Example #1
0
Term* start_building_for_loop(Term* forTerm, const char* iteratorName, Type* iteratorType)
{
    Branch* contents = nested_contents(forTerm);

    // Add input placeholder for the list input
    Term* listInput = apply(contents, FUNCS.input, TermList());

    // Add loop_index()
    Term* index = apply(contents, FUNCS.loop_index, TermList(listInput));
    hide_from_source(index);

    // Add get_index to fetch the list's current element.
    Term* iterator = apply(contents, FUNCS.get_index, TermList(listInput, index),
        name_from_string(iteratorName));

    if (iteratorType == NULL)
        iteratorType = infer_type_of_get_index(forTerm->input(0));
    
    change_declared_type(iterator, iteratorType);
    hide_from_source(iterator);

    // Add the zero branch
    create_branch_unevaluated(contents, "#zero");

    // Add an loop output index
    Term* loopOutputIndex = apply(contents, FUNCS.loop_output_index, TermList());

    return iterator;
}
Example #2
0
Term* if_block_append_case(Term* ifBlock, Term* input)
{
    Branch* contents = nested_contents(ifBlock);
    int insertPos = 0;
    for (int i=0; i < contents->length(); i++) {
        Term* term = contents->get(i);

        if (term->function == FUNCS.input)
            insertPos = term->index + 1;

        // Insert position is right after the last non-default case.
        if (term->function == FUNCS.case_func && term->input(0) != NULL)
            insertPos = term->index + 1;
    }

    Term* newCase = apply(contents, FUNCS.case_func, TermList(input));
    contents->move(newCase, insertPos);

    // Add existing input placeholders to this case
    for (int i=0;; i++) {
        Term* placeholder = get_input_placeholder(contents, i);
        if (placeholder == NULL) break;
        Term* localPlaceholder = append_input_placeholder(nested_contents(newCase));
        change_declared_type(localPlaceholder, placeholder->type);
    }

    return newCase;
}
Example #3
0
Term* if_block_add_input(Term* ifBlock, Term* input)
{
    Branch* contents = nested_contents(ifBlock);

    int existingInputCount = ifBlock->numInputs();

    Term* placeholder = append_input_placeholder(contents);
    rename(placeholder, input->name);
    change_declared_type(placeholder, input->type);

    set_input(ifBlock, existingInputCount, input);

    // Add a corresponding input placeholder to each case
    for (CaseIterator it(contents); it.unfinished(); it.advance()) {
        Term* term = it.current();
        Branch* caseContents = nested_contents(term);
        Term* casePlaceholder = append_input_placeholder(caseContents);
        change_declared_type(casePlaceholder, placeholder->type);
        rename(casePlaceholder, input->name);
    }

    return placeholder;
}
Example #4
0
void add_implicit_placeholders(Term* forTerm)
{
    Branch* contents = nested_contents(forTerm);
    std::string listName = forTerm->input(0)->name;
    Term* iterator = for_loop_get_iterator(contents);
    std::string iteratorName = iterator->name;

    std::vector<std::string> reboundNames;
    list_names_that_this_branch_rebinds(contents, reboundNames);

    int inputIndex = 1;

    for (size_t i=0; i < reboundNames.size(); i++) {
        std::string const& name = reboundNames[i];
        if (name == listName)
            continue;
        if (name == iteratorName)
            continue;

        Term* original = find_name_at(forTerm, name.c_str());

        // The name might not be found, for certain parser errors.
        if (original == NULL)
            continue;

        Term* result = contents->get(name);

        // Create input_placeholder
        Term* input = apply(contents, FUNCS.input, TermList(), name_from_string(name));
        Type* type = find_common_type(original->type, result->type);
        change_declared_type(input, type);
        contents->move(input, inputIndex);

        set_input(forTerm, inputIndex, original);

        // Repoint terms to use our new input_placeholder
        for (BranchIterator it(contents); it.unfinished(); it.advance())
            remap_pointers_quick(*it, original, input);

        // Create output_placeholder
        Term* term = apply(contents, FUNCS.output, TermList(result), name_from_string(name));

        // Move output into the correct output slot
        contents->move(term, contents->length() - 1 - inputIndex);

        inputIndex++;
    }
}
Example #5
0
Term* start_building_for_loop(Term* forTerm, const char* iteratorName)
{
    Branch* contents = nested_contents(forTerm);

    // Add input placeholder for the list input
    Term* listInput = apply(contents, FUNCS.input, TermList());

    // Add loop_index()
    Term* index = apply(contents, FUNCS.loop_index, TermList(listInput));
    hide_from_source(index);

    // Add loop_iterator()
    Term* iterator = apply(contents, FUNCS.get_index, TermList(listInput, index),
        iteratorName);
    change_declared_type(iterator, infer_type_of_get_index(forTerm->input(0)));
    hide_from_source(iterator);
    return iterator;
}
Example #6
0
Term* rebind_possible_accessor(Branch* branch, Term* accessor, Term* result)
{
    // Check if this isn't a recognized accessor.
    if (!has_empty_name(accessor)) {
        // Just create a named copy of 'result'.
        return apply(branch, FUNCS.copy, TermList(result), accessor->nameSymbol);
    }

    TermList accessorChain;
    trace_accessor_chain(accessor, &accessorChain);

    Term* head = accessorChain[0];

    // Create the selector
    Term* selector = write_selector_for_accessor_chain(branch, &accessorChain);

    Term* set = apply(branch, FUNCS.set_with_selector,
            TermList(head, selector, result), head->nameSymbol);

    change_declared_type(set, declared_type(head));
    return set;
}
Example #7
0
void if_block_update_output_placeholder_types_from_cases(Term* ifBlock)
{
    Branch* masterContents = nested_contents(ifBlock);

    for (int outputIndex=0;; outputIndex++) {
        Term* masterPlaceholder = get_output_placeholder(masterContents, outputIndex);
        if (masterPlaceholder == NULL)
            return;

        List types;

        // Iterate through each case, and collect the output types
        for (int i=0; i < masterContents->length(); i++) {
            Term* term = masterContents->get(i);
            if (term->function != FUNCS.case_func)
                continue;
            Term* placeholder = get_output_placeholder(nested_contents(term), outputIndex);
            set_type(types.append(), placeholder->type);
        }

        change_declared_type(masterPlaceholder, find_common_type(&types));
    }
}
Example #8
0
void bootstrap_kernel()
{
    // First, instanciate the types that are used by Type.
    TYPES.dict = create_type_uninitialized();
    TYPES.null = create_type_uninitialized();
    TYPES.string = create_type_uninitialized();
    TYPES.type = create_type_uninitialized();

    initialize_type(TYPES.dict);
    initialize_type(TYPES.null);
    initialize_type(TYPES.string);
    initialize_type(TYPES.type);
    string_setup_type(TYPES.string);

    // Initialize remaining global types.
    TYPES.any = create_type();
    TYPES.block = create_type();
    TYPES.bool_type = create_type();
    TYPES.error = create_type();
    TYPES.eval_context = create_type();
    TYPES.float_type = create_type();
    TYPES.function = create_type();
    TYPES.int_type = create_type();
    TYPES.list = create_type();
    TYPES.map = create_type();
    TYPES.opaque_pointer = create_type();
    TYPES.symbol = create_type();
    TYPES.term = create_type();
    TYPES.void_type = create_type();

    any_t::setup_type(TYPES.any);
    block_setup_type(TYPES.block);
    bool_t::setup_type(TYPES.bool_type);
    dict_t::setup_type(TYPES.dict);
    eval_context_t::setup_type(TYPES.eval_context);
    function_t::setup_type(TYPES.function);
    hashtable_setup_type(TYPES.map);
    int_t::setup_type(TYPES.int_type);
    list_t::setup_type(TYPES.list);
    symbol_setup_type(TYPES.symbol);
    null_t::setup_type(TYPES.null);
    number_t::setup_type(TYPES.float_type);
    opaque_pointer_t::setup_type(TYPES.opaque_pointer);
    term_setup_type(TYPES.term);
    string_setup_type(TYPES.error); // errors are just stored as strings for now
    type_t::setup_type(TYPES.type);
    void_t::setup_type(TYPES.void_type);

    // Start building World
    g_world = alloc_world();
    g_world->bootstrapStatus = sym_Bootstrapping;

    // Create root Block.
    g_world->root = new Block();
    Block* kernel = g_world->root;

    // Create value function
    Term* valueFunc = kernel->appendNew();
    rename(valueFunc, "value");
    FUNCS.value = valueFunc;

    // Create Type type
    Term* typeType = kernel->appendNew();
    typeType->function = FUNCS.value;
    typeType->type = TYPES.type;
    term_value(typeType)->value_type = TYPES.type;
    term_value(typeType)->value_data.ptr = TYPES.type;
    TYPES.type->declaringTerm = typeType;
    rename(typeType, "Type");

    // Create Any type
    Term* anyType = kernel->appendNew();
    anyType->function = valueFunc;
    anyType->type = TYPES.type;
    term_value(anyType)->value_type = TYPES.type;
    term_value(anyType)->value_data.ptr = TYPES.any;
    TYPES.any->declaringTerm = anyType;
    rename(anyType, "any");

    // Create Function type
    Term* functionType = kernel->appendNew();
    functionType->function = valueFunc;
    functionType->type = TYPES.type;
    TYPES.function->declaringTerm = functionType;
    term_value(functionType)->value_type = TYPES.type;
    term_value(functionType)->value_data.ptr = TYPES.function;
    rename(functionType, "Function");

    // Initialize value() func
    valueFunc->type = TYPES.function;
    valueFunc->function = valueFunc;
    make(TYPES.function, term_value(valueFunc));

    function_t::initialize(TYPES.function, term_value(valueFunc));
    initialize_function(valueFunc);
    as_function(valueFunc)->name = "value";
    block_set_evaluation_empty(function_contents(valueFunc), true);

    // Initialize primitive types (this requires value() function)
    create_type_value(kernel, TYPES.bool_type, "bool");
    create_type_value(kernel, TYPES.block, "Block");
    create_type_value(kernel, TYPES.dict, "Dict");
    create_type_value(kernel, TYPES.float_type, "number");
    create_type_value(kernel, TYPES.int_type, "int");
    create_type_value(kernel, TYPES.list, "List");
    create_type_value(kernel, TYPES.opaque_pointer, "opaque_pointer");
    create_type_value(kernel, TYPES.string, "String");
    create_type_value(kernel, TYPES.symbol, "Symbol");
    create_type_value(kernel, TYPES.term, "Term");
    create_type_value(kernel, TYPES.void_type, "void");
    create_type_value(kernel, TYPES.map, "Map");

    // Finish initializing World (this requires List and Hashtable types)
    world_initialize(g_world);

    // Create global symbol table (requires Hashtable type)
    symbol_initialize_global_table();

    // Setup output_placeholder() function, needed to declare functions properly.
    FUNCS.output = create_value(kernel, TYPES.function, "output_placeholder");
    function_t::initialize(TYPES.function, term_value(FUNCS.output));
    initialize_function(FUNCS.output);
    as_function(FUNCS.output)->name = "output_placeholder";
    as_function(FUNCS.output)->evaluate = NULL;
    as_function(FUNCS.output)->specializeType = output_placeholder_specializeType;
    ca_assert(function_get_output_type(FUNCS.output, 0) == TYPES.any);

    // Fix some holes in value() function
    {
        Function* attrs = as_function(valueFunc);
        Term* output = append_output_placeholder(function_contents(attrs), NULL);
        change_declared_type(output, TYPES.any);
        finish_building_function(function_contents(attrs));
    }

    ca_assert(function_get_output_type(valueFunc, 0) == TYPES.any);

    // input_placeholder() is needed before we can declare a function with inputs
    FUNCS.input = import_function(kernel, NULL, "input_placeholder() -> any");
    block_set_evaluation_empty(function_contents(FUNCS.input), true);

    // Now that we have input_placeholder() let's declare one input on output_placeholder()
    apply(function_contents(as_function(FUNCS.output)),
        FUNCS.input, TermList())->setBoolProp("optional", true);

    namespace_function::early_setup(kernel);

    // Setup declare_field() function, needed to represent compound types.
    FUNCS.declare_field = import_function(kernel, NULL, "declare_field() -> any");

    // Initialize a few more types
    Term* set_type = create_value(kernel, TYPES.type, "Set");
    set_t::setup_type(unbox_type(set_type));

    Term* indexableType = create_value(kernel, TYPES.type, "Indexable");
    indexable_t::setup_type(unbox_type(indexableType));

    TYPES.selector = unbox_type(create_value(kernel, TYPES.type, "Selector"));
    list_t::setup_type(TYPES.selector);

    control_flow_setup_funcs(kernel);
    selector_setup_funcs(kernel);
    loop_setup_functions(kernel);

    // Setup all the builtin functions defined in src/functions
    setup_builtin_functions(kernel);

    FUNCS.section_block = import_function(kernel, NULL, "def section_block() -> any");
    as_function(FUNCS.section_block)->formatSource = section_block_formatSource;

    // Create IMPLICIT_TYPES (deprecated)
    type_initialize_kernel(kernel);

    // Now we can build derived functions

    // Create overloaded functions
    FUNCS.add = create_overloaded_function(kernel, "add(any a,any b) -> any");
    append_to_overloaded_function(FUNCS.add, FUNCS.add_i);
    append_to_overloaded_function(FUNCS.add, FUNCS.add_f);

    Term* less_than = create_overloaded_function(kernel, "less_than(any a,any b) -> bool");
    append_to_overloaded_function(less_than, kernel->get("less_than_i"));
    append_to_overloaded_function(less_than, kernel->get("less_than_f"));

    Term* less_than_eq = create_overloaded_function(kernel, "less_than_eq(any a,any b) -> bool");
    append_to_overloaded_function(less_than_eq, kernel->get("less_than_eq_i"));
    append_to_overloaded_function(less_than_eq, kernel->get("less_than_eq_f"));

    Term* greater_than = create_overloaded_function(kernel, "greater_than(any a,any b) -> bool");
    append_to_overloaded_function(greater_than, kernel->get("greater_than_i"));
    append_to_overloaded_function(greater_than, kernel->get("greater_than_f"));

    Term* greater_than_eq = create_overloaded_function(kernel, "greater_than_eq(any a,any b) -> bool");
    append_to_overloaded_function(greater_than_eq, kernel->get("greater_than_eq_i"));
    append_to_overloaded_function(greater_than_eq, kernel->get("greater_than_eq_f"));

    Term* max_func = create_overloaded_function(kernel, "max(any a,any b) -> any");
    append_to_overloaded_function(max_func, kernel->get("max_i"));
    append_to_overloaded_function(max_func, kernel->get("max_f"));

    Term* min_func = create_overloaded_function(kernel, "min(any a,any b) -> any");
    append_to_overloaded_function(min_func, kernel->get("min_i"));
    append_to_overloaded_function(min_func, kernel->get("min_f"));

    Term* remainder_func = create_overloaded_function(kernel, "remainder(any a,any b) -> any");
    append_to_overloaded_function(remainder_func, kernel->get("remainder_i"));
    append_to_overloaded_function(remainder_func, kernel->get("remainder_f"));

    Term* mod_func = create_overloaded_function(kernel, "mod(any a,any b) -> any");
    append_to_overloaded_function(mod_func, kernel->get("mod_i"));
    append_to_overloaded_function(mod_func, kernel->get("mod_f"));

    FUNCS.mult = create_overloaded_function(kernel, "mult(any a,any b) -> any");
    append_to_overloaded_function(FUNCS.mult, kernel->get("mult_i"));
    append_to_overloaded_function(FUNCS.mult, kernel->get("mult_f"));

    FUNCS.neg = create_overloaded_function(kernel, "neg(any n) -> any");
    append_to_overloaded_function(FUNCS.neg, kernel->get("neg_i"));
    append_to_overloaded_function(FUNCS.neg, kernel->get("neg_f"));
    as_function(FUNCS.neg)->formatSource = neg_function::formatSource;

    FUNCS.sub = create_overloaded_function(kernel, "sub(any a,any b) -> any");
    append_to_overloaded_function(FUNCS.sub, kernel->get("sub_i"));
    append_to_overloaded_function(FUNCS.sub, kernel->get("sub_f"));

    // Create vectorized functions
    Term* add_v = create_function(kernel, "add_v");
    create_function_vectorized_vv(function_contents(add_v), FUNCS.add, TYPES.list, TYPES.list);
    Term* add_s = create_function(kernel, "add_s");
    create_function_vectorized_vs(function_contents(add_s), FUNCS.add, TYPES.list, TYPES.any);

    append_to_overloaded_function(FUNCS.add, add_v);
    append_to_overloaded_function(FUNCS.add, add_s);

    Term* sub_v = create_function(kernel, "sub_v");
    create_function_vectorized_vv(function_contents(sub_v), FUNCS.sub, TYPES.list, TYPES.list);
    Term* sub_s = create_function(kernel, "sub_s");
    create_function_vectorized_vs(function_contents(sub_s), FUNCS.sub, TYPES.list, TYPES.any);
    
    append_to_overloaded_function(FUNCS.sub, sub_v);
    append_to_overloaded_function(FUNCS.sub, sub_s);

    // Create vectorized mult() functions
    Term* mult_v = create_function(kernel, "mult_v");
    create_function_vectorized_vv(function_contents(mult_v), FUNCS.mult, TYPES.list, TYPES.list);
    Term* mult_s = create_function(kernel, "mult_s");
    create_function_vectorized_vs(function_contents(mult_s), FUNCS.mult, TYPES.list, TYPES.any);

    append_to_overloaded_function(FUNCS.mult, mult_v);
    append_to_overloaded_function(FUNCS.mult, mult_s);

    Term* div_s = create_function(kernel, "div_s");
    create_function_vectorized_vs(function_contents(div_s), FUNCS.div, TYPES.list, TYPES.any);

    // Need dynamic_method before any hosted functions
    FUNCS.dynamic_method = import_function(kernel, dynamic_method_call,
            "def dynamic_method(any inputs :multiple) -> any");

    // Load the standard library from stdlib.ca
    parser::compile(kernel, parser::statement_list, STDLIB_CA_TEXT);

    // Install C functions
    static const ImportRecord records[] = {
        {"assert", hosted_assert},
        {"cppbuild:build_module", cppbuild_function::build_module},
        {"file:version", file__version},
        {"file:exists", file__exists},
        {"file:read_text", file__read_text},
        {"length", length},
        {"from_string", from_string},
        {"to_string_repr", to_string_repr},
        {"call_actor", call_actor_func},
        {"send", send_func},
        {"test_spy", test_spy},
        {"test_oracle", test_oracle},
        {"refactor:rename", refactor__rename},
        {"refactor:change_function", refactor__change_function},
        {"reflect:this_block", reflect__this_block},
        {"reflect:kernel", reflect__kernel},
        {"sys:module_search_paths", sys__module_search_paths},
        {"sys:perf_stats_reset", sys__perf_stats_reset},
        {"sys:perf_stats_dump", sys__perf_stats_dump},

        {"Dict.count", Dict__count},
        {"Dict.get", Dict__get},
        {"Dict.set", Dict__set},

        {"Function.block", Function__block},

        {"empty_list", empty_list},
        {"List.append", List__append},
        {"List.concat", List__concat},
        {"List.resize", List__resize},
        {"List.count", List__count},
        {"List.insert", List__insert},
        {"List.length", List__length},
        {"List.join", List__join},
        {"List.slice", List__slice},
        {"List.get", List__get},
        {"List.set", List__set},

        {"Map.contains", Map__contains},
        {"Map.remove", Map__remove},
        {"Map.get", Map__get},
        {"Map.set", Map__set},
        {"Map.insertPairs", Map__insertPairs},

        {"Mutable.get", Mutable__get},
        {"Mutable.set", Mutable__set},

        {"String.char_at", String__char_at},
        {"String.ends_with", String__ends_with},
        {"String.length", String__length},
        {"String.substr", String__substr},
        {"String.slice", String__slice},
        {"String.starts_with", String__starts_with},
        {"String.split", String__split},
        {"String.to_camel_case", String__to_camel_case},
        {"String.to_upper", String__to_upper},
        {"String.to_lower", String__to_lower},
        
        {"Type.name", Type__name},
        {"Type.property", Type__property},
        {"Type.declaringTerm", Type__declaringTerm},
        {"type", typeof_func},
        {"static_type", static_type_func},

        {NULL, NULL}
    };

    install_function_list(kernel, records);

    closures_install_functions(kernel);
    modules_install_functions(kernel);
    reflection_install_functions(kernel);
    interpreter_install_functions(kernel);

    // Fetch refereneces to certain builtin funcs.
    FUNCS.block_dynamic_call = kernel->get("Block.call");
    FUNCS.dll_patch = kernel->get("sys:dll_patch");
    FUNCS.dynamic_call = kernel->get("dynamic_call");
    FUNCS.has_effects = kernel->get("has_effects");
    FUNCS.length = kernel->get("length");
    FUNCS.list_append = kernel->get("List.append");
    FUNCS.native_patch = kernel->get("native_patch");
    FUNCS.not_func = kernel->get("not");
    FUNCS.output_explicit = kernel->get("output");
    FUNCS.type = kernel->get("type");

    block_set_has_effects(nested_contents(FUNCS.has_effects), true);

    // Finish setting up some hosted types
    TYPES.actor = as_type(kernel->get("Actor"));
    TYPES.color = as_type(kernel->get("Color"));
    TYPES.closure = as_type(kernel->get("Closure"));
    callable_t::setup_type(as_type(kernel->get("Callable")));
    TYPES.frame = as_type(kernel->get("Frame"));
    TYPES.point = as_type(kernel->get("Point"));
    TYPES.file_signature = as_type(kernel->get("FileSignature"));

    Type* mutableType = as_type(kernel->get("Mutable"));
    circa_setup_object_type(mutableType, sizeof(Value), MutableRelease);
    mutableType->initialize = MutableInitialize;

    color_t::setup_type(TYPES.color);

    as_function(FUNCS.list_append)->specializeType = List__append_specializeType;
}