Conjugate transpose", n, nrhs, m, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ scllen = *n; } else { /* overdetermined system min || A' * X - B || */ /* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */ i__1 = *lwork - mn; cunmlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, & work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info); /* workspace at least NRHS, optimally NRHS*NB */ /* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) */ ctrtrs_("Lower", "Conjugate transpose", "Non-unit", m, nrhs, &a[ a_offset], lda, &b[b_offset], ldb, info); if (*info > 0) { return 0; } scllen = *m; } } /* Undo scaling */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset] , ldb, info); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset] , ldb, info); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset] , ldb, info); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset] , ldb, info); } L50: r__1 = (real) wsize; work[1].r = r__1, work[1].i = 0.f; return 0; /* End of CGELS */ } /* cgels_ */
/* Subroutine */ int cerrqr_(char *path, integer *nunit) { /* System generated locals */ integer i__1; real r__1, r__2; complex q__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ complex a[4] /* was [2][2] */, b[2]; integer i__, j; complex w[2], x[2], af[4] /* was [2][2] */; integer info; extern /* Subroutine */ int cgeqr2_(integer *, integer *, complex *, integer *, complex *, complex *, integer *), cung2r_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *), alaesm_(char *, logical *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cgeqrs_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), cungqr_( integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CERRQR tests the error exits for the COMPLEX routines */ /* that use the QR decomposition of a general matrix. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; a[i__1].r = q__1.r, a[i__1].i = q__1.i; i__1 = i__ + (j << 1) - 3; r__1 = 1.f / (real) (i__ + j); r__2 = -1.f / (real) (i__ + j); q__1.r = r__1, q__1.i = r__2; af[i__1].r = q__1.r, af[i__1].i = q__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0.f, b[i__1].i = 0.f; i__1 = j - 1; w[i__1].r = 0.f, w[i__1].i = 0.f; i__1 = j - 1; x[i__1].r = 0.f, x[i__1].i = 0.f; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for QR factorization */ /* CGEQRF */ s_copy(srnamc_1.srnamt, "CGEQRF", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqrf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqrf_(&c__2, &c__1, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cgeqrf_(&c__1, &c__2, a, &c__1, b, w, &c__1, &info); chkxer_("CGEQRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQR2 */ s_copy(srnamc_1.srnamt, "CGEQR2", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqr2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqr2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cgeqr2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("CGEQR2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CGEQRS */ s_copy(srnamc_1.srnamt, "CGEQRS", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cgeqrs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cgeqrs_(&c__1, &c__2, &c__0, a, &c__2, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cgeqrs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cgeqrs_(&c__2, &c__1, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cgeqrs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cgeqrs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("CGEQRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNGQR */ s_copy(srnamc_1.srnamt, "CUNGQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cungqr_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cungqr_(&c__1, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cungqr_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cungqr_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; cungqr_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("CUNGQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNG2R */ s_copy(srnamc_1.srnamt, "CUNG2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cung2r_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cung2r_(&c__1, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cung2r_(&c__2, &c__1, &c__2, a, &c__2, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cung2r_(&c__2, &c__1, &c__0, a, &c__1, x, w, &info); chkxer_("CUNG2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNMQR */ s_copy(srnamc_1.srnamt, "CUNMQR", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunmqr_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunmqr_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunmqr_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunmqr_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunmqr_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunmqr_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunmqr_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; cunmqr_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("CUNMQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* CUNM2R */ s_copy(srnamc_1.srnamt, "CUNM2R", (ftnlen)32, (ftnlen)6); infoc_1.infot = 1; cunm2r_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; cunm2r_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; cunm2r_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; cunm2r_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; cunm2r_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; cunm2r_("R", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; cunm2r_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("CUNM2R", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of CERRQR */ } /* cerrqr_ */
/* Subroutine */ int ctimqr_(char *line, integer *nm, integer *mval, integer * nval, integer *nk, integer *kval, integer *nnb, integer *nbval, integer *nxval, integer *nlda, integer *ldaval, real *timmin, complex *a, complex *tau, complex *b, complex *work, real *rwork, real * reslts, integer *ldr1, integer *ldr2, integer *ldr3, integer *nout, ftnlen line_len) { /* Initialized data */ static char subnam[6*3] = "CGEQRF" "CUNGQR" "CUNMQR"; static char sides[1*2] = "L" "R"; static char transs[1*2] = "N" "C"; static integer iseed[4] = { 0,0,0,1 }; /* Format strings */ static char fmt_9999[] = "(1x,a6,\002 timing run not attempted\002,/)"; static char fmt_9998[] = "(/\002 *** Speed of \002,a6,\002 in megaflops " "***\002)"; static char fmt_9997[] = "(5x,\002line \002,i2,\002 with LDA = \002,i5)"; static char fmt_9996[] = "(5x,\002K = min(M,N)\002,/)"; static char fmt_9995[] = "(/5x,a6,\002 with SIDE = '\002,a1,\002', TRANS" " = '\002,a1,\002', \002,a1,\002 =\002,i6,/)"; static char fmt_9994[] = "(\002 *** No pairs (M,N) found with M >= N: " " \002,a6,\002 not timed\002)"; /* System generated locals */ integer reslts_dim1, reslts_dim2, reslts_dim3, reslts_offset, i__1, i__2, i__3, i__4, i__5, i__6; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void), s_wsle(cilist *), e_wsle(void); /* Local variables */ static integer ilda; static char labm[1], side[1]; static integer info; static char path[3]; static real time; static integer isub, muse[12], nuse[12], i__, k, m, n; static char cname[6]; static integer iside, itoff, itran, minmn; extern doublereal sopla_(char *, integer *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int icopy_(integer *, integer *, integer *, integer *, integer *); static char trans[1]; static integer k1, i4, m1, n1; static real s1, s2; static integer ic; extern /* Subroutine */ int sprtb4_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen), sprtb5_(char *, char *, char *, integer *, integer *, integer *, integer *, integer *, integer *, real *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen); static integer nb, ik, im, lw, nx, reseed[4]; extern /* Subroutine */ int atimck_(integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, ftnlen), cgeqrf_( integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); extern doublereal second_(void); extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), ctimmg_(integer *, integer *, integer *, complex *, integer *, integer *, integer *), atimin_(char *, char *, integer *, char *, logical *, integer *, integer *, ftnlen, ftnlen, ftnlen), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *), xlaenv_(integer *, integer *); extern doublereal smflop_(real *, real *, integer *); static real untime; extern /* Subroutine */ int cungqr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *); static logical timsub[3]; extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *); static integer lda, icl, inb, imx; static real ops; /* Fortran I/O blocks */ static cilist io___9 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___29 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___31 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___32 = { 0, 0, 0, 0, 0 }; static cilist io___33 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9994, 0 }; #define subnam_ref(a_0,a_1) &subnam[(a_1)*6 + a_0 - 6] #define reslts_ref(a_1,a_2,a_3,a_4) reslts[(((a_4)*reslts_dim3 + (a_3))*\ reslts_dim2 + (a_2))*reslts_dim1 + a_1] /* -- LAPACK timing routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 Purpose ======= CTIMQR times the LAPACK routines to perform the QR factorization of a COMPLEX general matrix. Arguments ========= LINE (input) CHARACTER*80 The input line that requested this routine. The first six characters contain either the name of a subroutine or a generic path name. The remaining characters may be used to specify the individual routines to be timed. See ATIMIN for a full description of the format of the input line. NM (input) INTEGER The number of values of M and N contained in the vectors MVAL and NVAL. The matrix sizes are used in pairs (M,N). MVAL (input) INTEGER array, dimension (NM) The values of the matrix row dimension M. NVAL (input) INTEGER array, dimension (NM) The values of the matrix column dimension N. NK (input) INTEGER The number of values of K in the vector KVAL. KVAL (input) INTEGER array, dimension (NK) The values of the matrix dimension K, used in CUNMQR. NNB (input) INTEGER The number of values of NB and NX contained in the vectors NBVAL and NXVAL. The blocking parameters are used in pairs (NB,NX). NBVAL (input) INTEGER array, dimension (NNB) The values of the blocksize NB. NXVAL (input) INTEGER array, dimension (NNB) The values of the crossover point NX. NLDA (input) INTEGER The number of values of LDA contained in the vector LDAVAL. LDAVAL (input) INTEGER array, dimension (NLDA) The values of the leading dimension of the array A. TIMMIN (input) REAL The minimum time a subroutine will be timed. A (workspace) COMPLEX array, dimension (LDAMAX*NMAX) where LDAMAX and NMAX are the maximum values of LDA and N. TAU (workspace) COMPLEX array, dimension (min(M,N)) B (workspace) COMPLEX array, dimension (LDAMAX*NMAX) WORK (workspace) COMPLEX array, dimension (LDAMAX*NBMAX) where NBMAX is the maximum value of NB. RWORK (workspace) REAL array, dimension (min(MMAX,NMAX)) RESLTS (workspace) REAL array, dimension (LDR1,LDR2,LDR3,2*NK) The timing results for each subroutine over the relevant values of (M,N), (NB,NX), and LDA. LDR1 (input) INTEGER The first dimension of RESLTS. LDR1 >= max(1,NNB). LDR2 (input) INTEGER The second dimension of RESLTS. LDR2 >= max(1,NM). LDR3 (input) INTEGER The third dimension of RESLTS. LDR3 >= max(1,NLDA). NOUT (input) INTEGER The unit number for output. Internal Parameters =================== MODE INTEGER The matrix type. MODE = 3 is a geometric distribution of eigenvalues. See CLATMS for further details. COND REAL The condition number of the matrix. The singular values are set to values from DMAX to DMAX/COND. DMAX REAL The magnitude of the largest singular value. ===================================================================== Parameter adjustments */ --mval; --nval; --kval; --nbval; --nxval; --ldaval; --a; --tau; --b; --work; --rwork; reslts_dim1 = *ldr1; reslts_dim2 = *ldr2; reslts_dim3 = *ldr3; reslts_offset = 1 + reslts_dim1 * (1 + reslts_dim2 * (1 + reslts_dim3 * 1) ); reslts -= reslts_offset; /* Function Body Extract the timing request from the input line. */ s_copy(path, "Complex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "QR", (ftnlen)2, (ftnlen)2); atimin_(path, line, &c__3, subnam, timsub, nout, &info, (ftnlen)3, ( ftnlen)80, (ftnlen)6); if (info != 0) { goto L230; } /* Check that M <= LDA for the input values. */ s_copy(cname, line, (ftnlen)6, (ftnlen)6); atimck_(&c__1, cname, nm, &mval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___9.ciunit = *nout; s_wsfe(&io___9); do_fio(&c__1, cname, (ftnlen)6); e_wsfe(); goto L230; } /* Do for each pair of values (M,N): */ i__1 = *nm; for (im = 1; im <= i__1; ++im) { m = mval[im]; n = nval[im]; minmn = min(m,n); icopy_(&c__4, iseed, &c__1, reseed, &c__1); /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Computing MAX */ i__4 = 1, i__5 = n * max(1,nb); lw = max(i__4,i__5); icopy_(&c__4, reseed, &c__1, iseed, &c__1); /* Generate a test matrix of size M by N. */ clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3, &c_b24, &c_b25, &m, &n, "No packing", &b[1], &lda, & work[1], &info); if (timsub[0]) { /* CGEQRF: QR factorization */ clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); ic = 0; s1 = second_(); L10: cgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); goto L10; } /* Subtract the time used in CLACPY. */ icl = 1; s1 = second_(); L20: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { clacpy_("Full", &m, &n, &a[1], &lda, &b[1], &lda); goto L20; } time = (time - untime) / (real) ic; ops = sopla_("CGEQRF", &m, &n, &c__0, &c__0, &nb); reslts_ref(inb, im, ilda, 1) = smflop_(&ops, &time, &info) ; } else { /* If CGEQRF was not timed, generate a matrix and factor it using CGEQRF anyway so that the factored form of the matrix can be used in timing the other routines. */ clacpy_("Full", &m, &n, &b[1], &lda, &a[1], &lda); cgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, & info); } if (timsub[1]) { /* CUNGQR: Generate orthogonal matrix Q from the QR factorization */ clacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); ic = 0; s1 = second_(); L30: cungqr_(&m, &minmn, &minmn, &b[1], &lda, &tau[1], &work[1] , &lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { clacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); goto L30; } /* Subtract the time used in CLACPY. */ icl = 1; s1 = second_(); L40: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { clacpy_("Full", &m, &minmn, &a[1], &lda, &b[1], &lda); goto L40; } time = (time - untime) / (real) ic; ops = sopla_("CUNGQR", &m, &minmn, &minmn, &c__0, &nb); reslts_ref(inb, im, ilda, 2) = smflop_(&ops, &time, &info) ; } /* L50: */ } /* L60: */ } /* L70: */ } /* Print tables of results */ for (isub = 1; isub <= 2; ++isub) { if (! timsub[isub - 1]) { goto L90; } io___29.ciunit = *nout; s_wsfe(&io___29); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___31.ciunit = *nout; s_wsfe(&io___31); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen)sizeof(integer)); e_wsfe(); /* L80: */ } } io___32.ciunit = *nout; s_wsle(&io___32); e_wsle(); if (isub == 2) { io___33.ciunit = *nout; s_wsfe(&io___33); e_wsfe(); } sprtb4_("( NB, NX)", "M", "N", nnb, &nbval[1], &nxval[1], nm, &mval[ 1], &nval[1], nlda, &reslts_ref(1, 1, 1, isub), ldr1, ldr2, nout, (ftnlen)11, (ftnlen)1, (ftnlen)1); L90: ; } /* Time CUNMQR separately. Here the starting matrix is M by N, and K is the free dimension of the matrix multiplied by Q. */ if (timsub[2]) { /* Check that K <= LDA for the input values. */ atimck_(&c__3, cname, nk, &kval[1], nlda, &ldaval[1], nout, &info, ( ftnlen)6); if (info > 0) { io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, subnam_ref(0, 3), (ftnlen)6); e_wsfe(); goto L230; } /* Use only the pairs (M,N) where M >= N. */ imx = 0; i__1 = *nm; for (im = 1; im <= i__1; ++im) { if (mval[im] >= nval[im]) { ++imx; muse[imx - 1] = mval[im]; nuse[imx - 1] = nval[im]; } /* L100: */ } /* CUNMQR: Multiply by Q stored as a product of elementary transformations Do for each pair of values (M,N): */ i__1 = imx; for (im = 1; im <= i__1; ++im) { m = muse[im - 1]; n = nuse[im - 1]; /* Do for each value of LDA: */ i__2 = *nlda; for (ilda = 1; ilda <= i__2; ++ilda) { lda = ldaval[ilda]; /* Generate an M by N matrix and form its QR decomposition. */ clatms_(&m, &n, "Uniform", iseed, "Nonsymm", &rwork[1], &c__3, &c_b24, &c_b25, &m, &n, "No packing", &a[1], &lda, & work[1], &info); /* Computing MAX */ i__3 = 1, i__4 = n * max(1,nb); lw = max(i__3,i__4); cgeqrf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lw, &info); /* Do first for SIDE = 'L', then for SIDE = 'R' */ i4 = 0; for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; /* Do for each pair of values (NB, NX) in NBVAL and NXVAL. */ i__3 = *nnb; for (inb = 1; inb <= i__3; ++inb) { nb = nbval[inb]; xlaenv_(&c__1, &nb); nx = nxval[inb]; xlaenv_(&c__3, &nx); /* Do for each value of K in KVAL */ i__4 = *nk; for (ik = 1; ik <= i__4; ++ik) { k = kval[ik]; /* Sort out which variable is which */ if (iside == 1) { m1 = m; k1 = n; n1 = k; /* Computing MAX */ i__5 = 1, i__6 = n1 * max(1,nb); lw = max(i__5,i__6); } else { n1 = m; k1 = n; m1 = k; /* Computing MAX */ i__5 = 1, i__6 = m1 * max(1,nb); lw = max(i__5,i__6); } /* Do first for TRANS = 'N', then for TRANS = 'T' */ itoff = 0; for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)& transs[itran - 1]; ctimmg_(&c__0, &m1, &n1, &b[1], &lda, &c__0, & c__0); ic = 0; s1 = second_(); L110: cunmqr_(side, trans, &m1, &n1, &k1, &a[1], & lda, &tau[1], &b[1], &lda, &work[1], & lw, &info); s2 = second_(); time = s2 - s1; ++ic; if (time < *timmin) { ctimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L110; } /* Subtract the time used in CTIMMG. */ icl = 1; s1 = second_(); L120: s2 = second_(); untime = s2 - s1; ++icl; if (icl <= ic) { ctimmg_(&c__0, &m1, &n1, &b[1], &lda, & c__0, &c__0); goto L120; } time = (time - untime) / (real) ic; i__5 = iside - 1; ops = sopla_("CUNMQR", &m1, &n1, &k1, &i__5, & nb); reslts_ref(inb, im, ilda, i4 + itoff + ik) = smflop_(&ops, &time, &info); itoff = *nk; /* L130: */ } /* L140: */ } /* L150: */ } i4 = *nk << 1; /* L160: */ } /* L170: */ } /* L180: */ } /* Print tables of results */ isub = 3; i4 = 1; if (imx >= 1) { for (iside = 1; iside <= 2; ++iside) { *(unsigned char *)side = *(unsigned char *)&sides[iside - 1]; if (iside == 1) { io___49.ciunit = *nout; s_wsfe(&io___49); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); if (*nlda > 1) { i__1 = *nlda; for (i__ = 1; i__ <= i__1; ++i__) { io___50.ciunit = *nout; s_wsfe(&io___50); do_fio(&c__1, (char *)&i__, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&ldaval[i__], (ftnlen) sizeof(integer)); e_wsfe(); /* L190: */ } } } for (itran = 1; itran <= 2; ++itran) { *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; i__1 = *nk; for (ik = 1; ik <= i__1; ++ik) { if (iside == 1) { n = kval[ik]; io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'M'; } else { m = kval[ik]; io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); do_fio(&c__1, side, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, "M", (ftnlen)1); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)) ; e_wsfe(); *(unsigned char *)labm = 'N'; } sprtb5_("NB", labm, "K", nnb, &nbval[1], &imx, muse, nuse, nlda, &reslts_ref(1, 1, 1, i4), ldr1, ldr2, nout, (ftnlen)2, (ftnlen)1, (ftnlen)1); ++i4; /* L200: */ } /* L210: */ } /* L220: */ } } else { io___54.ciunit = *nout; s_wsfe(&io___54); do_fio(&c__1, subnam_ref(0, isub), (ftnlen)6); e_wsfe(); } } L230: return 0; /* End of CTIMQR */ } /* ctimqr_ */