Example #1
0
File: cpus.c Project: tycho/qemu
void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    qemu_event_increment ();
    if (env) {
        cpu_exit(env);
    }
    if (next_cpu && env != next_cpu) {
        cpu_exit(next_cpu);
    }
}
Example #2
0
void qemu_notify_event(void)
{
    CPUOldState *env = cpu_single_env;

    if (env) {
        cpu_exit(env);
    /*
     * This is mainly for the Windows host, where the timer may be in
     * a different thread with vcpu. Thus the timer function needs to
     * notify the vcpu thread of more than simply cpu_exit.  If env is
     * not NULL, it means that the vcpu is in execute state, we need
     * only to set the flags.  If the guest is in execute state, the
     * HAX kernel module will exit to qemu.  If env is NULL, vcpu is
     * in main_loop_wait, and we need a event to notify it.
     */
#ifdef CONFIG_HAX
        if (hax_enabled())
            hax_raise_event(env);
     } else {
#ifdef _WIN32
         if(hax_enabled())
             SetEvent(qemu_event_handle);
#endif
     }
#else
     }
Example #3
0
static void host_signal_handler(int host_signum, siginfo_t *info,
                                void *puc)
{
    int sig;
    target_siginfo_t tinfo;

    /* the CPU emulator uses some host signals to detect exceptions,
       we we forward to it some signals */
    if (host_signum == SIGSEGV || host_signum == SIGBUS) {
        if (cpu_signal_handler(host_signum, (void*)info, puc))
            return;
    }

    /* get target signal number */
    sig = host_to_target_signal(host_signum);
    if (sig < 1 || sig > NSIG)
        return;

#if defined(DEBUG_SIGNAL)
	fprintf(stderr, "qemu: got signal %d\n", sig);
#endif
    if (queue_signal(sig, &tinfo) == 1) {
        /* interrupt the virtual CPU as soon as possible */
        cpu_exit(global_env);
    }
}
Example #4
0
static void cpu_signal(int sig)
{
    if (current_cpu) {
        cpu_exit(current_cpu);
    }
    exit_request = 1;
}
Example #5
0
static void cpu_signal(int sig)
{
    if (cpu_single_env) {
        cpu_exit(cpu_single_env);
    }
    exit_request = 1;
}
Example #6
0
static void cpu_request_exit(void *opaque, int irq, int level)
{
    CPUState *env = cpu_single_env;

    if (env && level) {
        cpu_exit(env);
    }
}
Example #7
0
File: prep.c Project: DrCheadar/orp
static void cpu_request_exit(void *opaque, int irq, int level)
{
    CPUState *cpu = current_cpu;

    if (cpu && level) {
        cpu_exit(cpu);
    }
}
Example #8
0
void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    if (kvm_enabled()) {
        qemu_kvm_notify_work();
        return;
    }

    qemu_event_increment ();
    if (env) {
        cpu_exit(env);
    }
    if (next_cpu && env != next_cpu) {
        cpu_exit(next_cpu);
    }
}
Example #9
0
File: vl.c Project: RKX1209/unicorn
void cpu_stop_current(struct uc_struct *uc)
{
    if (uc->current_cpu) {
        uc->current_cpu->stop = false;
        uc->current_cpu->stopped = true;
        cpu_exit(uc->current_cpu);
    }
}
Example #10
0
static void cpu_signal(int sig)
{
    LOGD_CPUS("%s=>sig=%d\n", __func__, sig);
    if (cpu_single_env) {
        cpu_exit(cpu_single_env);
    }
    exit_request = 1;
}
Example #11
0
void cpu_stop_current(void)
{
    if (cpu_single_env) {
        cpu_single_env->stop = 0;
        cpu_single_env->stopped = 1;
        cpu_exit(cpu_single_env);
        qemu_cond_signal(&qemu_pause_cond);
    }
}
Example #12
0
void cpu_stop_current(void)
{
    if (current_cpu) {
        current_cpu->stop = false;
        current_cpu->stopped = true;
        cpu_exit(current_cpu);
        qemu_cond_signal(&qemu_pause_cond);
    }
}
Example #13
0
void cpu_stop_current(void)
{
    if (cpu_single_env) {
        CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
        cpu_single_cpu->stop = false;
        cpu_single_cpu->stopped = true;
        cpu_exit(cpu_single_env);
        qemu_cond_signal(&qemu_pause_cond);
    }
}
Example #14
0
void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    if (env) {
        cpu_exit(env);
#ifdef USE_KQEMU
        if (env->kqemu_enabled)
            kqemu_cpu_interrupt(env);
#endif
     }
}
Example #15
0
UNICORN_EXPORT
uc_err uc_emu_stop(uc_engine *uc)
{
    if (uc->emulation_done)
        return UC_ERR_OK;

    uc->stop_request = true;
    // exit the current TB
    cpu_exit(uc->current_cpu);

    return UC_ERR_OK;
}
Example #16
0
File: uc.c Project: feliam/unicorn
UNICORN_EXPORT
uc_err uc_emu_stop(uc_engine *uc)
{
    if (uc->emulation_done)
        return UC_ERR_OK;

    uc->stop_request = true;
    // TODO: make this atomic somehow?
    if (uc->current_cpu) {
        // exit the current TB
        cpu_exit(uc->current_cpu);
    }

    return UC_ERR_OK;
}
Example #17
0
void vm_stop(int reason)
{
    QemuThread me;
    qemu_thread_self(&me);

    if (!qemu_thread_equal(&me, &io_thread)) {
        qemu_system_vmstop_request(reason);
        /*
         * FIXME: should not return to device code in case
         * vm_stop() has been requested.
         */
        if (cpu_single_env) {
            cpu_exit(cpu_single_env);
            cpu_single_env->stop = 1;
        }
        return;
    }
    do_vm_stop(reason);
}
Example #18
0
static inline cpu_syscall(Cpu *cpu, int *ret_val){
	printf("syscall");
	reg call_type = cpu->r[Tyr];
	reg arg_1 = cpu->r[Glu];
	reg arg_2 = cpu->r[Lys];
	switch (call_type){
		case sys_read:
			cpu_read(cpu, arg_1, arg_2);
			break;
		case sys_write:
			cpu_write(cpu, arg_1, arg_2);
			break;
		case sys_exit:
			cpu_exit(cpu, ret_val);
			break;
		default:
			p_errno = INV_SYSCALL;
			break;
	}
		
}
Example #19
0
void qemu_notify_event(void)
{
    CPUState *env = cpu_single_env;

    if (env) {
        cpu_exit(env);
#ifdef USE_KQEMU
        if (env->kqemu_enabled)
            kqemu_cpu_interrupt(env);
#endif
#ifdef CONFIG_HAX
        if (hax_enabled())
            hax_raise_event(env);
     } else {
#ifdef _WIN32
         if(hax_enabled())
             SetEvent(qemu_event_handle);
#endif
     }
#else
     }
Example #20
0
static void rtas_stop_self(PowerPCCPU *cpu, sPAPREnvironment *spapr,
                           uint32_t token, uint32_t nargs,
                           target_ulong args,
                           uint32_t nret, target_ulong rets)
{
    CPUState *cs = CPU(cpu);
    CPUPPCState *env = &cpu->env;

    cs->halted = 1;
    cpu_exit(cs);
    /*
     * While stopping a CPU, the guest calls H_CPPR which
     * effectively disables interrupts on XICS level.
     * However decrementer interrupts in TCG can still
     * wake the CPU up so here we disable interrupts in MSR
     * as well.
     * As rtas_start_cpu() resets the whole MSR anyway, there is
     * no need to bother with specific bits, we just clear it.
     */
    env->msr = 0;
}
Example #21
0
static void cpu_signal(int sig)
{
    if (cpu_single_env)
        cpu_exit(cpu_single_env);
}
Example #22
0
/*
 * Exit: deallocate address space and other resources, change proc state to
 * zombie, and unlink proc from allproc and parent's lists.  Save exit status
 * and rusage for wait().  Check for child processes and orphan them.
 */
void
exit1(struct thread *td, int rv)
{
	struct proc *p, *nq, *q;
	struct vnode *vtmp;
	struct vnode *ttyvp = NULL;
	struct plimit *plim;

	mtx_assert(&Giant, MA_NOTOWNED);

	p = td->td_proc;
	/*
	 * XXX in case we're rebooting we just let init die in order to
	 * work around an unsolved stack overflow seen very late during
	 * shutdown on sparc64 when the gmirror worker process exists.
	 */
	if (p == initproc && rebooting == 0) {
		printf("init died (signal %d, exit %d)\n",
		    WTERMSIG(rv), WEXITSTATUS(rv));
		panic("Going nowhere without my init!");
	}

	/*
	 * MUST abort all other threads before proceeding past here.
	 */
	PROC_LOCK(p);
	while (p->p_flag & P_HADTHREADS) {
		/*
		 * First check if some other thread got here before us.
		 * If so, act appropriately: exit or suspend.
		 */
		thread_suspend_check(0);

		/*
		 * Kill off the other threads. This requires
		 * some co-operation from other parts of the kernel
		 * so it may not be instantaneous.  With this state set
		 * any thread entering the kernel from userspace will
		 * thread_exit() in trap().  Any thread attempting to
		 * sleep will return immediately with EINTR or EWOULDBLOCK
		 * which will hopefully force them to back out to userland
		 * freeing resources as they go.  Any thread attempting
		 * to return to userland will thread_exit() from userret().
		 * thread_exit() will unsuspend us when the last of the
		 * other threads exits.
		 * If there is already a thread singler after resumption,
		 * calling thread_single will fail; in that case, we just
		 * re-check all suspension request, the thread should
		 * either be suspended there or exit.
		 */
		if (!thread_single(SINGLE_EXIT))
			break;

		/*
		 * All other activity in this process is now stopped.
		 * Threading support has been turned off.
		 */
	}
	KASSERT(p->p_numthreads == 1,
	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
	racct_sub(p, RACCT_NTHR, 1);
	/*
	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
	 * on our vmspace, so we should block below until they have
	 * released their reference to us.  Note that if they have
	 * requested S_EXIT stops we will block here until they ack
	 * via PIOCCONT.
	 */
	_STOPEVENT(p, S_EXIT, rv);

	/*
	 * Ignore any pending request to stop due to a stop signal.
	 * Once P_WEXIT is set, future requests will be ignored as
	 * well.
	 */
	p->p_flag &= ~P_STOPPED_SIG;
	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));

	/*
	 * Note that we are exiting and do another wakeup of anyone in
	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
	 * decided to wait again after we told them we are exiting.
	 */
	p->p_flag |= P_WEXIT;
	wakeup(&p->p_stype);

	/*
	 * Wait for any processes that have a hold on our vmspace to
	 * release their reference.
	 */
	while (p->p_lock > 0)
		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);

	p->p_xstat = rv;	/* Let event handler change exit status */
	PROC_UNLOCK(p);
	/* Drain the limit callout while we don't have the proc locked */
	callout_drain(&p->p_limco);

#ifdef AUDIT
	/*
	 * The Sun BSM exit token contains two components: an exit status as
	 * passed to exit(), and a return value to indicate what sort of exit
	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
	 * what the return value is.
	 */
	AUDIT_ARG_EXIT(WEXITSTATUS(rv), 0);
	AUDIT_SYSCALL_EXIT(0, td);
#endif

	/* Are we a task leader? */
	if (p == p->p_leader) {
		mtx_lock(&ppeers_lock);
		q = p->p_peers;
		while (q != NULL) {
			PROC_LOCK(q);
			kern_psignal(q, SIGKILL);
			PROC_UNLOCK(q);
			q = q->p_peers;
		}
		while (p->p_peers != NULL)
			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
		mtx_unlock(&ppeers_lock);
	}

	/*
	 * Check if any loadable modules need anything done at process exit.
	 * E.g. SYSV IPC stuff
	 * XXX what if one of these generates an error?
	 */
	EVENTHANDLER_INVOKE(process_exit, p);

	/*
	 * If parent is waiting for us to exit or exec,
	 * P_PPWAIT is set; we will wakeup the parent below.
	 */
	PROC_LOCK(p);
	rv = p->p_xstat;	/* Event handler could change exit status */
	stopprofclock(p);
	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);

	/*
	 * Stop the real interval timer.  If the handler is currently
	 * executing, prevent it from rearming itself and let it finish.
	 */
	if (timevalisset(&p->p_realtimer.it_value) &&
	    callout_stop(&p->p_itcallout) == 0) {
		timevalclear(&p->p_realtimer.it_interval);
		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
		KASSERT(!timevalisset(&p->p_realtimer.it_value),
		    ("realtime timer is still armed"));
	}
	PROC_UNLOCK(p);

	/*
	 * Reset any sigio structures pointing to us as a result of
	 * F_SETOWN with our pid.
	 */
	funsetownlst(&p->p_sigiolst);

	/*
	 * If this process has an nlminfo data area (for lockd), release it
	 */
	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
		(*nlminfo_release_p)(p);

	/*
	 * Close open files and release open-file table.
	 * This may block!
	 */
	fdescfree(td);

	/*
	 * If this thread tickled GEOM, we need to wait for the giggling to
	 * stop before we return to userland
	 */
	if (td->td_pflags & TDP_GEOM)
		g_waitidle();

	/*
	 * Remove ourself from our leader's peer list and wake our leader.
	 */
	mtx_lock(&ppeers_lock);
	if (p->p_leader->p_peers) {
		q = p->p_leader;
		while (q->p_peers != p)
			q = q->p_peers;
		q->p_peers = p->p_peers;
		wakeup(p->p_leader);
	}
	mtx_unlock(&ppeers_lock);

	vmspace_exit(td);

	sx_xlock(&proctree_lock);
	if (SESS_LEADER(p)) {
		struct session *sp = p->p_session;
		struct tty *tp;

		/*
		 * s_ttyp is not zero'd; we use this to indicate that
		 * the session once had a controlling terminal. (for
		 * logging and informational purposes)
		 */
		SESS_LOCK(sp);
		ttyvp = sp->s_ttyvp;
		tp = sp->s_ttyp;
		sp->s_ttyvp = NULL;
		sp->s_ttydp = NULL;
		sp->s_leader = NULL;
		SESS_UNLOCK(sp);

		/*
		 * Signal foreground pgrp and revoke access to
		 * controlling terminal if it has not been revoked
		 * already.
		 *
		 * Because the TTY may have been revoked in the mean
		 * time and could already have a new session associated
		 * with it, make sure we don't send a SIGHUP to a
		 * foreground process group that does not belong to this
		 * session.
		 */

		if (tp != NULL) {
			tty_lock(tp);
			if (tp->t_session == sp)
				tty_signal_pgrp(tp, SIGHUP);
			tty_unlock(tp);
		}

		if (ttyvp != NULL) {
			sx_xunlock(&proctree_lock);
			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
				VOP_REVOKE(ttyvp, REVOKEALL);
				VOP_UNLOCK(ttyvp, 0);
			}
			sx_xlock(&proctree_lock);
		}
	}
	fixjobc(p, p->p_pgrp, 0);
	sx_xunlock(&proctree_lock);
	(void)acct_process(td);

	/* Release the TTY now we've unlocked everything. */
	if (ttyvp != NULL)
		vrele(ttyvp);
#ifdef KTRACE
	ktrprocexit(td);
#endif
	/*
	 * Release reference to text vnode
	 */
	if ((vtmp = p->p_textvp) != NULL) {
		p->p_textvp = NULL;
		vrele(vtmp);
	}

	/*
	 * Release our limits structure.
	 */
	plim = p->p_limit;
	p->p_limit = NULL;
	lim_free(plim);

	tidhash_remove(td);

	/*
	 * Remove proc from allproc queue and pidhash chain.
	 * Place onto zombproc.  Unlink from parent's child list.
	 */
	sx_xlock(&allproc_lock);
	LIST_REMOVE(p, p_list);
	LIST_INSERT_HEAD(&zombproc, p, p_list);
	LIST_REMOVE(p, p_hash);
	sx_xunlock(&allproc_lock);

	/*
	 * Call machine-dependent code to release any
	 * machine-dependent resources other than the address space.
	 * The address space is released by "vmspace_exitfree(p)" in
	 * vm_waitproc().
	 */
	cpu_exit(td);

	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);

	/*
	 * Reparent all of our children to init.
	 */
	sx_xlock(&proctree_lock);
	q = LIST_FIRST(&p->p_children);
	if (q != NULL)		/* only need this if any child is S_ZOMB */
		wakeup(initproc);
	for (; q != NULL; q = nq) {
		nq = LIST_NEXT(q, p_sibling);
		PROC_LOCK(q);
		proc_reparent(q, initproc);
		q->p_sigparent = SIGCHLD;
		/*
		 * Traced processes are killed
		 * since their existence means someone is screwing up.
		 */
		if (q->p_flag & P_TRACED) {
			struct thread *temp;

			/*
			 * Since q was found on our children list, the
			 * proc_reparent() call moved q to the orphan
			 * list due to present P_TRACED flag. Clear
			 * orphan link for q now while q is locked.
			 */
			clear_orphan(q);
			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
			FOREACH_THREAD_IN_PROC(q, temp)
				temp->td_dbgflags &= ~TDB_SUSPEND;
			kern_psignal(q, SIGKILL);
		}
		PROC_UNLOCK(q);
	}

	/*
	 * Also get rid of our orphans.
	 */
	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
		PROC_LOCK(q);
		clear_orphan(q);
		PROC_UNLOCK(q);
	}

	/* Save exit status. */
	PROC_LOCK(p);
	p->p_xthread = td;

	/* Tell the prison that we are gone. */
	prison_proc_free(p->p_ucred->cr_prison);

#ifdef KDTRACE_HOOKS
	/*
	 * Tell the DTrace fasttrap provider about the exit if it
	 * has declared an interest.
	 */
	if (dtrace_fasttrap_exit)
		dtrace_fasttrap_exit(p);
#endif

	/*
	 * Notify interested parties of our demise.
	 */
	KNOTE_LOCKED(&p->p_klist, NOTE_EXIT);

#ifdef KDTRACE_HOOKS
	int reason = CLD_EXITED;
	if (WCOREDUMP(rv))
		reason = CLD_DUMPED;
	else if (WIFSIGNALED(rv))
		reason = CLD_KILLED;
	SDT_PROBE(proc, kernel, , exit, reason, 0, 0, 0, 0);
#endif

	/*
	 * Just delete all entries in the p_klist. At this point we won't
	 * report any more events, and there are nasty race conditions that
	 * can beat us if we don't.
	 */
	knlist_clear(&p->p_klist, 1);

	/*
	 * If this is a process with a descriptor, we may not need to deliver
	 * a signal to the parent.  proctree_lock is held over
	 * procdesc_exit() to serialize concurrent calls to close() and
	 * exit().
	 */
	if (p->p_procdesc == NULL || procdesc_exit(p)) {
		/*
		 * Notify parent that we're gone.  If parent has the
		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
		 * notify process 1 instead (and hope it will handle this
		 * situation).
		 */
		PROC_LOCK(p->p_pptr);
		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
		if (p->p_pptr->p_sigacts->ps_flag &
		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
			struct proc *pp;

			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
			pp = p->p_pptr;
			PROC_UNLOCK(pp);
			proc_reparent(p, initproc);
			p->p_sigparent = SIGCHLD;
			PROC_LOCK(p->p_pptr);

			/*
			 * Notify parent, so in case he was wait(2)ing or
			 * executing waitpid(2) with our pid, he will
			 * continue.
			 */
			wakeup(pp);
		} else
			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);

		if (p->p_pptr == initproc)
			kern_psignal(p->p_pptr, SIGCHLD);
		else if (p->p_sigparent != 0) {
			if (p->p_sigparent == SIGCHLD)
				childproc_exited(p);
			else	/* LINUX thread */
				kern_psignal(p->p_pptr, p->p_sigparent);
		}
	} else
		PROC_LOCK(p->p_pptr);
	sx_xunlock(&proctree_lock);

	/*
	 * The state PRS_ZOMBIE prevents other proesses from sending
	 * signal to the process, to avoid memory leak, we free memory
	 * for signal queue at the time when the state is set.
	 */
	sigqueue_flush(&p->p_sigqueue);
	sigqueue_flush(&td->td_sigqueue);

	/*
	 * We have to wait until after acquiring all locks before
	 * changing p_state.  We need to avoid all possible context
	 * switches (including ones from blocking on a mutex) while
	 * marked as a zombie.  We also have to set the zombie state
	 * before we release the parent process' proc lock to avoid
	 * a lost wakeup.  So, we first call wakeup, then we grab the
	 * sched lock, update the state, and release the parent process'
	 * proc lock.
	 */
	wakeup(p->p_pptr);
	cv_broadcast(&p->p_pwait);
	sched_exit(p->p_pptr, td);
	PROC_SLOCK(p);
	p->p_state = PRS_ZOMBIE;
	PROC_UNLOCK(p->p_pptr);

	/*
	 * Hopefully no one will try to deliver a signal to the process this
	 * late in the game.
	 */
	knlist_destroy(&p->p_klist);

	/*
	 * Save our children's rusage information in our exit rusage.
	 */
	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);

	/*
	 * Make sure the scheduler takes this thread out of its tables etc.
	 * This will also release this thread's reference to the ucred.
	 * Other thread parts to release include pcb bits and such.
	 */
	thread_exit();
}