Example #1
0
static int get_cpsr(QEMUFile *f, void *opaque, size_t size)
{
    ARMCPU *cpu = opaque;
    CPUARMState *env = &cpu->env;
    uint32_t val = qemu_get_be32(f);

    /* Avoid mode switch when restoring CPSR */
    env->uncached_cpsr = val & CPSR_M;
    cpsr_write(env, val, 0xffffffff);
    return 0;
}
Example #2
0
static int get_cpsr(QEMUFile *f, void *opaque, size_t size)
{
    ARMCPU *cpu = opaque;
    CPUARMState *env = &cpu->env;
    uint32_t val = qemu_get_be32(f);

    env->aarch64 = ((val & PSTATE_nRW) == 0);

    if (is_a64(env)) {
        pstate_write(env, val);
        return 0;
    }

    cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
    return 0;
}
Example #3
0
static int get_cpsr(QEMUFile *f, void *opaque, size_t size)
{
    ARMCPU *cpu = opaque;
    CPUARMState *env = &cpu->env;
    uint32_t val = qemu_get_be32(f);

    env->aarch64 = ((val & PSTATE_nRW) == 0);

    if (is_a64(env)) {
        pstate_write(env, val);
        return 0;
    }

    /* Avoid mode switch when restoring CPSR */
    env->uncached_cpsr = val & CPSR_M;
    cpsr_write(env, val, 0xffffffff);
    return 0;
}
Example #4
0
int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint32_t tmp;

    tmp = ldl_p(mem_buf);

    /* Mask out low bit of PC to workaround gdb bugs.  This will probably
       cause problems if we ever implement the Jazelle DBX extensions.  */
    if (n == 15) {
        tmp &= ~1;
    }

    if (n < 16) {
        /* Core integer register.  */
        env->regs[n] = tmp;
        return 4;
    }
    if (n < 24) { /* 16-23 */
        /* FPA registers (ignored).  */
        if (gdb_has_xml) {
            return 0;
        }
        return 12;
    }
    switch (n) {
    case 24:
        /* FPA status register (ignored).  */
        if (gdb_has_xml) {
            return 0;
        }
        return 4;
    case 25:
        /* CPSR */
        cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub);
        return 4;
    }
    /* Unknown register.  */
    return 0;
}
Example #5
0
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
    CPUARMState *env = (CPUARMState *)opaque;
    int i;
    uint32_t val;

    if (version_id != CPU_SAVE_VERSION)
        return -EINVAL;

    for (i = 0; i < 16; i++) {
        env->regs[i] = qemu_get_be32(f);
    }
    val = qemu_get_be32(f);
    /* Avoid mode switch when restoring CPSR.  */
    env->uncached_cpsr = val & CPSR_M;
    cpsr_write(env, val, 0xffffffff);
    env->spsr = qemu_get_be32(f);
    for (i = 0; i < 6; i++) {
        env->banked_spsr[i] = qemu_get_be32(f);
        env->banked_r13[i] = qemu_get_be32(f);
        env->banked_r14[i] = qemu_get_be32(f);
    }
    for (i = 0; i < 5; i++) {
        env->usr_regs[i] = qemu_get_be32(f);
        env->fiq_regs[i] = qemu_get_be32(f);
    }
    env->cp15.c0_cpuid = qemu_get_be32(f);
    env->cp15.c0_cachetype = qemu_get_be32(f);
    env->cp15.c0_cssel = qemu_get_be32(f);
    env->cp15.c1_sys = qemu_get_be32(f);
    env->cp15.c1_coproc = qemu_get_be32(f);
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
    env->cp15.c1_scr = qemu_get_be32(f);
    env->cp15.c2_base0 = qemu_get_be32(f);
    env->cp15.c2_base1 = qemu_get_be32(f);
    env->cp15.c2_control = qemu_get_be32(f);
    env->cp15.c2_mask = qemu_get_be32(f);
    env->cp15.c2_base_mask = qemu_get_be32(f);
    env->cp15.c2_data = qemu_get_be32(f);
    env->cp15.c2_insn = qemu_get_be32(f);
    env->cp15.c3 = qemu_get_be32(f);
    env->cp15.c5_insn = qemu_get_be32(f);
    env->cp15.c5_data = qemu_get_be32(f);
    for (i = 0; i < 8; i++) {
        env->cp15.c6_region[i] = qemu_get_be32(f);
    }
    env->cp15.c6_insn = qemu_get_be32(f);
    env->cp15.c6_data = qemu_get_be32(f);
    env->cp15.c7_par = qemu_get_be32(f);
    env->cp15.c9_insn = qemu_get_be32(f);
    env->cp15.c9_data = qemu_get_be32(f);
    env->cp15.c9_pmcr = qemu_get_be32(f);
    env->cp15.c9_pmcnten = qemu_get_be32(f);
    env->cp15.c9_pmovsr = qemu_get_be32(f);
    env->cp15.c9_pmxevtyper = qemu_get_be32(f);
    env->cp15.c9_pmuserenr = qemu_get_be32(f);
    env->cp15.c9_pminten = qemu_get_be32(f);
    env->cp15.c13_fcse = qemu_get_be32(f);
    env->cp15.c13_context = qemu_get_be32(f);
    env->cp15.c13_tls1 = qemu_get_be32(f);
    env->cp15.c13_tls2 = qemu_get_be32(f);
    env->cp15.c13_tls3 = qemu_get_be32(f);
    env->cp15.c15_cpar = qemu_get_be32(f);
    env->cp15.c15_power_control = qemu_get_be32(f);
    env->cp15.c15_diagnostic = qemu_get_be32(f);
    env->cp15.c15_power_diagnostic = qemu_get_be32(f);

    env->features = qemu_get_be32(f);

    if (arm_feature(env, ARM_FEATURE_VFP)) {
        for (i = 0;  i < 16; i++) {
            CPU_DoubleU u;
            u.l.upper = qemu_get_be32(f);
            u.l.lower = qemu_get_be32(f);
            env->vfp.regs[i] = u.d;
        }
        for (i = 0; i < 16; i++) {
            env->vfp.xregs[i] = qemu_get_be32(f);
        }

        /* TODO: Should use proper FPSCR access functions.  */
        env->vfp.vec_len = qemu_get_be32(f);
        env->vfp.vec_stride = qemu_get_be32(f);

        if (arm_feature(env, ARM_FEATURE_VFP3)) {
            for (i = 16;  i < 32; i++) {
                CPU_DoubleU u;
                u.l.upper = qemu_get_be32(f);
                u.l.lower = qemu_get_be32(f);
                env->vfp.regs[i] = u.d;
            }
        }
    }

    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
        for (i = 0; i < 16; i++) {
            env->iwmmxt.regs[i] = qemu_get_be64(f);
        }
        for (i = 0; i < 16; i++) {
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
        }
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
        env->v7m.other_sp = qemu_get_be32(f);
        env->v7m.vecbase = qemu_get_be32(f);
        env->v7m.basepri = qemu_get_be32(f);
        env->v7m.control = qemu_get_be32(f);
        env->v7m.current_sp = qemu_get_be32(f);
        env->v7m.exception = qemu_get_be32(f);
    }

    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        env->teecr = qemu_get_be32(f);
        env->teehbr = qemu_get_be32(f);
    }

    return 0;
}
Example #6
0
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
                   uint32_t target_el, bool target_aa64)
{
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;

    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
            context_id);

    /* requested EL level need to be in the 1 to 3 range */
    assert((target_el > 0) && (target_el < 4));

    if (target_aa64 && (entry & 3)) {
        /*
         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
         * aligned.
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /* Retrieve the cpu we are powering up */
    target_cpu_state = arm_get_cpu_by_id(cpuid);
    if (!target_cpu_state) {
        /* The cpu was not found */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    target_cpu = ARM_CPU(target_cpu_state);
    if (!target_cpu->powered_off) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_ALREADY_ON;
    }

    /*
     * The newly brought CPU is requested to enter the exception level
     * "target_el" and be in the requested mode (AArch64 or AArch32).
     */

    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
        /*
         * The CPU does not support requested level
         */
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
        /*
         * For now we don't support booting an AArch64 CPU in AArch32 mode
         * TODO: We should add this support later
         */
        qemu_log_mask(LOG_UNIMP,
                      "[ARM]%s: Starting AArch64 CPU %" PRId64
                      " in AArch32 mode is not supported yet\n",
                      __func__, cpuid);
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
    }

    /* Initialize the cpu we are turning on */
    cpu_reset(target_cpu_state);
    target_cpu->powered_off = false;
    target_cpu_state->halted = 0;

    if (target_aa64) {
        if ((target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 2) to AArch64
             */
            target_cpu->env.cp15.scr_el3 |= SCR_RW;
        }

        if ((target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) {
            /*
             * As target mode is AArch64, we need to set lower
             * exception level (the requested level 1) to AArch64
             */
            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
        }

        target_cpu->env.pstate = aarch64_pstate_mode(target_el, true);
    } else {
        /* We are requested to boot in AArch32 mode */
        static uint32_t mode_for_el[] = { 0,
                                          ARM_CPU_MODE_SVC,
                                          ARM_CPU_MODE_HYP,
                                          ARM_CPU_MODE_SVC };

        cpsr_write(&target_cpu->env, mode_for_el[target_el], CPSR_M,
                   CPSRWriteRaw);
    }

    if (target_el == 3) {
        /* Processor is in secure mode */
        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
    } else {
        /* Processor is not in secure mode */
        target_cpu->env.cp15.scr_el3 |= SCR_NS;
    }

    /* We check if the started CPU is now at the correct level */
    assert(target_el == arm_current_el(&target_cpu->env));

    if (target_aa64) {
        target_cpu->env.xregs[0] = context_id;
        target_cpu->env.thumb = false;
    } else {
        target_cpu->env.regs[0] = context_id;
        target_cpu->env.thumb = entry & 1;
        entry &= 0xfffffffe;
    }

    /* Start the new CPU at the requested address */
    cpu_set_pc(target_cpu_state, entry);

    /* We are good to go */
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
}