static int internal_function heap_trim(heap_info *heap, size_t pad) { mstate ar_ptr = heap->ar_ptr; unsigned long pagesz = GLRO(dl_pagesize); mchunkptr top_chunk = top(ar_ptr), p, bck, fwd; heap_info *prev_heap; long new_size, top_size, extra, prev_size, misalign; /* Can this heap go away completely? */ while(top_chunk == chunk_at_offset(heap, sizeof(*heap))) { prev_heap = heap->prev; prev_size = prev_heap->size - (MINSIZE-2*SIZE_SZ); p = chunk_at_offset(prev_heap, prev_size); /* fencepost must be properly aligned. */ misalign = ((long) p) & MALLOC_ALIGN_MASK; p = chunk_at_offset(prev_heap, prev_size - misalign); assert(p->size == (0|PREV_INUSE)); /* must be fencepost */ p = prev_chunk(p); new_size = chunksize(p) + (MINSIZE-2*SIZE_SZ) + misalign; assert(new_size>0 && new_size<(long)(2*MINSIZE)); if(!prev_inuse(p)) new_size += p->prev_size; assert(new_size>0 && new_size<HEAP_MAX_SIZE); if(new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz) break; ar_ptr->system_mem -= heap->size; arena_mem -= heap->size; delete_heap(heap); heap = prev_heap; if(!prev_inuse(p)) { /* consolidate backward */ p = prev_chunk(p); unlink(p, bck, fwd); } assert(((unsigned long)((char*)p + new_size) & (pagesz-1)) == 0); assert( ((char*)p + new_size) == ((char*)heap + heap->size) ); top(ar_ptr) = top_chunk = p; set_head(top_chunk, new_size | PREV_INUSE); /*check_chunk(ar_ptr, top_chunk);*/ } top_size = chunksize(top_chunk); extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1); if(extra < (long)pagesz) return 0; /* Try to shrink. */ if(shrink_heap(heap, extra) != 0) return 0; ar_ptr->system_mem -= extra; arena_mem -= extra; /* Success. Adjust top accordingly. */ set_head(top_chunk, (top_size - extra) | PREV_INUSE); /*check_chunk(ar_ptr, top_chunk);*/ return 1; }
// Call unsafe Pointer Check void pos_check_unsafe_pointer(char *name) { struct malloc_state * av; struct pos_name_entry *name_entry; mchunkptr chunk_ptr; struct seg_info *head; int i = 1; av = (struct malloc_state *)pos_lookup_mstate(name); if(av == NULL) printf("Not Allocate Memory\n"); name_entry = pos_lookup_name_entry(name); name_entry -> seg_head = (struct seg_info *)malloc(sizeof(struct seg_info) * 1024); memset(name_entry -> seg_head, 0, sizeof(struct seg_info) * 1024); //Search Seg_info System call syscall(306 , name , name_entry -> seg_head); head = name_entry -> seg_head; // First Segment chunk_ptr = chunk_at_offset(av, sizeof(struct malloc_state)); pos_check_unsafe_segment(name, av, head, chunk_ptr); // Other Segment while(head[i].addr != 0) { pos_check_unsafe_segment(name, av, head, (Void_t *)head[i].addr); i++; } }
//static void void pos_int_free(char *name, mstate av, mchunkptr p, int flag) { INTERNAL_SIZE_T size; mfastbinptr* fb; mchunkptr prevchunk; INTERNAL_SIZE_T prevsize; mchunkptr nextchunk; INTERNAL_SIZE_T nextsize; int nextinuse; mchunkptr bck; mchunkptr fwd; //const char *errstr = NULL; size = chunksize(p); /*if ((uintptr_t) p > (uintptr_t) -size || misaligned_chunk (p)) { errstr = "free(): invalid pointer"; errout: //malloc_printerr (check_action, errstr, chunk2mem(p)); return; }*/ /*if (size < MINSIZE) { errstr = "free(): invalid size"; goto errout; }*/ //check_inuse_chunk(av, p); // fastbin if (flag==1 && (unsigned long)(size) <= (unsigned long)(get_max_fast ())) { /*if (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ || chunksize (chunk_at_offset (p, size)) >= av->system_mem) { errstr = "free(): invalid next size (fast)"; goto errout; }*/ #if CONSISTENCY == 1 set_fastchunks_log(name, av); #else set_fastchunks(av); #endif fb = &fastbin(av, fastbin_index(size)); if (*fb == p) { //errstr = "double free or corruption (fasttop)"; //goto errout; return ; } #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&p->fd, (unsigned long)*fb); POS_WRITE_VAUE(name, (unsigned long *)fb, (unsigned long)p); #else p->fd = *fb; *fb = p; #endif return ; } // 1. First chunk if (chunk_is_first(p)) { nextchunk = next_chunk(p); nextsize = chunksize(nextchunk); // 1-1. (free F), free L if (chunk_is_last(nextchunk) && !inuse(nextchunk)) { //if (av < p && p < (char *)(av+PAGESIZE)){ if ((char*)av+sizeof(struct malloc_state) == (char*)p) { #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, p, bck, fwd, size); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else insert_to_unsorted(av, p, bck, fwd, size); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } else { #if CONSISTENCY == 1 unlink_log(name, nextchunk, bck, fwd); size = size + nextsize + 2*SIZE_SZ; pos_log_insert_malloc_free(name, (unsigned long)p, size); //pos_seg_free(name, (void *)p, size); // Delayed pos_seg_free POS_WRITE_VAUE(name, (unsigned long *)&av->system_mem, (unsigned long)(av->system_mem-size)); #else unlink(nextchunk, bck, fwd); size = size + nextsize + 2*SIZE_SZ; /*if (size%PAGESIZE != 0) { errstr = "free(): unmmap size is not page size"; goto errout; }*/ //FREE((char*)p, size); pos_seg_free(name, (void *)p, size); av->system_mem -= size; #endif goto out; } } // 1-3. (free F), free M else if (!inuse(nextchunk)) { #if CONSISTENCY == 1 unlink_log(name, nextchunk, bck, fwd); size += nextsize; insert_to_unsorted_log(name, av, p, bck, fwd, size); set_head_log(name, p, size | FIRST_CHUNK | PREV_INUSE); set_foot_log(name, p, size); #else unlink(nextchunk, bck, fwd); size += nextsize; insert_to_unsorted(av, p, bck, fwd, size); set_head(p, size | FIRST_CHUNK | PREV_INUSE); set_foot(p, size); #endif goto out; } // 1-2. (free F), inuse L & 1-4. (free F), inuse M else { #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, p, bck, fwd, size); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else insert_to_unsorted(av, p, bck, fwd, size); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } } // 2. Last chunk else if (chunk_is_last(p)) { if (!prev_inuse(p)) { prevchunk = prev_chunk(p); prevsize = chunksize(prevchunk); // 2-1. free F, (free L) if (chunk_is_first(prevchunk)) { //if (av < prevchunk && prevchunk < av+PAGESIZE){ if((char*)av+sizeof(struct malloc_state) == (char*)prevchunk) { #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, p, bck, fwd, size); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else insert_to_unsorted(av, p, bck, fwd, size); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } else { #if CONSISTENCY == 1 unlink_log(name, prevchunk, bck, fwd); size = prevsize+size+2*SIZE_SZ; //pos_seg_free(name, (void *)p, size); pos_log_insert_malloc_free(name, (unsigned long)p, size); POS_WRITE_VAUE(name, (unsigned long *)&av->system_mem, (unsigned long)(av->system_mem-size)); #else unlink(prevchunk, bck, fwd); size = prevsize+size+2*SIZE_SZ; /*if (size%PAGESIZE != 0) { errstr = "free(): unmmap size is not page size"; goto errout; }*/ //FREE((char*)p, size); pos_seg_free(name, (void *)p, size); av->system_mem -= size; #endif goto out; } } // 2-3. free M, (free L) else { #if CONSISTENCY == 1 unlink_log(name, prevchunk, bck, fwd); size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); insert_to_unsorted_log(name, av, p, bck, fwd, size); set_head_log(name, p, size | LAST_CHUNK | PREV_INUSE); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else unlink(prevchunk, bck, fwd); size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); insert_to_unsorted(av, p, bck, fwd, size); set_head(p, size | LAST_CHUNK | PREV_INUSE); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } } // 2-2. inuse F, (free L) & 2-4. inuse M, (free L) else { #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, p, bck, fwd, size); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else insert_to_unsorted(av, p, bck, fwd, size); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } } // 3. Middle chunk else { nextchunk = next_chunk(p); nextsize = chunksize(nextchunk); if (!prev_inuse(p)) { prevchunk = prev_chunk(p); prevsize = chunksize(prevchunk); // 3-1. free F, (free M), free L if (chunk_is_first(prevchunk) && chunk_is_last(nextchunk) && !inuse(nextchunk) ) { //if (av < prevchunk && prevchunk < av+PAGESIZE){ if((char*)av+sizeof(struct malloc_state) == (char*)prevchunk) { #if CONSISTENCY == 1 unlink_log(name, prevchunk, bck, fwd); size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); insert_to_unsorted_log(name, av, p, bck, fwd, size); set_head_log(name, p, size | FIRST_CHUNK | PREV_INUSE); set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else unlink(prevchunk, bck, fwd); size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); insert_to_unsorted(av, p, bck, fwd, size); set_head(p, size | FIRST_CHUNK | PREV_INUSE); set_foot(p, size); clear_inuse_bit_at_offset(p, size); #endif goto out; } else { #if CONSISTENCY == 1 unlink_log(name, prevchunk, bck, fwd); unlink_log(name, nextchunk, bck, fwd); p = chunk_at_offset(p, -((long) prevsize)); size = prevsize+size+nextsize+2*SIZE_SZ; pos_log_insert_malloc_free(name, (unsigned long)p, size); //pos_seg_free(name, (void *)p, size); POS_WRITE_VAUE(name, (unsigned long *)&av->system_mem, (unsigned long)(av->system_mem-size)); #else unlink(prevchunk, bck, fwd); unlink(nextchunk, bck, fwd); p = chunk_at_offset(p, -((long) prevsize)); size = prevsize+size+nextsize+2*SIZE_SZ; /*if (size%PAGESIZE != 0) { errstr = "free(): unmmap size is not page size"; goto errout; }*/ //FREE((char*)p, size); pos_seg_free(name, (void *)p, size); av->system_mem -= size; #endif goto out; } } #if CONSISTENCY == 1 unlink_log(name, prevchunk, bck, fwd); #else unlink(prevchunk, bck, fwd); #endif size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); if (chunk_is_first(prevchunk)) { #if CONSISTENCY == 1 set_head_log(name, p, size | FIRST_CHUNK | PREV_INUSE); #else set_head(p, size | FIRST_CHUNK | PREV_INUSE); //set_foot(p, size); //clear_inuse_bit_at_offset(p, size); #endif } } nextinuse = inuse_bit_at_offset(nextchunk, nextsize); if (!nextinuse) { #if CONSISTENCY == 1 unlink_log(name, nextchunk, bck, fwd); #else unlink(nextchunk, bck, fwd); #endif size += nextsize; } #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, p, bck, fwd, size); if (chunk_is_first(p)) { set_head_log(name, p, size | FIRST_CHUNK | PREV_INUSE); } else if (chunk_is_last(nextchunk)&&!nextinuse) { set_head_log(name, p, size | LAST_CHUNK | PREV_INUSE); } else { set_head_log(name, p, size | PREV_INUSE); } set_foot_log(name, p, size); clear_inuse_bit_at_offset_log(name, p, size); #else //else //clear_inuse_bit_at_offset(nextchunk, 0); insert_to_unsorted(av, p, bck, fwd, size); if (chunk_is_first(p)) { set_head(p, size | FIRST_CHUNK | PREV_INUSE); } else if (chunk_is_last(nextchunk)&&!nextinuse) { set_head(p, size | LAST_CHUNK | PREV_INUSE); } else { set_head(p, size | PREV_INUSE); } set_foot(p, size); clear_inuse_bit_at_offset(p, size); //check_free_chunk(av, p); #endif } out: if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD && have_fastchunks(av)) { pos_malloc_consolidate(name, av); } }
//static void void pos_malloc_init_state(char *name, mstate av) { mchunkptr first_chunk; unsigned long first_size; mchunkptr last_chunk; unsigned long last_size; mchunkptr bck; mchunkptr fwd; int i; mbinptr bin; // init mutex key pthread_mutex_init( &av->mutex,NULL ) ; // initialize malloc_state #if CONSISTENCY == 1 set_init_key_log(name, av); #else set_init_key(av); #endif // Below codes don't need logging. for (i=1; i < NBINS; i++) { bin = bin_at(av,i); bin->fd = bin->bk = bin; } //set_max_fast(DEFAULT_MXFAST); clear_fastchunks(av); for (i=0; i< NFASTBINS ; i++) { av->fastbinsY[i] = 0; } // first chunk first_chunk = chunk_at_offset(av, sizeof(struct malloc_state)); first_size = (PAGESIZE - sizeof(struct malloc_state) - 2*SIZE_SZ)/2; // 956 //#if CONSISTENCY == 1 //first_size = (128*1024-1)*4096 + 960; //536867776 //first_size = request2size(first_size); // 536867792 //#else first_size = 960; //#endif //insert_to_unsorted(av, first_chunk, bck, fwd, first_size); set_head(first_chunk, first_size | FIRST_CHUNK | PREV_INUSE); set_foot(first_chunk, first_size); clear_inuse_bit_at_offset(first_chunk, first_size); // last_chunk last_chunk = chunk_at_offset(first_chunk, first_size); //last_size = first_size; //#if CONSISTENCY == 1 ////last_size = (128*1024)*4096 + 944; // 536867760 //last_size = (256*1024)*4096 - first_size - 2*SIZE_SZ; //last_size = request2size(last_size); // 536874032 //#else // last_size = 988; last_size = 1800; //#endif insert_to_unsorted(av, last_chunk, bck, fwd, last_size); set_head(last_chunk, last_size | LAST_CHUNK | PREV_INUSE); set_foot(last_chunk, last_size); clear_inuse_bit_at_offset(last_chunk, last_size); av->last_remainder = 0; for (i=0; i<BINMAPSIZE; i++) { av->binmap[i] = 0; } av->system_mem = PAGESIZE; av -> prime_obj = NULL; }
static Void_t* pos_int_malloc(char *name, mstate av, size_t bytes) { INTERNAL_SIZE_T nb; unsigned int idx; mbinptr bin; mchunkptr victim; INTERNAL_SIZE_T size; int victim_index; mchunkptr remainder; unsigned long remainder_size; unsigned int block; unsigned int bit; unsigned int map; mchunkptr fwd; mchunkptr bck; //const char *errstr = NULL; size_t pagemask = PAGESIZE - 1; //16바이트 단위로 정렬 checked_request2size(bytes, nb); #if MALLOC_DEBUG == 1 printf("before fastbin\n") ; #endif // 1. fast bin (<=144) // 1. fast bin (<=144) /* if ((unsigned long)(nb) <= (unsigned long)(get_max_fast())) { idx = fastbin_index(nb); // printf("idx = %d\n" , idx) ; mfastbinptr* fb = &fastbin(av, idx); victim = *fb; if (victim != 0) { if (fastbin_index (chunksize (victim)) != idx) { errstr = "malloc(): memory corruption (fast)"; errout: malloc_printerr (check_action, errstr, chunk2mem (victim)); } #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)fb, (unsigned long)victim->fd); #else *fb = victim->fd; #endif void *p = chunk2mem(victim); return p; } } */ // 2. small bin (<=1008) if (in_smallbin_range(nb)) { #if MALLOC_DEBUG == 1 printf("inside smallbin if\n") ; #endif idx = smallbin_index(nb); bin = bin_at(av,idx); victim = last(bin); if ( victim != bin && victim != NULL ) { bck = victim->bk; /* if (bck->fd != victim) { errstr = "malloc(): smallbin double linked list corrupted"; goto errout; }*/ #if CONSISTENCY == 1 set_inuse_bit_at_offset_log(name, victim, nb); POS_WRITE_VAUE(name, (unsigned long *)&bin->bk, (unsigned long)bck); POS_WRITE_VAUE(name, (unsigned long *)&bin->fd, (unsigned long)bin); #else set_inuse_bit_at_offset(victim, nb); bin->bk = bck; bck->fd = bin; #endif void *p = chunk2mem(victim); return p; } } else { idx = largebin_index(nb); if (have_fastchunks(av)) { pos_malloc_consolidate(name, av); } } #if MALLOC_DEBUG==1 printf("before unsorted bin\n") ; #endif for(;;) { int iters = 0; // 3. unsorted bin while ((victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) { bck = victim->bk; /*if (victim->size <= 2 * SIZE_SZ || victim->size > av->system_mem) malloc_printerr (check_action, "malloc(): memory corruption", chunk2mem (victim));*/ size = chunksize(victim); if (in_smallbin_range(nb) && bck == unsorted_chunks(av) && victim == av->last_remainder && (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) { remainder_size = size - nb; remainder = chunk_at_offset(victim, nb); #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&unsorted_chunks(av)->bk, (unsigned long)remainder); POS_WRITE_VAUE(name, (unsigned long *)&unsorted_chunks(av)->fd, (unsigned long)remainder); POS_WRITE_VAUE(name, (unsigned long *)&av->last_remainder, (unsigned long)remainder); #else unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder; av->last_remainder = remainder; #endif remainder->bk = remainder->fd = unsorted_chunks(av); if (!in_smallbin_range(remainder_size)) { remainder->fd_nextsize = NULL; remainder->bk_nextsize = NULL; } // Remainder dosen't need logging... if (chunk_is_last(victim)) set_head(remainder, remainder_size | LAST_CHUNK | PREV_INUSE); else set_head(remainder, remainder_size | PREV_INUSE); // set PREV_INUSE flag.. #if CONSISTENCY == 1 if (chunk_is_first(victim)) { set_head_log(name, victim, nb | FIRST_CHUNK | PREV_INUSE); } else { set_head_log(name, victim, nb | PREV_INUSE); } set_foot_log(name, remainder, remainder_size); #else if (chunk_is_first(victim)) set_head(victim, nb | FIRST_CHUNK | PREV_INUSE); else set_head(victim, nb | PREV_INUSE); set_foot(remainder, remainder_size); #endif void *p = chunk2mem(victim); return p; } #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&unsorted_chunks(av)->bk, (unsigned long)bck); POS_WRITE_VAUE(name, (unsigned long *)&bck->fd, (unsigned long)unsorted_chunks(av)); #else unsorted_chunks(av)->bk = bck; bck->fd = unsorted_chunks(av); #endif if (size == nb) { #if CONSISTENCY == 1 set_inuse_bit_at_offset_log(name, victim, size); #else set_inuse_bit_at_offset(victim, size); #endif void *p = chunk2mem(victim); return p; } if (in_smallbin_range(size)) { victim_index = smallbin_index(size); bck = bin_at(av, victim_index); fwd = bck->fd; } else { victim_index = largebin_index(size); bck = bin_at(av, victim_index); fwd = bck->fd; if (fwd != bck) { size |= PREV_INUSE; //In order not to use chunksize() if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) { fwd = bck; bck = bck->bk; // Current victim was in the unsorted bin that fd_nextsize dosen't need.. so, we don't leave log.. (We don't leave log for fd_nextsize below..) victim->fd_nextsize = fwd->fd; victim->bk_nextsize = fwd->fd->bk_nextsize; #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&fwd->fd->bk_nextsize, (unsigned long)victim); POS_WRITE_VAUE(name, (unsigned long *)&victim->bk_nextsize->fd_nextsize, (unsigned long)victim); #else fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; #endif } else { while ((unsigned long) size < fwd->size) { fwd = fwd->fd_nextsize; } if ((unsigned long) size == (unsigned long) fwd->size) fwd = fwd->fd; else { victim->fd_nextsize = fwd; victim->bk_nextsize = fwd->bk_nextsize; #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&fwd->bk_nextsize, (unsigned long)victim); POS_WRITE_VAUE(name, (unsigned long *)&victim->bk_nextsize->fd_nextsize, (unsigned long)victim); #else fwd->bk_nextsize = victim; victim->bk_nextsize->fd_nextsize = victim; #endif } bck = fwd->bk; } } else victim->fd_nextsize = victim->bk_nextsize = victim; } #if CONSISTENCY == 1 mark_bin_log(name, av, victim_index); POS_WRITE_VAUE(name, (unsigned long *)&victim->bk, (unsigned long)bck); POS_WRITE_VAUE(name, (unsigned long *)&victim->fd, (unsigned long)fwd); POS_WRITE_VAUE(name, (unsigned long *)&fwd->bk, (unsigned long)victim); POS_WRITE_VAUE(name, (unsigned long *)&bck->fd, (unsigned long)victim); #else mark_bin(av, victim_index); victim->bk = bck; victim->fd = fwd; fwd->bk = victim; bck->fd = victim; #endif #define MAX_ITERS 10000 if (++iters >= MAX_ITERS) break; } #if MALLOC_DEBUG == 1 printf("before large bin\n") ; #endif // 4. large bin (1024<=) if (!in_smallbin_range(nb)) { bin = bin_at(av, idx); #if MALLOC_DEBUG printf(" bin = [%p]\n " ,bin ) ; #endif if ((victim = first(bin)) != bin && (unsigned long)(victim->size) >= (unsigned long)(nb)) { victim = victim->bk_nextsize; while (((unsigned long)(size = chunksize(victim)) < (unsigned long)(nb))) victim = victim->bk_nextsize; //if (victim != last(bin) && victim->size == victim->fd->size) if (victim != last(bin) && chunksize(victim) == chunksize(victim->fd)) victim = victim->fd; remainder_size = size - nb; #if CONSISTENCY == 1 unlink_log(name, victim, bck, fwd); #else unlink(victim, bck, fwd); #endif if (remainder_size < MINSIZE) { #if CONSISTENCY == 1 set_inuse_bit_at_offset_log(name, victim, size); #else set_inuse_bit_at_offset(victim, size); #endif } else { remainder = chunk_at_offset(victim, nb); #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, remainder, bck, fwd, remainder_size); #else insert_to_unsorted(av, remainder, bck, fwd, remainder_size); #endif // Remainder dosen't need logging... if (chunk_is_last(victim)) set_head(remainder, remainder_size | LAST_CHUNK | PREV_INUSE); else set_head(remainder, remainder_size | PREV_INUSE); // set PREV_INUSE flag.. #if CONSISTENCY == 1 if (chunk_is_first(victim)) { set_head_log(name, victim, nb | FIRST_CHUNK | PREV_INUSE); } else { set_head_log(name, victim, nb | PREV_INUSE); } set_foot_log(name, remainder, remainder_size); #else if (chunk_is_first(victim)) set_head(victim, nb | FIRST_CHUNK | PREV_INUSE); else set_head(victim, nb | PREV_INUSE); set_foot(remainder, remainder_size); #endif } void *p = chunk2mem(victim); return p; } } ++idx; bin = bin_at(av,idx); block = idx2block(idx); map = av->binmap[block]; bit = idx2bit(idx); #if MALLOC_DEBUG == 1 printf("DDD\n") ; #endif for (;;) { if (bit > map || bit == 0) { do { if (++block >= BINMAPSIZE){ goto new_alloc; } } while ( (map = av->binmap[block]) == 0); bin = bin_at(av, (block << BINMAPSHIFT)); bit = 1; } while ((bit & map) == 0) { bin = next_bin(bin); bit <<= 1; } #if MALLOC_DEBUG == 1 printf("before victim\n") ; #endif victim = last(bin); if (victim == bin) { #if MALLOC_DEBUG == 1 printf("victim == bin\n") ; #endif #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&av->binmap[block], (unsigned long)(map &~bit)); #else av->binmap[block] = map &= ~bit; #endif bin = next_bin(bin); bit <<= 1; } else { #if MALLOC_DEBUG == 1 printf("victim != bin\n") ; #endif size = chunksize(victim); remainder_size = size - nb; #if CONSISTENCY == 1 unlink_log(name, victim, bck, fwd); #else unlink(victim, bck, fwd); #endif #if MALLOC_DEBUG == 1 printf("unlink\n") ; #endif if (remainder_size < MINSIZE) { #if CONSISTENCY == 1 set_inuse_bit_at_offset_log(name, victim, size); #else #if MALLOC_DEBUG == 1 printf("D\n") ; printf("victim : %p\n", victim) ; printf("size: %d\n" ,size) ; #endif set_inuse_bit_at_offset(victim, size); #endif } else { #if MALLOC_DEBUG == 1 printf("remainder\n") ; #endif remainder = chunk_at_offset(victim, nb); #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, remainder, bck, fwd, remainder_size); #else #if MALLOC_DEBUG == 1 printf("av=%p\n",av) ; printf("%p %p %p\n", remainder , bck , fwd); printf("%d\n" , remainder_size) ; #endif insert_to_unsorted(av, remainder, bck, fwd, remainder_size); #endif #if MALLOC_DEBUG == 1 printf("%p %p %p\n", remainder , bck , fwd); printf("s\n") ; #endif if (in_smallbin_range(nb)) { #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&av->last_remainder, (unsigned long)remainder); #else av->last_remainder = remainder; #endif } #if MALLOC_DEBUG == 1 printf("s\n") ; #endif if (chunk_is_last(victim)) set_head(remainder, remainder_size | LAST_CHUNK | PREV_INUSE); else set_head(remainder, remainder_size | PREV_INUSE); // set PREV_INUSE flag.. #if CONSISTENCY == 1 if (chunk_is_first(victim)) { set_head_log(name, victim, nb | FIRST_CHUNK | PREV_INUSE); } else { set_head_log(name, victim, nb | PREV_INUSE); } #if MALLOC_DEBUG == 1 printf("s\n") ; #endif set_foot_log(name, remainder, remainder_size); #else if (chunk_is_first(victim)) set_head(victim, nb | FIRST_CHUNK | PREV_INUSE); else set_head(victim, nb | PREV_INUSE); set_foot(remainder, remainder_size); #endif } #if MALLOC_DEBUG == 1 printf("s\n") ; #endif void *p = chunk2mem(victim); return p; } } new_alloc: #if MALLOC_DEBUG == 1 printf("before newallocation\n"); #endif // 6. new allocation size = (nb + MINSIZE +2*SIZE_SZ + pagemask) & ~pagemask; size += DEFAULT_PAD; //char* mm = (char*)(SEG_ALLOC(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE)); char *mm = (char *)pos_seg_alloc(name, size); memset(mm , 0 , size); #if MALLOC_DEBUG == 1 printf(" mm = %p\n" , mm) ; #endif #if CONSISTENCY == 1 pos_log_insert_malloc_free(name, (unsigned long)mm, size); #endif //if (mm != MAP_FAILED) { if (mm != (char *)0) { #if CONSISTENCY == 1 POS_WRITE_VAUE(name, (unsigned long *)&av->system_mem, (unsigned long)(av->system_mem+size)); #else av->system_mem += size; #endif // printf("D!\n") ; mchunkptr p; p = (mchunkptr)mm; remainder_size = size - nb - 2*SIZE_SZ; remainder = chunk_at_offset(p, nb); #if CONSISTENCY == 1 insert_to_unsorted_log(name, av, remainder, bck, fwd, remainder_size); #else insert_to_unsorted(av, remainder, bck, fwd, remainder_size); #endif /*if (in_smallbin_range(nb)) av->last_remainder = remainder;*/ // set PREV_INUSE flag.. //#if CONSISTENCY == 1 //#elseif set_head(p, nb | FIRST_CHUNK | PREV_INUSE); set_head(remainder, remainder_size | LAST_CHUNK | PREV_INUSE); set_foot(remainder, remainder_size); clear_inuse_bit_at_offset(remainder, remainder_size); //#endif //return p; return chunk2mem(p); } else return 0; } }
//////////////////////////////////////// // WARNING!: pos_realloc has error!. FIX UP! //////////////////////////////////////// Void_t* pos_int_realloc(char *name, mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize, INTERNAL_SIZE_T nb) { mchunkptr newp; /* chunk to return */ INTERNAL_SIZE_T newsize; /* its size */ Void_t* newmem; /* corresponding user mem */ mchunkptr next; /* next contiguous chunk after oldp */ mchunkptr remainder; /* extra space at end of newp */ unsigned long remainder_size; /* its size */ mchunkptr bck; /* misc temp for linking */ mchunkptr fwd; /* misc temp for linking */ unsigned long copysize; /* bytes to copy */ unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */ INTERNAL_SIZE_T* s; /* copy source */ INTERNAL_SIZE_T* d; /* copy destination */ const char *errstr = NULL; /* oldmem size */ /*if (oldp->size <= 2 * SIZE_SZ || oldsize >= av->system_mem) { errstr = "realloc(): invalid old size"; errout: malloc_printerr (check_action, errstr, chunk2mem(oldp)); return NULL; }*/ next = chunk_at_offset(oldp, oldsize); INTERNAL_SIZE_T nextsize = chunksize(next); /*if (next->size <= 2 * SIZE_SZ || nextsize >= av->system_mem) { errstr = "realloc(): invalid next size"; goto errout; }*/ //old size 보다 작을 경우 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) { /* already big enough; split below */ newp = oldp; newsize = oldsize; } //old size 보다 클 경우 else { /* Try to expand forward into next chunk; split off remainder below */ if (!inuse(next) && (unsigned long)(newsize = oldsize + nextsize) >= (unsigned long)(nb)) { newp = oldp; unlink(next, bck, fwd); } /* allocate, copy, free */ else { newmem = pos_int_malloc(name, av, nb - MALLOC_ALIGN_MASK); if (newmem == 0) return 0; /* propagate failure */ newp = mem2chunk(newmem); newsize = chunksize(newp); /* Avoid copy if newp is next chunk after oldp. */ if (newp == next) { newsize += oldsize; newp = oldp; } else { /* Unroll copy of <= 36 bytes (72 if 8byte sizes) We know that contents have an odd number of INTERNAL_SIZE_T-sized words; minimally 3. */ copysize = oldsize - SIZE_SZ; s = (INTERNAL_SIZE_T*)(chunk2mem(oldp)); d = (INTERNAL_SIZE_T*)(newmem); ncopies = copysize / sizeof(INTERNAL_SIZE_T); if (ncopies > 9) memcpy(d, s, copysize); else { *(d+0) = *(s+0); *(d+1) = *(s+1); *(d+2) = *(s+2); if (ncopies > 4) { *(d+3) = *(s+3); *(d+4) = *(s+4); if (ncopies > 6) { *(d+5) = *(s+5); *(d+6) = *(s+6); if (ncopies > 8) { *(d+7) = *(s+7); *(d+8) = *(s+8); } } } } pos_int_free(name, av, oldp, 1); return chunk2mem(newp); } } } /* If possible, free extra space in old or extended chunk */ remainder_size = newsize - nb; if (remainder_size < MINSIZE) { /* not enough extra to split off */ set_head_size(newp, newsize); set_inuse_bit_at_offset(newp, newsize); } else { /* split remainder */ remainder = chunk_at_offset(newp, nb); if (chunk_is_last(newp)) set_head(remainder, remainder_size | LAST_CHUNK | PREV_INUSE); else set_head(remainder, remainder_size | PREV_INUSE); // set PREV_INUSE flag.. if (chunk_is_first(newp)) set_head(newp, nb | FIRST_CHUNK | PREV_INUSE); else set_head(newp, nb | PREV_INUSE); //set_head_size(newp, nb); //set_head(remainder, remainder_size | PREV_INUSE |(av != &main_arena ? NON_MAIN_ARENA : 0)); /* Mark remainder as inuse so free() won't complain */ set_inuse_bit_at_offset(remainder, remainder_size); pos_int_free(name, av, remainder, 1); } return chunk2mem(newp); }
/* ------------------------------ realloc ------------------------------ */ void* ulibc_realloc(void* oldmem, size_t bytes) { mstate av; size_t nb; /* padded request size */ mchunkptr oldp; /* chunk corresponding to oldmem */ size_t oldsize; /* its size */ mchunkptr newp; /* chunk to return */ size_t newsize; /* its size */ void* newmem; /* corresponding user mem */ mchunkptr next; /* next contiguous chunk after oldp */ mchunkptr remainder; /* extra space at end of newp */ unsigned long remainder_size; /* its size */ mchunkptr bck; /* misc temp for linking */ mchunkptr fwd; /* misc temp for linking */ unsigned long copysize; /* bytes to copy */ unsigned int ncopies; /* size_t words to copy */ size_t* s; /* copy source */ size_t* d; /* copy destination */ void *retval; /* Check for special cases. */ if (! oldmem) return ulibc_malloc(bytes); if (! bytes) { ulibc_free (oldmem); return NULL; } av = get_malloc_state(); checked_request2size(bytes, nb); oldp = mem2chunk(oldmem); oldsize = chunksize(oldp); check_inuse_chunk(oldp); if (!chunk_is_mmapped(oldp)) { if ((unsigned long)(oldsize) >= (unsigned long)(nb)) { /* already big enough; split below */ newp = oldp; newsize = oldsize; } else { next = chunk_at_offset(oldp, oldsize); /* Try to expand forward into top */ if (next == av->top && (unsigned long)(newsize = oldsize + chunksize(next)) >= (unsigned long)(nb + MINSIZE)) { set_head_size(oldp, nb); av->top = chunk_at_offset(oldp, nb); set_head(av->top, (newsize - nb) | PREV_INUSE); retval = chunk2mem(oldp); goto DONE; } /* Try to expand forward into next chunk; split off remainder below */ else if (next != av->top && !inuse(next) && (unsigned long)(newsize = oldsize + chunksize(next)) >= (unsigned long)(nb)) { newp = oldp; unlink(next, bck, fwd); } /* allocate, copy, free */ else { newmem = malloc(nb - MALLOC_ALIGN_MASK); if (newmem == 0) { retval = 0; /* propagate failure */ goto DONE; } newp = mem2chunk(newmem); newsize = chunksize(newp); /* Avoid copy if newp is next chunk after oldp. */ if (newp == next) { newsize += oldsize; newp = oldp; } else { /* Unroll copy of <= 36 bytes (72 if 8byte sizes) We know that contents have an odd number of size_t-sized words; minimally 3. */ copysize = oldsize - (sizeof(size_t)); s = (size_t*)(oldmem); d = (size_t*)(newmem); ncopies = copysize / sizeof(size_t); assert(ncopies >= 3); if (ncopies > 9) memcpy(d, s, copysize); else { *(d+0) = *(s+0); *(d+1) = *(s+1); *(d+2) = *(s+2); if (ncopies > 4) { *(d+3) = *(s+3); *(d+4) = *(s+4); if (ncopies > 6) { *(d+5) = *(s+5); *(d+6) = *(s+6); if (ncopies > 8) { *(d+7) = *(s+7); *(d+8) = *(s+8); } } } } ulibc_free(oldmem); check_inuse_chunk(newp); retval = chunk2mem(newp); goto DONE; } } } /* If possible, free extra space in old or extended chunk */ assert((unsigned long)(newsize) >= (unsigned long)(nb)); remainder_size = newsize - nb; if (remainder_size < MINSIZE) { /* not enough extra to split off */ set_head_size(newp, newsize); set_inuse_bit_at_offset(newp, newsize); } else { /* split remainder */ remainder = chunk_at_offset(newp, nb); set_head_size(newp, nb); set_head(remainder, remainder_size | PREV_INUSE); /* Mark remainder as inuse so free() won't complain */ set_inuse_bit_at_offset(remainder, remainder_size); ulibc_free(chunk2mem(remainder)); } check_inuse_chunk(newp); retval = chunk2mem(newp); goto DONE; } /* Handle mmap cases */ else { size_t offset = oldp->prev_size; size_t pagemask = av->pagesize - 1; char *cp; unsigned long sum; /* Note the extra (sizeof(size_t)) overhead */ newsize = (nb + offset + (sizeof(size_t)) + pagemask) & ~pagemask; /* don't need to remap if still within same page */ if (oldsize == newsize - offset) { retval = oldmem; goto DONE; } cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1); if (cp != (char*)MORECORE_FAILURE) { newp = (mchunkptr)(cp + offset); set_head(newp, (newsize - offset)|IS_MMAPPED); assert(aligned_OK(chunk2mem(newp))); assert((newp->prev_size == offset)); /* update statistics */ sum = av->mmapped_mem += newsize - oldsize; if (sum > (unsigned long)(av->max_mmapped_mem)) av->max_mmapped_mem = sum; sum += av->sbrked_mem; if (sum > (unsigned long)(av->max_total_mem)) av->max_total_mem = sum; retval = chunk2mem(newp); goto DONE; } /* Note the extra (sizeof(size_t)) overhead. */ if ((unsigned long)(oldsize) >= (unsigned long)(nb + (sizeof(size_t)))) newmem = oldmem; /* do nothing */ else { /* Must alloc, copy, free. */ newmem = malloc(nb - MALLOC_ALIGN_MASK); if (newmem != 0) { memcpy(newmem, oldmem, oldsize - 2*(sizeof(size_t))); ulibc_free(oldmem); } } retval = newmem; } DONE: return retval; }
/* ------------------------------ free ------------------------------ */ void free(void* mem) { mstate av; mchunkptr p; /* chunk corresponding to mem */ size_t size; /* its size */ mfastbinptr* fb; /* associated fastbin */ mchunkptr nextchunk; /* next contiguous chunk */ size_t nextsize; /* its size */ int nextinuse; /* true if nextchunk is used */ size_t prevsize; /* size of previous contiguous chunk */ mchunkptr bck; /* misc temp for linking */ mchunkptr fwd; /* misc temp for linking */ /* free(0) has no effect */ if (mem == NULL) return; __MALLOC_LOCK; av = get_malloc_state(); p = mem2chunk(mem); size = chunksize(p); check_inuse_chunk(p); /* If eligible, place chunk on a fastbin so it can be found and used quickly in malloc. */ if ((unsigned long)(size) <= (unsigned long)(av->max_fast) #if TRIM_FASTBINS /* If TRIM_FASTBINS set, don't place chunks bordering top into fastbins */ && (chunk_at_offset(p, size) != av->top) #endif ) { set_fastchunks(av); fb = &(av->fastbins[fastbin_index(size)]); p->fd = *fb; *fb = p; } /* Consolidate other non-mmapped chunks as they arrive. */ else if (!chunk_is_mmapped(p)) { set_anychunks(av); nextchunk = chunk_at_offset(p, size); nextsize = chunksize(nextchunk); /* consolidate backward */ if (!prev_inuse(p)) { prevsize = p->prev_size; size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); unlink(p, bck, fwd); } if (nextchunk != av->top) { /* get and clear inuse bit */ nextinuse = inuse_bit_at_offset(nextchunk, nextsize); set_head(nextchunk, nextsize); /* consolidate forward */ if (!nextinuse) { unlink(nextchunk, bck, fwd); size += nextsize; } /* Place the chunk in unsorted chunk list. Chunks are not placed into regular bins until after they have been given one chance to be used in malloc. */ bck = unsorted_chunks(av); fwd = bck->fd; p->bk = bck; p->fd = fwd; bck->fd = p; fwd->bk = p; set_head(p, size | PREV_INUSE); set_foot(p, size); check_free_chunk(p); } /* If the chunk borders the current high end of memory, consolidate into top */ else { size += nextsize; set_head(p, size | PREV_INUSE); av->top = p; check_chunk(p); } /* If freeing a large space, consolidate possibly-surrounding chunks. Then, if the total unused topmost memory exceeds trim threshold, ask malloc_trim to reduce top. Unless max_fast is 0, we don't know if there are fastbins bordering top, so we cannot tell for sure whether threshold has been reached unless fastbins are consolidated. But we don't want to consolidate on each free. As a compromise, consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD is reached. */ if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { if (have_fastchunks(av)) __malloc_consolidate(av); if ((unsigned long)(chunksize(av->top)) >= (unsigned long)(av->trim_threshold)) __malloc_trim(av->top_pad, av); } } /* If the chunk was allocated via mmap, release via munmap() Note that if HAVE_MMAP is false but chunk_is_mmapped is true, then user must have overwritten memory. There's nothing we can do to catch this error unless DEBUG is set, in which case check_inuse_chunk (above) will have triggered error. */ else { size_t offset = p->prev_size; av->n_mmaps--; av->mmapped_mem -= (size + offset); munmap((char*)p - offset, size + offset); } __MALLOC_UNLOCK; }
/* ------------------------- __malloc_consolidate ------------------------- __malloc_consolidate is a specialized version of free() that tears down chunks held in fastbins. Free itself cannot be used for this purpose since, among other things, it might place chunks back onto fastbins. So, instead, we need to use a minor variant of the same code. Also, because this routine needs to be called the first time through malloc anyway, it turns out to be the perfect place to trigger initialization code. */ void attribute_hidden __malloc_consolidate(mstate av) { mfastbinptr* fb; /* current fastbin being consolidated */ mfastbinptr* maxfb; /* last fastbin (for loop control) */ mchunkptr p; /* current chunk being consolidated */ mchunkptr nextp; /* next chunk to consolidate */ mchunkptr unsorted_bin; /* bin header */ mchunkptr first_unsorted; /* chunk to link to */ /* These have same use as in free() */ mchunkptr nextchunk; size_t size; size_t nextsize; size_t prevsize; int nextinuse; mchunkptr bck; mchunkptr fwd; /* If max_fast is 0, we know that av hasn't yet been initialized, in which case do so below */ if (av->max_fast != 0) { clear_fastchunks(av); unsorted_bin = unsorted_chunks(av); /* Remove each chunk from fast bin and consolidate it, placing it then in unsorted bin. Among other reasons for doing this, placing in unsorted bin avoids needing to calculate actual bins until malloc is sure that chunks aren't immediately going to be reused anyway. */ maxfb = &(av->fastbins[fastbin_index(av->max_fast)]); fb = &(av->fastbins[0]); do { if ( (p = *fb) != 0) { *fb = 0; do { check_inuse_chunk(p); nextp = p->fd; /* Slightly streamlined version of consolidation code in free() */ size = p->size & ~PREV_INUSE; nextchunk = chunk_at_offset(p, size); nextsize = chunksize(nextchunk); if (!prev_inuse(p)) { prevsize = p->prev_size; size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); unlink(p, bck, fwd); } if (nextchunk != av->top) { nextinuse = inuse_bit_at_offset(nextchunk, nextsize); set_head(nextchunk, nextsize); if (!nextinuse) { size += nextsize; unlink(nextchunk, bck, fwd); } first_unsorted = unsorted_bin->fd; unsorted_bin->fd = p; first_unsorted->bk = p; set_head(p, size | PREV_INUSE); p->bk = unsorted_bin; p->fd = first_unsorted; set_foot(p, size); } else { size += nextsize; set_head(p, size | PREV_INUSE); av->top = p; } } while ( (p = nextp) != 0); } } while (fb++ != maxfb); } else { malloc_init_state(av); check_malloc_state(); } }
/* ------------------------- __malloc_consolidate ------------------------- __malloc_consolidate is a specialized version of free() that tears down chunks held in fastbins. Free itself cannot be used for this purpose since, among other things, it might place chunks back onto fastbins. So, instead, we need to use a minor variant of the same code. Also, because this routine needs to be called the first time through malloc anyway, it turns out to be the perfect place to trigger initialization code. */ void attribute_hidden __malloc_consolidate(mstate av) { mfastbinptr* fb; /* current fastbin being consolidated */ mfastbinptr* maxfb; /* last fastbin (for loop control) */ mchunkptr p; /* current chunk being consolidated */ mchunkptr nextp; /* next chunk to consolidate */ mchunkptr unsorted_bin; /* bin header */ mchunkptr first_unsorted; /* chunk to link to */ ustate unit; /* */ /* These have same use as in free() */ mchunkptr nextchunk; size_t size; size_t nextsize; size_t prevsize; int nextinuse; mchunkptr bck; mchunkptr fwd; /* If max_fast is 0, we know that av hasn't yet been initialized, in which case do so below */ if (av->max_fast != 0) { clear_fastchunks(av); unsorted_bin = unsorted_chunks(av); /* Remove each chunk from fast bin and consolidate it, placing it then in unsorted bin. Among other reasons for doing this, placing in unsorted bin avoids needing to calculate actual bins until malloc is sure that chunks aren't immediately going to be reused anyway. */ maxfb = &(av->fastbins[fastbin_index(av->max_fast)]); fb = &(av->fastbins[0]); do { if ( (p = *fb) != 0) { *fb = 0; do { check_inuse_chunk(p); nextp = p->fd; /* Slightly streamlined version of consolidation code in free() */ size = p->size & ~PREV_INUSE; nextchunk = chunk_at_offset(p, size); nextsize = chunksize(nextchunk); if (!prev_inuse(p)) { prevsize = p->prev_size; size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); unlink(p, bck, fwd); } unit = lookup_ustate_by_mem((void*)p); if (nextchunk != unit->unit_top) { nextinuse = inuse_bit_at_offset(nextchunk, nextsize); set_head(nextchunk, nextsize); if (!nextinuse) { size += nextsize; unlink(nextchunk, bck, fwd); } first_unsorted = unsorted_bin->fd; unsorted_bin->fd = p; first_unsorted->bk = p; set_head(p, size | PREV_INUSE); p->bk = unsorted_bin; p->fd = first_unsorted; set_foot(p, size); } else { size += nextsize; set_head(p, size | PREV_INUSE); unit->unit_top = p; } } while ( (p = nextp) != 0); } } while (fb++ != maxfb); } else { if (get_abstate()->mstate_list.num == 0) { //initialize abheap state init_linked_list(&(get_abstate()->mstate_list)); init_linked_list(&(get_abstate()->ustate_list)); init_linked_list(&(get_abstate()->mmapped_ustate_list)); get_abstate()->ab_top = (mchunkptr)(CHANNEL_ADDR); //allocate channel heap space mmap((void *) CHANNEL_ADDR, CHANNEL_SIZE, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_FIXED|MAP_SHARED, -1, 0); touch_mem((void *)CHANNEL_ADDR, CHANNEL_SIZE); } malloc_init_state(av); check_malloc_state(); } }
static int internal_function heap_trim (heap_info *heap, size_t pad) { mstate ar_ptr = heap->ar_ptr; unsigned long pagesz = GLRO (dl_pagesize); mchunkptr top_chunk = top (ar_ptr), p, bck, fwd; heap_info *prev_heap; long new_size, top_size, top_area, extra, prev_size, misalign; /* Can this heap go away completely? */ while (top_chunk == chunk_at_offset (heap, sizeof (*heap))) { prev_heap = heap->prev; prev_size = prev_heap->size - (MINSIZE - 2 * SIZE_SZ); p = chunk_at_offset (prev_heap, prev_size); /* fencepost must be properly aligned. */ misalign = ((long) p) & MALLOC_ALIGN_MASK; p = chunk_at_offset (prev_heap, prev_size - misalign); assert (p->size == (0 | PREV_INUSE)); /* must be fencepost */ p = prev_chunk (p); new_size = chunksize (p) + (MINSIZE - 2 * SIZE_SZ) + misalign; assert (new_size > 0 && new_size < (long) (2 * MINSIZE)); if (!prev_inuse (p)) new_size += p->prev_size; assert (new_size > 0 && new_size < HEAP_MAX_SIZE); if (new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz) break; ar_ptr->system_mem -= heap->size; arena_mem -= heap->size; LIBC_PROBE (memory_heap_free, 2, heap, heap->size); delete_heap (heap); heap = prev_heap; if (!prev_inuse (p)) /* consolidate backward */ { p = prev_chunk (p); unlink (ar_ptr, p, bck, fwd); } assert (((unsigned long) ((char *) p + new_size) & (pagesz - 1)) == 0); assert (((char *) p + new_size) == ((char *) heap + heap->size)); top (ar_ptr) = top_chunk = p; set_head (top_chunk, new_size | PREV_INUSE); /*check_chunk(ar_ptr, top_chunk);*/ } /* Uses similar logic for per-thread arenas as the main arena with systrim by preserving the top pad and at least a page. */ top_size = chunksize (top_chunk); top_area = top_size - MINSIZE - 1; if (top_area <= pad) return 0; extra = ALIGN_DOWN(top_area - pad, pagesz); if ((unsigned long) extra < mp_.trim_threshold) return 0; /* Try to shrink. */ if (shrink_heap (heap, extra) != 0) return 0; ar_ptr->system_mem -= extra; arena_mem -= extra; /* Success. Adjust top accordingly. */ set_head (top_chunk, (top_size - extra) | PREV_INUSE); /*check_chunk(ar_ptr, top_chunk);*/ return 1; }
static void _int_free (mstate av, mchunkptr p, int have_lock) { ... else if (!chunk_is_mmapped(p)) { ... nextchunk = chunk_at_offset(p, size); ... nextsize = chunksize(nextchunk); ... /* consolidate backward */ if (!prev_inuse(p)) { prevsize = p->prev_size; size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); unlink(p, bck, fwd); } if (nextchunk != av->top) { /* get and clear inuse bit */ nextinuse = inuse_bit_at_offset(nextchunk, nextsize); /* consolidate forward */ if (!nextinuse) { unlink(nextchunk, bck, fwd); size += nextsize; } else clear_inuse_bit_at_offset(nextchunk, 0); /* Place the chunk in unsorted chunk list. Chunks are not placed into regular bins until after they have been given one chance to be used in malloc. */ bck = unsorted_chunks(av); fwd = bck->fd; if (__glibc_unlikely (fwd->bk != bck)) { errstr = "free(): corrupted unsorted chunks"; goto errout; } p->fd = fwd; p->bk = bck; if (!in_smallbin_range(size)) { p->fd_nextsize = NULL; p->bk_nextsize = NULL; } bck->fd = p; fwd->bk = p; set_head(p, size | PREV_INUSE); set_foot(p, size); check_free_chunk(av, p); } /* If the chunk borders the current high end of memory, consolidate into top */ else { size += nextsize; set_head(p, size | PREV_INUSE); av->top = p; check_chunk(av, p); } ... }