Example #1
0
 double get_volume()
 {
   unsigned short volume;
   if(SUCCEEDED(caller->GetVolume(&volume)))
     return convert_volume(volume);
   else
     return 1;
 }
Example #2
0
gdouble
pragha_backend_get_volume (PraghaBackend *backend)
{
	PraghaBackendPrivate *priv = backend->priv;
	gdouble volume;

	g_object_get (priv->pipeline, "volume", &volume, NULL);

#if HAVE_GSTREAMER_AUDIO
	volume = convert_volume (VOLUME_FORMAT_LINEAR, VOLUME_FORMAT_CUBIC, volume);
#endif

	return volume;
}
Example #3
0
void
pragha_backend_set_volume (PraghaBackend *backend, gdouble volume)
{
	PraghaBackendPrivate *priv = backend->priv;

	volume = CLAMP (volume, 0.0, 1.0);

#if HAVE_GSTREAMER_AUDIO
	volume = convert_volume (VOLUME_FORMAT_CUBIC, VOLUME_FORMAT_LINEAR, volume);
#endif

	g_object_set (priv->pipeline, "volume", volume, NULL);

	if (pragha_preferences_get_software_mixer (priv->preferences))
		pragha_preferences_set_software_volume (priv->preferences, volume);
}
Example #4
0
double convert_volume( int volume )
{
    return convert_volume( volume, NULL );
}
Example #5
0
static dc_status_t
dctool_xml_output_write (dctool_output_t *abstract, dc_parser_t *parser, const unsigned char data[], unsigned int size, const unsigned char fingerprint[], unsigned int fsize)
{
	dctool_xml_output_t *output = (dctool_xml_output_t *) abstract;
	dc_status_t status = DC_STATUS_SUCCESS;

	// Initialize the sample data.
	sample_data_t sampledata = {0};
	sampledata.nsamples = 0;
	sampledata.ostream = output->ostream;
	sampledata.units = output->units;

	fprintf (output->ostream, "<dive>\n<number>%u</number>\n<size>%u</size>\n", abstract->number, size);

	if (fingerprint) {
		fprintf (output->ostream, "<fingerprint>");
		for (unsigned int i = 0; i < fsize; ++i)
			fprintf (output->ostream, "%02X", fingerprint[i]);
		fprintf (output->ostream, "</fingerprint>\n");
	}

	// Parse the datetime.
	message ("Parsing the datetime.\n");
	dc_datetime_t dt = {0};
	status = dc_parser_get_datetime (parser, &dt);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the datetime.");
		goto cleanup;
	}

	if (dt.timezone == DC_TIMEZONE_NONE) {
		fprintf (output->ostream, "<datetime>%04i-%02i-%02i %02i:%02i:%02i</datetime>\n",
			dt.year, dt.month, dt.day,
			dt.hour, dt.minute, dt.second);
	} else {
		fprintf (output->ostream, "<datetime>%04i-%02i-%02i %02i:%02i:%02i %+03i:%02i</datetime>\n",
			dt.year, dt.month, dt.day,
			dt.hour, dt.minute, dt.second,
			dt.timezone / 3600, (dt.timezone % 3600) / 60);
	}

	// Parse the divetime.
	message ("Parsing the divetime.\n");
	unsigned int divetime = 0;
	status = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the divetime.");
		goto cleanup;
	}

	fprintf (output->ostream, "<divetime>%02u:%02u</divetime>\n",
		divetime / 60, divetime % 60);

	// Parse the maxdepth.
	message ("Parsing the maxdepth.\n");
	double maxdepth = 0.0;
	status = dc_parser_get_field (parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the maxdepth.");
		goto cleanup;
	}

	fprintf (output->ostream, "<maxdepth>%.2f</maxdepth>\n",
		convert_depth(maxdepth, output->units));

	// Parse the temperature.
	message ("Parsing the temperature.\n");
	for (unsigned int i = 0; i < 3; ++i) {
		dc_field_type_t fields[] = {DC_FIELD_TEMPERATURE_SURFACE,
			DC_FIELD_TEMPERATURE_MINIMUM,
			DC_FIELD_TEMPERATURE_MAXIMUM};
		const char *names[] = {"surface", "minimum", "maximum"};

		double temperature = 0.0;
		status = dc_parser_get_field (parser, fields[i], 0, &temperature);
		if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
			ERROR ("Error parsing the temperature.");
			goto cleanup;
		}

		if (status != DC_STATUS_UNSUPPORTED) {
			fprintf (output->ostream, "<temperature type=\"%s\">%.1f</temperature>\n",
				names[i],
				convert_temperature(temperature, output->units));
		}
	}

	// Parse the gas mixes.
	message ("Parsing the gas mixes.\n");
	unsigned int ngases = 0;
	status = dc_parser_get_field (parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the gas mix count.");
		goto cleanup;
	}

	for (unsigned int i = 0; i < ngases; ++i) {
		dc_gasmix_t gasmix = {0};
		status = dc_parser_get_field (parser, DC_FIELD_GASMIX, i, &gasmix);
		if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
			ERROR ("Error parsing the gas mix.");
			goto cleanup;
		}

		fprintf (output->ostream,
			"<gasmix>\n"
			"   <he>%.1f</he>\n"
			"   <o2>%.1f</o2>\n"
			"   <n2>%.1f</n2>\n"
			"</gasmix>\n",
			gasmix.helium * 100.0,
			gasmix.oxygen * 100.0,
			gasmix.nitrogen * 100.0);
	}

	// Parse the tanks.
	message ("Parsing the tanks.\n");
	unsigned int ntanks = 0;
	status = dc_parser_get_field (parser, DC_FIELD_TANK_COUNT, 0, &ntanks);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the tank count.");
		goto cleanup;
	}

	for (unsigned int i = 0; i < ntanks; ++i) {
		const char *names[] = {"none", "metric", "imperial"};

		dc_tank_t tank = {0};
		status = dc_parser_get_field (parser, DC_FIELD_TANK, i, &tank);
		if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
			ERROR ("Error parsing the tank.");
			goto cleanup;
		}

		fprintf (output->ostream, "<tank>\n");
		if (tank.gasmix != DC_GASMIX_UNKNOWN) {
			fprintf (output->ostream,
				"   <gasmix>%u</gasmix>\n",
				tank.gasmix);
		}
		if (tank.type != DC_TANKVOLUME_NONE) {
			fprintf (output->ostream,
				"   <type>%s</type>\n"
				"   <volume>%.1f</volume>\n"
				"   <workpressure>%.2f</workpressure>\n",
				names[tank.type],
				convert_volume(tank.volume, output->units),
				convert_pressure(tank.workpressure, output->units));
		}
		fprintf (output->ostream,
			"   <beginpressure>%.2f</beginpressure>\n"
			"   <endpressure>%.2f</endpressure>\n"
			"</tank>\n",
			convert_pressure(tank.beginpressure, output->units),
			convert_pressure(tank.endpressure, output->units));
	}

	// Parse the dive mode.
	message ("Parsing the dive mode.\n");
	dc_divemode_t divemode = DC_DIVEMODE_OC;
	status = dc_parser_get_field (parser, DC_FIELD_DIVEMODE, 0, &divemode);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the dive mode.");
		goto cleanup;
	}

	if (status != DC_STATUS_UNSUPPORTED) {
		const char *names[] = {"freedive", "gauge", "oc", "ccr", "scr"};
		fprintf (output->ostream, "<divemode>%s</divemode>\n",
			names[divemode]);
	}

	// Parse the salinity.
	message ("Parsing the salinity.\n");
	dc_salinity_t salinity = {DC_WATER_FRESH, 0.0};
	status = dc_parser_get_field (parser, DC_FIELD_SALINITY, 0, &salinity);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the salinity.");
		goto cleanup;
	}

	if (status != DC_STATUS_UNSUPPORTED) {
		fprintf (output->ostream, "<salinity type=\"%u\">%.1f</salinity>\n",
			salinity.type, salinity.density);
	}

	// Parse the atmospheric pressure.
	message ("Parsing the atmospheric pressure.\n");
	double atmospheric = 0.0;
	status = dc_parser_get_field (parser, DC_FIELD_ATMOSPHERIC, 0, &atmospheric);
	if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
		ERROR ("Error parsing the atmospheric pressure.");
		goto cleanup;
	}

	if (status != DC_STATUS_UNSUPPORTED) {
		fprintf (output->ostream, "<atmospheric>%.5f</atmospheric>\n",
			convert_pressure(atmospheric, output->units));
	}

	// Parse the sample data.
	message ("Parsing the sample data.\n");
	status = dc_parser_samples_foreach (parser, sample_cb, &sampledata);
	if (status != DC_STATUS_SUCCESS) {
		ERROR ("Error parsing the sample data.");
		goto cleanup;
	}

cleanup:

	if (sampledata.nsamples)
		fprintf (output->ostream, "</sample>\n");
	fprintf (output->ostream, "</dive>\n");

	return status;
}
Example #6
0
static int dump_pattern(FILE *fff, int which, struct pattern_struct *p,
	int num_channels,
	int ch0, int ch1, int ch2) {

	int j,c;
	int pattern_break=0;
	int last_instrument[16]={0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, };

	fprintf(fff,"\' Pattern %x\n",which);

	for(j=0; j < p->num_rows;j++) {

		/* Handle effects */
		for(c=0;c<num_channels;c++) {
			int effect;
			int param;

			/* Check early in case we aren't outputting the */
			/* channel with the break */
			/* Technically some effects should go in effect */
			/* globally so we should handle this better */

			if (p->p[j][c].effect==0xd) pattern_break=1;

// 0,1,9
// 0N 1N 2C 3C 

			if ((c!=ch0) && (c!=ch1) && (c!=ch2)) continue;

			effect=p->p[j][c].effect;
			param=p->p[j][c].param;

			switch(effect) {
				case 0:	/* arpeggio */
					if (param==0) break;
					fprintf(fff,"* %c E %d %d\n",
						channel_to_channel(c,ch0,ch1,ch2),
						effect,param);
					break;
				case 1: /* portamento up */
					fprintf(fff,"* %c E %d %d\n",
						channel_to_channel(c,ch0,ch1,ch2),
						effect,param);
					break;
				case 2:	/* portamento down */
					fprintf(fff,"* %c E %d %d\n",
						channel_to_channel(c,ch0,ch1,ch2),
						effect,param);
					break;
				case 4: /* Vibrato */
					fprintf(fff,"* %c E %d %d\n",
						channel_to_channel(c,ch0,ch1,ch2),
						effect,param);
					break;
				case 0xd:	/* early exit */
					pattern_break=1;
					break;
				case 0xf:	/* Change temp */
					/* FIXME: warn if changing */
					break;
				case 3:
				case 5:
				case 6:
				case 7:
				case 8:
				case 9:
				case 0xa:
				case 0xb:
				case 0xc:
				case 0xe:
				default:
					fprintf(stderr,"Unhandled effect %x\n",
						effect);
			}

		}



		/* Handle instrument */

		for(c=0;c<num_channels;c++) {
			int instrument=0;

			if ((c!=ch0) && (c!=ch1) && (c!=ch2)) continue;

			instrument=p->p[j][c].instrument;

			/* Hardcoded match for stillalive */
			if ((instrument) && (instrument!=last_instrument[c])) {

				last_instrument[c]=instrument;

					/* 1 = sine */
				if (instrument==1) instrument=0;
					/* 2 = muted */
				else if (instrument==2) instrument=6;
					/* 3 = triangle wave */
				else if (instrument==3) instrument=10;
					/* 4 = bass drum */
				else if (instrument==4) instrument=7;
					/* 5 = snare drum */
				else if (instrument==5) instrument=8;
					/* 6 = cymbal */
				else if (instrument==6) instrument=9;

				fprintf(fff,"* %c I %d\n",
					channel_to_channel(c,ch0,ch1,ch2),
					instrument);

			}

		}

		/* Handle volume */

		for(c=0;c<num_channels;c++) {
			int volume=0;

			if ((c!=ch0) && (c!=ch1) && (c!=ch2)) continue;

			if (p->p[j][c].note) {
				if (p->p[j][c].note==97) volume=0x10;
				else volume=0x50;
			}

			if (p->p[j][c].volume) volume=p->p[j][c].volume;


			if (volume) {
				if (volume>0x50) {
					fprintf(stderr,"Unhandled volume %d\n",
						volume);
					continue;
				}


				//volume=(volume-0x11)/4;
				volume=convert_volume(volume-0x10);

				fprintf(fff,"* %c L %d\n",
					channel_to_channel(c,ch0,ch1,ch2),
					volume);
			}

		}

		fprintf(fff,"%02X ",j);

		/* Handle Notes */
		for(c=0;c<num_channels;c++) {

			if ((c!=ch0) && (c!=ch1) && (c!=ch2)) continue;

			note_to_ym_string(fff,p->p[j][c].note,c==0);

			if ((p->p[j][c].note<97) &&
				(p->p[j][c].note!=0)) {
				fprintf(fff," ?\t");
			}
			else {
				fprintf(fff,"--\t");
			}
#if 0
			if (p->p[j][c].instrument) {
				fprintf(fff,"%X",p->p[j][c].instrument);
			}
			else {
				fprintf(fff,".");
			}

			if (p->p[j][c].volume) {
				fprintf(fff,"%02X",p->p[j][c].volume-0x10);
			}
			else {
				fprintf(fff,"..");
			}

			if ((p->p[j][c].effect) ||
				(p->p[j][c].param)) {
					fprintf(fff,"%X%02X",
						p->p[j][c].effect,
						p->p[j][c].param);
			}
			else {
				fprintf(fff,"...");
			}

			fprintf(fff," ");
#endif


		}

		fprintf(fff,"\n");
		if (pattern_break) break;
	}

	return 0;
}