Example #1
0
void computeGyroRTBias(void)
{
    uint8_t axis;
    uint16_t samples;
    float gyroSum[3] = { 0.0f, 0.0f, 0.0f };

    gyroCalibrating = true;

    for (samples = 0; samples < 2000; samples++) {
        readGyro();

        computeGyroTCBias();

        gyroSum[ROLL] += rawGyro[ROLL].value - gyroTCBias[ROLL];
        gyroSum[PITCH] += rawGyro[PITCH].value - gyroTCBias[PITCH];
        gyroSum[YAW] += rawGyro[YAW].value - gyroTCBias[YAW];

        delayMicroseconds(1000);
    }

    for (axis = ROLL; axis < 3; axis++) {
        gyroRTBias[axis] = (float) gyroSum[axis] / 2000.0f;

    }

    gyroCalibrating = false;
}
Example #2
0
int main(void)
{
	uint32_t currentTime;

    // High Speed Telemetry Test Code Begin
    char numberString[12];
    // High Speed Telemetry Test Code End

    systemInit();

    systemReady = true;

    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)magSum[XAXIS] / 5.0f * magScaleFactor[XAXIS] - sensorConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)magSum[YAXIS] / 5.0f * magScaleFactor[YAXIS] - sensorConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)magSum[ZAXIS] / 5.0f * magScaleFactor[ZAXIS] - sensorConfig.magBias[ZAXIS]);

			magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;

			newMagData = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAltitude10Hz = pressureAlt;

        	serialCom();

        	if ( EKF_Initialized == false ) EKF_Init( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
                                                      sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS] );

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            computeGyroTCBias();
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Predict( sensors.gyro500Hz[ROLL], sensors.gyro500Hz[PITCH], sensors.gyro500Hz[YAW],
                                                            dt500Hz );

                sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
                sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
                sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Update( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
					                                       sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
					                                       sensorConfig.accelCutoff,
                                                           newMagData );
                newMagData = false;

		        sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
    	        sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
    	        sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();

            // High Speed Telemetry Test Code Begin
            if ( highSpeedAccelTelemEnabled == true )
            {
            	// 100 Hz Accels
            	ftoa(sensors.accel100Hz[XAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[YAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[ZAXIS], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedGyroTelemEnabled == true )
            {
            	// 100 Hz Gyros
            	ftoa(sensors.gyro100Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedRollRateTelemEnabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	ftoa(sensors.gyro100Hz[ROLL], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[ROLL],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedPitchRateTelemEnabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[PITCH],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedYawRateTelemEnabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	ftoa(sensors.gyro100Hz[YAW], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[YAW],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedAttitudeTelemEnabled == true )
            {
            	// 200 Hz Attitudes
            	ftoa(sensors.attitude200Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }
            // High Speed Telemetry Test Code End
            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

        	executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Example #3
0
int main(void)
{
	uint32_t currentTime;

    // High Speed Telemetry Test Code Begin
    char numberString[12];
    // High Speed Telemetry Test Code End
    RCC_GetClocksFreq(&clocks);
    USB_Interrupts_Config();
    Set_USBClock();
    USB_Init();
    
    // Wait until device configured
    //while(bDeviceState != CONFIGURED);

    testInit();
    
    LED0_ON;
    systemReady = true;
    
    //nrf_tx_mode_no_aa(addr,5,40);
    
    nrf_rx_mode_dual(addr,5,40);
    {
        uint8_t status = nrf_read_reg(NRF_STATUS);
        nrf_write_reg(NRF_WRITE_REG|NRF_STATUS,status); // clear IRQ flags
        nrf_write_reg(NRF_FLUSH_RX, 0xff);
        nrf_write_reg(NRF_FLUSH_TX, 0xff);
    }
    while (1)
    {
        uint8_t buf[64];
        static uint8_t last_tx_done = 0;
        if(ring_buf_pop(nrf_rx_buffer,buf,32)){
            // get data from the adapter
            switch(buf[0]){
                case SET_ATT:
                    break;
                case SET_MOTOR:
                    break;
                case SET_MODE:
                    report_mode = buf[1];
                    break;
            }
            last_tx_done = 1;
        }
        
        if(tx_done){
            tx_done = 0;
            // report ACK success
            last_tx_done = 1;
        }
        
        if(ring_buf_pop(nrf_tx_buffer,buf,32)){
            if(last_tx_done){
                last_tx_done = 0;
                nrf_ack_packet(0, buf, 32);
            }
        }
        
        if (frame_50Hz)
        {
            int16_t motor_val[4];
        	frame_50Hz = false;
        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;
            //memcpy(buf, accelSummedSamples100Hz, 12);
            //memcpy(buf+12, gyroSummedSamples100Hz, 12);
            //memcpy(buf+24, magSumed, 6);
            if(report_mode == DT_ATT){
                buf[0] = DT_ATT;
                memcpy(buf + 1, &sensors.attitude200Hz[0], 12);
                memcpy(buf + 13, &executionTime200Hz, 4);
                motor_val[0] = motor[0];
                motor_val[1] = motor[1];
                motor_val[2] = motor[2];
                motor_val[3] = motor[3];
                memcpy(buf + 17, motor_val, 8);
                usb_send_data(buf , 64);
                executionTime50Hz = micros() - currentTime;
            }else if(report_mode == DT_SENSOR){
                buf[0] = DT_SENSOR;
                memcpy(buf + 1, gyroSummedSamples100Hz, 12);
                memcpy(buf + 13, accelSummedSamples100Hz, 12);
                memcpy(buf + 25, magSumed, 6);
            }
            //nrf_tx_packet(buf,16);
            //if(nrf_rx_packet(buf,16) == NRF_RX_OK)
            //{
            //    LED0_TOGGLE;
            //}
            ring_buf_push(nrf_tx_buffer, buf, 32);
        }
        
        if(frame_10Hz)
        {
            frame_10Hz = false;
            magSumed[XAXIS] = magSum[XAXIS];
            magSumed[YAXIS] = magSum[YAXIS];
            magSumed[ZAXIS] = magSum[ZAXIS];
            magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;
            newMagData = true;
        }
        
        if (frame_100Hz)
        {
            frame_100Hz = false;
            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();
        }
        
        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }
    }
    systemInit();
    systemReady = true;
    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            LED0_TOGGLE;
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)magSum[XAXIS] / 5.0f * magScaleFactor[XAXIS] - sensorConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)magSum[YAXIS] / 5.0f * magScaleFactor[YAXIS] - sensorConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)magSum[ZAXIS] / 5.0f * magScaleFactor[ZAXIS] - sensorConfig.magBias[ZAXIS]);

			magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;

			newMagData = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAltitude10Hz = pressureAlt;

        	serialCom();

        	if ( EKF_Initialized == false ) EKF_Init( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
                                                      sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS] );

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            computeGyroTCBias();
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Predict( sensors.gyro500Hz[ROLL], sensors.gyro500Hz[PITCH], sensors.gyro500Hz[YAW],
                                                            dt500Hz );

                sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
                sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
                sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Update( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
					                                       sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
					                                       sensorConfig.accelCutoff,
                                                           newMagData );
                newMagData = false;

		        sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
    	        sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
    	        sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();

            // High Speed Telemetry Test Code Begin
            if ( highSpeedAccelTelemEnabled == true )
            {
            	// 100 Hz Accels
            	ftoa(sensors.accel100Hz[XAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[YAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[ZAXIS], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedGyroTelemEnabled == true )
            {
            	// 100 Hz Gyros
            	ftoa(sensors.gyro100Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedRollRateTelemEnabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	ftoa(sensors.gyro100Hz[ROLL], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[ROLL],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedPitchRateTelemEnabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[PITCH],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedYawRateTelemEnabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	ftoa(sensors.gyro100Hz[YAW], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[YAW],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedAttitudeTelemEnabled == true )
            {
            	// 200 Hz Attitudes
            	ftoa(sensors.attitude200Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }
            // High Speed Telemetry Test Code End
            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

        	executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Example #4
0
int main(void)
{
	uint32_t currentTime;

    systemInit();

    systemReady = true;

    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

			newMagData = false;
			magDataUpdate = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAlt10Hz = pressureAlt;

        	cliCom();

        	executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
			sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
			sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

            sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
            sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
            sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                            sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            eepromConfig.accelCutoff,
                            magDataUpdate,
                            dt200Hz );

            magDataUpdate = false;

            computeAxisCommands(dt200Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            //computeGyroTCBias();
            //sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			//sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            //sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            //computeAxisCommands(dt100Hz);
            //mixTable();
            //writeServos();
            //writeMotors();

            if ( rfTelem1Enabled == true )
            {
            	// 200 Hz Accels
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel200Hz[XAXIS],
            	        			               sensors.accel200Hz[YAXIS],
            	        			               sensors.accel200Hz[ZAXIS]);
            }

            if ( rfTelem2Enabled == true )
            {
            	// 200 Hz Gyros
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro200Hz[ROLL ],
            	        			               sensors.gyro200Hz[PITCH],
            	        					       sensors.gyro200Hz[YAW  ]);
            }

            if ( rfTelem3Enabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[ROLL],
            			                    rxCommand[ROLL]);
            }

            if ( rfTelem4Enabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[PITCH],
            	            			    rxCommand[PITCH]);
            }

            if ( rfTelem5Enabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[YAW],
            	            	            rxCommand[YAW]);
            }

            if ( rfTelem6Enabled == true )
            {
            	// 200 Hz Attitudes
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude200Hz[ROLL ],
            	        			               sensors.attitude200Hz[PITCH],
            	        			               sensors.attitude200Hz[YAW  ]);
            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

			if (execUp == false)
			    execUpCount++;

			if ((execUpCount == 5) && (execUp == false))
			{
				execUp = true;
				LED0_OFF;
				LED1_OFF;
			}

			executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}