Example #1
0
/**
 * \brief Initializer that uses memory
 */
errval_t multi_slot_alloc_init(struct multi_slot_allocator *ret,
                               cslot_t nslots, cslot_t *retslots)
{
    errval_t err;
    nslots = ROUND_UP(nslots, DEFAULT_CNODE_SLOTS);
    size_t bufsize = SINGLE_SLOT_ALLOC_BUFLEN(nslots); // XXX?

    ret->top = malloc(sizeof(struct single_slot_allocator));
    if (!ret->top) {
        return LIB_ERR_MALLOC_FAIL;
    }
    void *top_buf = malloc(bufsize);
    if (!top_buf) {
        return LIB_ERR_MALLOC_FAIL;
    }

    ret->head = malloc(sizeof(struct slot_allocator_list));
    if (!ret->head) {
        return LIB_ERR_MALLOC_FAIL;
    }
    ret->head->next = NULL;
    void *head_buf = malloc(bufsize);
    if (!head_buf) {
        return LIB_ERR_MALLOC_FAIL;
    }

    ret->reserve = malloc(sizeof(struct single_slot_allocator));
    if (!ret->reserve) {
        return LIB_ERR_MALLOC_FAIL;
    }
    void *reserve_buf = malloc(bufsize);
    if (!reserve_buf) {
        return LIB_ERR_MALLOC_FAIL;
    }

    size_t allocation_unit = sizeof(struct slot_allocator_list) + bufsize;
    err = vspace_mmu_aware_init(&ret->mmu_state, allocation_unit * nslots * 2);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_VSPACE_MMU_AWARE_INIT);
    }

    struct capref cap;
    struct cnoderef cnode;
    err = cnode_create(&cap, &cnode, nslots, NULL);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_CNODE_CREATE);
    }
    err = multi_slot_alloc_init_raw(ret, nslots, cap, cnode, top_buf,
                                    head_buf, reserve_buf, bufsize);

    if (retslots) {
        *retslots = nslots;
    }
    return SYS_ERR_OK;
}
Example #2
0
static errval_t cow_init(size_t bufsize, size_t granularity,
        struct cnoderef *cow_cn, size_t *frame_count)
{
    assert(cow_cn);
    assert(frame_count);

    errval_t err;
    struct capref frame, cncap;
    struct cnoderef cnode;

    // get RAM cap bufsize = (bufsize / granularity + 1) * granularity;
    err = slot_alloc(&frame);
    assert(err_is_ok(err));
    size_t rambits = log2floor(bufsize);
    debug_printf("bits = %zu\n", rambits);
    err = ram_alloc(&frame, rambits);
    assert(err_is_ok(err));
    // calculate #slots
    cslot_t cap_count = bufsize / granularity;
    cslot_t slots;
    // get CNode
    err = cnode_create(&cncap, &cnode, cap_count, &slots);
    assert(err_is_ok(err));
    assert(slots >= cap_count);
    // retype RAM into Frames
    struct capref first_frame = (struct capref) { .cnode = cnode, .slot = 0 };
    err = cap_retype(first_frame, frame, ObjType_Frame, log2floor(granularity));
    assert(err_is_ok(err));
    err = cap_destroy(frame);
    assert(err_is_ok(err));
    *frame_count = slots;
    *cow_cn = cnode;
    return SYS_ERR_OK;
}

// create cow-enabled vregion & backing
// Can copy-on-write in granularity-sized chunks
static errval_t vspace_map_one_frame_cow(void **buf, size_t size,
        struct capref frame, vregion_flags_t flags,
        struct memobj **memobj, struct vregion **vregion,
        size_t granularity)
{
    errval_t err;
    if (!memobj) {
        memobj = malloc(sizeof(*memobj));
    }
    assert(memobj);
    if (!vregion) {
        vregion = malloc(sizeof(*vregion));
    }
    assert(vregion);
    err = vspace_map_anon_attr(buf, memobj, vregion, size, &size, flags);
    assert(err_is_ok(err));
    size_t chunks = size / granularity;
    cslot_t slots;
    struct capref cncap;
    struct cnoderef cnode;
    err = cnode_create(&cncap, &cnode, chunks, &slots);
    assert(err_is_ok(err));
    assert(slots >= chunks);
    struct capref fc = (struct capref) { .cnode = cnode, .slot = 0 };
    for (int i = 0; i < chunks; i++) {
        err = cap_copy(fc, frame);
        assert(err_is_ok(err));
        err = (*memobj)->f.fill_foff(*memobj, i * granularity, fc, granularity, i*granularity);
        assert(err_is_ok(err));
        err = (*memobj)->f.pagefault(*memobj, *vregion, i * granularity, 0);
        assert(err_is_ok(err));
        fc.slot++;
    }
    return SYS_ERR_OK;
}

int main(int argc, char *argv[])
{
    errval_t err;
    struct capref frame;
    size_t retsize;
    void *vbuf;
    struct vregion *vregion;
    uint8_t *buf;

    debug_printf("%s:%d\n", __FUNCTION__, __LINE__);
    err = frame_alloc(&frame, BUFSIZE, &retsize);
    assert(retsize >= BUFSIZE);
    if (err_is_fail(err)) {
        debug_printf("frame_alloc: %s\n", err_getstring(err));
        return 1;
    }
    debug_printf("%s:%d: %zu\n", __FUNCTION__, __LINE__, retsize);
    // setup region
    err = vspace_map_one_frame_attr(&vbuf, retsize, frame,
            VREGION_FLAGS_READ_WRITE, NULL, &vregion);
    if (err_is_fail(err)) {
        debug_printf("vspace_map: %s\n", err_getstring(err));
        return 1;
    }
    debug_printf("vaddr: %p\n", vbuf);

    // write stuff to region
    buf = vbuf;
    debug_printf("%s:%d: %p, %lu pages\n", __FUNCTION__, __LINE__, buf, BUFSIZE / BASE_PAGE_SIZE);
    memset(buf, 0xAA, BUFSIZE);

    debug_printf("%s:%d\n", __FUNCTION__, __LINE__);
    // create cow copy
    //  setup exception handler
    thread_set_exception_handler(handler, NULL, ex_stack,
            ex_stack+EX_STACK_SIZE, NULL, NULL);
    assert(err_is_ok(err));
    debug_printf("%s:%d\n", __FUNCTION__, __LINE__);
    err = cow_init(BUFSIZE, BASE_PAGE_SIZE, &cow_frames, &cow_frame_count);
    assert(err_is_ok(err));
    //  create r/o copy of region and tell exception handler bounds
    debug_printf("%s:%d\n", __FUNCTION__, __LINE__);
    err = vspace_map_one_frame_cow(&cow_vbuf, retsize, frame,
            VREGION_FLAGS_READ, NULL, &cow_vregion, BASE_PAGE_SIZE);
    if (err_is_fail(err)) {
        debug_printf("vspace_map: %s\n", err_getstring(err));
        return 1;
    }
    debug_printf("cow_vaddr: %p\n", cow_vbuf);

    // do stuff cow copy
    uint8_t *cbuf = cow_vbuf;
    for (int i = 0; i < BUFSIZE / BASE_PAGE_SIZE; i+=2) {
        cbuf[i * BASE_PAGE_SIZE + 1] = 0x55;
    }
    // verify results
    for (int i = 0; i < BUFSIZE / BASE_PAGE_SIZE; i++) {
        printf("page %d\n", i);
        printf("buf[0] = %d; cbuf[0] = %d\n", buf[i*BASE_PAGE_SIZE],
                cbuf[i*BASE_PAGE_SIZE]);
        printf("buf[1] = %d; cbuf[1] = %d\n", buf[i*BASE_PAGE_SIZE+1],
                cbuf[i*BASE_PAGE_SIZE+1]);
    }
    debug_dump_hw_ptables();
    return EXIT_SUCCESS;
}
Example #3
0
/**
 * \brief Setup an initial cspace
 *
 * Create an initial cspace layout
 */
static errval_t spawn_setup_cspace(struct spawninfo *si)
{
    errval_t err;
    struct capref t1;

    /* Create root CNode */
    err = cnode_create(&si->rootcn_cap, &si->rootcn, DEFAULT_CNODE_SLOTS, NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_ROOTCN);
    }

    /* Create taskcn */
    err = cnode_create(&si->taskcn_cap, &si->taskcn, DEFAULT_CNODE_SLOTS, NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_TASKCN);
    }

    // Mint into rootcn setting the guard
    t1.cnode = si->rootcn;
    t1.slot  = ROOTCN_SLOT_TASKCN;
    err = cap_mint(t1, si->taskcn_cap, 0,
                   GUARD_REMAINDER(2 * DEFAULT_CNODE_BITS));
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_MINT_TASKCN);
    }

    /* Create slot_alloc_cnode */
    t1.cnode = si->rootcn;
    t1.slot  = ROOTCN_SLOT_SLOT_ALLOC0;
    err = cnode_create_raw(t1, NULL, (1<<SLOT_ALLOC_CNODE_BITS), NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_SLOTALLOC_CNODE);
    }
    t1.cnode = si->rootcn;
    t1.slot  = ROOTCN_SLOT_SLOT_ALLOC1;
    err = cnode_create_raw(t1, NULL, (1<<SLOT_ALLOC_CNODE_BITS), NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_SLOTALLOC_CNODE);
    }
    t1.cnode = si->rootcn;
    t1.slot  = ROOTCN_SLOT_SLOT_ALLOC2;
    err = cnode_create_raw(t1, NULL, (1<<SLOT_ALLOC_CNODE_BITS), NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_SLOTALLOC_CNODE);
    }

    // Create DCB
    si->dcb.cnode = si->taskcn;
    si->dcb.slot  = TASKCN_SLOT_DISPATCHER;
    err = dispatcher_create(si->dcb);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_DISPATCHER);
    }

    // Give domain endpoint to itself (in taskcn)
    struct capref selfep = {
        .cnode = si->taskcn,
        .slot = TASKCN_SLOT_SELFEP,
    };
    err = cap_retype(selfep, si->dcb, ObjType_EndPoint, 0);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_SELFEP);
    }

    // Map root CNode (in taskcn)
    t1.cnode = si->taskcn;
    t1.slot  = TASKCN_SLOT_ROOTCN;
    err = cap_mint(t1, si->rootcn_cap, 0, 0);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_MINT_ROOTCN);
    }

#ifdef TRACING_EXISTS
    // Set up tracing for the child
    err = trace_setup_child(si->taskcn, si->handle);
    if (err_is_fail(err)) {
        printf("Warning: error setting up tracing for child domain\n");
        // SYS_DEBUG(err, ...);
    }
#endif

    // XXX: copy over argspg?
    memset(&si->argspg, 0, sizeof(si->argspg));

    /* Fill up basecn */
    struct capref   basecn_cap;
    struct cnoderef basecn;

    // Create basecn in rootcn
    basecn_cap.cnode = si->rootcn;
    basecn_cap.slot  = ROOTCN_SLOT_BASE_PAGE_CN;
    err = cnode_create_raw(basecn_cap, &basecn, DEFAULT_CNODE_SLOTS, NULL);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_CNODE_CREATE);
    }

    // Place the ram caps
    for (uint8_t i = 0; i < DEFAULT_CNODE_SLOTS; i++) {
        struct capref base = {
            .cnode = basecn,
            .slot  = i
        };
        struct capref ram;
        err = ram_alloc(&ram, BASE_PAGE_BITS);
        if (err_is_fail(err)) {
            return err_push(err, LIB_ERR_RAM_ALLOC);
        }
        err = cap_copy(base, ram);

        if (err_is_fail(err)) {
            return err_push(err, LIB_ERR_CAP_COPY);
        }
        err = cap_destroy(ram);
        if (err_is_fail(err)) {
            return err_push(err, LIB_ERR_CAP_DESTROY);
        }
    }

    return SYS_ERR_OK;
}

static errval_t spawn_setup_vspace(struct spawninfo *si)
{
    errval_t err;

    /* Create pagecn */
    si->pagecn_cap = (struct capref){.cnode = si->rootcn, .slot = ROOTCN_SLOT_PAGECN};
    err = cnode_create_raw(si->pagecn_cap, &si->pagecn, PAGE_CNODE_SLOTS, NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_PAGECN);
    }

    /* Init pagecn's slot allocator */

    // XXX: satisfy a peculiarity of the single_slot_alloc_init_raw API
    size_t bufsize = SINGLE_SLOT_ALLOC_BUFLEN(PAGE_CNODE_SLOTS);
    void *buf = malloc(bufsize);
    assert(buf != NULL);

    err = single_slot_alloc_init_raw(&si->pagecn_slot_alloc, si->pagecn_cap,
                                     si->pagecn, PAGE_CNODE_SLOTS,
                                     buf, bufsize);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_SINGLE_SLOT_ALLOC_INIT_RAW);
    }

    // Create root of pagetable
    err = si->pagecn_slot_alloc.a.alloc(&si->pagecn_slot_alloc.a, &si->vtree);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_SLOT_ALLOC);
    }

    // top-level table should always live in slot 0 of pagecn
    assert(si->vtree.slot == 0);

    switch(si->cpu_type) {
    case CPU_X86_64:
    case CPU_K1OM:
        err = vnode_create(si->vtree, ObjType_VNode_x86_64_pml4);
        break;

    case CPU_X86_32:
    case CPU_SCC:
#ifdef CONFIG_PAE
        err = vnode_create(si->vtree, ObjType_VNode_x86_32_pdpt);
#else
        err = vnode_create(si->vtree, ObjType_VNode_x86_32_pdir);
#endif
        break;

    case CPU_ARM5:
    case CPU_ARM7:
        err = vnode_create(si->vtree, ObjType_VNode_ARM_l1);
        break;

    default:
        assert(!"Other architecture");
        return err_push(err, SPAWN_ERR_UNKNOWN_TARGET_ARCH);
    }

    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_CREATE_VNODE);
    }

    err = spawn_vspace_init(si, si->vtree, si->cpu_type);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_VSPACE_INIT);
    }

    return SYS_ERR_OK;
}

#if 0
/**
 * \brief Lookup and map an image
 */
static errval_t spawn_map(const char *name, struct bootinfo *bi,
                          lvaddr_t *binary, size_t *binary_size)
{
    errval_t err;

    /* Get the module from the multiboot */
    struct mem_region *module = multiboot_find_module(bi, name);
    if (module == NULL) {
        return SPAWN_ERR_FIND_MODULE;
    }

    /* Map the image */
    err = spawn_map_module(module, binary_size, binary, NULL);
    if (err_is_fail(err)) {
        return err_push(err, SPAWN_ERR_MAP_MODULE);
    }

    return SYS_ERR_OK;
}
Example #4
0
static errval_t init_allocators(void)
{
    errval_t err, msgerr;

    struct monitor_blocking_rpc_client *cl = get_monitor_blocking_rpc_client();
    assert(cl != NULL);

    // Get the bootinfo and map it in.
    struct capref bootinfo_frame;
    size_t bootinfo_size;
    struct bootinfo *bootinfo;

    msgerr = cl->vtbl.get_bootinfo(cl, &err, &bootinfo_frame, &bootinfo_size);
    if (err_is_fail(msgerr) || err_is_fail(err)) {
        USER_PANIC_ERR(err_is_fail(msgerr) ? msgerr : err, "failed in get_bootinfo");
    }

    err = vspace_map_one_frame((void**)&bootinfo, bootinfo_size, bootinfo_frame,
                               NULL, NULL);
    assert(err_is_ok(err));

    /* Initialize the memory allocator to handle PhysAddr caps */
    static struct range_slot_allocator devframes_allocator;
    err = range_slot_alloc_init(&devframes_allocator, PCI_CNODE_SLOTS, NULL);
    if (err_is_fail(err)) {
        return err_push(err, LIB_ERR_SLOT_ALLOC_INIT);
    }

    err = mm_init(&pci_mm_physaddr, ObjType_DevFrame, 0, 48,
                  /* This next parameter is important. It specifies the maximum
                   * amount that a cap may be "chunked" (i.e. broken up) at each
                   * level in the allocator. Setting it higher than 1 reduces the
                   * memory overhead of keeping all the intermediate caps around,
                   * but leads to problems if you chunk up a cap too small to be
                   * able to allocate a large subregion. This caused problems
                   * for me with a large framebuffer... -AB 20110810 */
                  1, /*was DEFAULT_CNODE_BITS,*/
                  slab_default_refill, slot_alloc_dynamic, &devframes_allocator, false);
    if (err_is_fail(err)) {
        return err_push(err, MM_ERR_MM_INIT);
    }

    // Request I/O Cap
    struct capref requested_caps;
    errval_t error_code;
    err = cl->vtbl.get_io_cap(cl, &requested_caps, &error_code);
    assert(err_is_ok(err) && err_is_ok(error_code));
    // Copy into correct slot
    struct capref caps_io = {
        .cnode = cnode_task,
        .slot  = TASKCN_SLOT_IO
    };
    err = cap_copy(caps_io, requested_caps);

    // XXX: The code below is confused about gen/l/paddrs.
    // Caps should be managed in genpaddr, while the bus mgmt must be in lpaddr.
    err = cl->vtbl.get_phyaddr_cap(cl, &requested_caps, &error_code);
    assert(err_is_ok(err) && err_is_ok(error_code));
    physical_caps = requested_caps;

    // Build the capref for the first physical address capability
    struct capref phys_cap;
    phys_cap.cnode = build_cnoderef(requested_caps, PHYSADDRCN_BITS);
    phys_cap.slot = 0;

    struct cnoderef devcnode;
    err = slot_alloc(&my_devframes_cnode);
    assert(err_is_ok(err));
    cslot_t slots;
    err = cnode_create(&my_devframes_cnode, &devcnode, 255, &slots);
    if (err_is_fail(err)) { USER_PANIC_ERR(err, "cnode create"); }
    struct capref devframe;
    devframe.cnode = devcnode;
    devframe.slot = 0;

    for (int i = 0; i < bootinfo->regions_length; i++) {
		struct mem_region *mrp = &bootinfo->regions[i];
		if (mrp->mr_type == RegionType_Module) {
			skb_add_fact("memory_region(16'%" PRIxGENPADDR ",%u,%zu,%u,%tu).",
						mrp->mr_base,
						0,
						mrp->mrmod_size,
						mrp->mr_type,
						mrp->mrmod_data);
		}
		else {
			skb_add_fact("memory_region(16'%" PRIxGENPADDR ",%u,%zu,%u,%tu).",
						mrp->mr_base,
						mrp->mr_bits,
						((size_t)1) << mrp->mr_bits,
						mrp->mr_type,
						mrp->mrmod_data);
		}

        if (mrp->mr_type == RegionType_PhyAddr ||
            mrp->mr_type == RegionType_PlatformData) {
            ACPI_DEBUG("Region %d: %"PRIxGENPADDR" - %"PRIxGENPADDR" %s\n",
                       i, mrp->mr_base,
                       mrp->mr_base + (((size_t)1)<<mrp->mr_bits),
                       mrp->mr_type == RegionType_PhyAddr ?
                       "physical address" : "platform data");

            err = cap_retype(devframe, phys_cap, ObjType_DevFrame, mrp->mr_bits);
            if (err_no(err) == SYS_ERR_REVOKE_FIRST) {
                printf("cannot retype region %d: need to revoke first; ignoring it\n", i);
            } else {
                assert(err_is_ok(err));

                err = mm_add(&pci_mm_physaddr, devframe,
                             mrp->mr_bits, mrp->mr_base);
                if (err_is_fail(err)) {
                    USER_PANIC_ERR(err, "adding region %d FAILED\n", i);
                }
            }

            phys_cap.slot++;
            devframe.slot++;
        }
    }

    return SYS_ERR_OK;
}